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1. Introduction and main results

We investigate the large-time behavior of solutions of the Hamilton-Jacobi equation
ug(z,t) + H(z, Du(x,t)) =0 in R x (0, 00), (1)

with initial condition
u|t=p = up on R, (2)
where H € C(R x R) and ug € C(R) are given functions, u € C(R x [0, 00)) represents
the unknown function, and u; and Du denote the partial derivatives du/0t and du/0x,
respectively.
In this note, as far as Hamilton-Jacobi equations are concerned, we mean by solution

(resp., subsolution or supersolution) viscosity solution (resp., viscosity subsolution or
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viscosity supersolution). We refer to [3, 1, 7] for general overviews of viscosity solutions
theory.

The large-time behavior of solutions of (1) or more generally
ut(x,t) + H(z, Du(z,t)) =0 in Q x (0, 00), (3)

where () is an n-dimensional manifold, has been studied by many authors since the
works by Kruzkov [18], Lions [19], and Barles [2]. In the last decade it has received
much attention under the influence of developments of weak KAM theory introduced
by Fathi [9, 11]. We refer for related developments to Namah-Roquejoffre [23], Fathi
[10], Roquejoffre [24], Barles-Souganidis [5], Davini-Siconolfi [8], Fujita-Ishii-Loreti [14],
Barles-Roquejoffre [4], Ishii [17], Ichihara-Ishii [15, 16], and Mitake [21, 22].

In [10, 23, 24, 5, 8] they studied the asymptotic problem for (3) in the case where
is a compact manifold or simply an n-dimensional flat torus. The results obtained there
are fairly general and one of them states that if H(x,p) is coercive and strictly convex
in p, then the solution u of (3) behaves as an asymptotic solution for large ¢, that is,

there is a solution (c,v) € R x C(Q2) of the additive eigenvalue problem for H
H(z,Dv(z)) =c in €, (4)

such that

tli}rgo(u(x,t) — (v(x) —ct)) =0 uniformly for x € Q. (5)
Here and henceforth, for a solution (c,v) of (4), we call the function v(x) — ¢t an
asymptotic solution of (3). The strict convexity requirement for H in the above result
can be replaced by a condition which is much weaker than the usual strict convexity,
for which we refer to [5] (see also [15]). Moreover, as Barles-Souganidis [5] pointed out,
the convexity of H(z,p) in p is not enough to guarantee the convergence (5).

If (c,v) is a solution of (4), then we call ¢ and v an (additive) eigenvalue and (addi-
tive) eigenfunction for H, respectively.

In the case where Q2 = R", there are a few results (e.g., [6, 14, 4, 17, 15, 16]) on
the large-time asymptotic behavior of solutions of (3), but the situation is not so clear
compared to the case where () is compact.

We use the notation: Hu| or H|u|(x) for H(x, Du(x)) in what follows. For instance,
“Hlu] < 0 in ©” means that u is a subsolution of H(z, Du(z)) = 0 in 2. We denote
by S5 (Q) (resp., S5;(Q) or Si(£2)) the set of all subsolutions (resp., supersolution and
solutions) u of H[u] = 0 in Q. We write S; (resp., Sj; or Sy) for S;; () (resp., S ()
or Sy (€)) when there is no confusion.

In this note we restrict ourselves to the case where {2 = R and give an overview on
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the large-time asymptotic behavior of solutions of (3).

We will always assume the following assumptions (A1)—-(A6).
(A1) H € C(R?).
(A2) H is locally coercive in the sense that

lim inf{H(x,p) | (x,p) € [-R, R] xR, |p| >r} =00 forall R > 0.

T—00

(A3) H(xz,-) is convex on R for every z € R.
(A1) Sp(R) £0D.

(A5) For any ¢ € Sy(R) there exist a function ¢ € C(R) and a constant C' > 0 such
that ¢ € S;_~(R) and | llim (¢ — ) (z) = 0.

Our main theorem (Theorem 3 below) states that, under (A1)—(A6) together with

certain additional assumptions, the convergence (5) holds with ¢ = 0 on compact sets.
Note that if u is a solution of (1) and ¢ is a given constant, then the function w(z,t) =
u(x,t) + ct satisfies w, + H[w] —c =0 in R x (0, 00). Thus, through this simple change
of unknown functions, our main theorem applies to the general situation where ¢ in (5)
may not be zero.

We denote by CO*1(X) the space of real-valued locally Lipschitz continuous functions
on metric space X. If a given function H € C'(R?) satisfies (A1)-(A3) and furthermore
the condition that there exist a function ¢g € C°T1(R) and three (real) constants ¢ < B
and p > 0 such that

H(xz,D¢o(z)) <c ae. x€R,
{H(w,p) <c = H(z,p+q) < B forall g€ [—p,pl,
then (A1)—(A5) are satisfied with H — ¢ in replace of H. Indeed, it is clear that (Al)-
(A3) hold with H — c in place of H and that ¢g € S;;__.(R) and hence (A4) holds with
H —cin place of H. (Note here by the convexity of H(x, p) in p that the above condition
on ¢p is equivalent to saying that ¢o € S;(R).) We define the function g € C(R) by
g(x) = p|z| and, for any ¢ € S;_.(R), we set ¢ := ¢ — g. Then we have ¢y € S;;_5(R)
and lim;| o (¢ — ¥)(z) = co. That is, (A5) holds with H — c in place of H.
Another remark here is that we have min,cr H(z,p) < 0 by (A4), which reads

L(z,0) >0 forall z € R,

where L denotes the Lagrangian of the Hamiltonian H, i.e., L is the function defined
by L(x,&) = sup,er({p — H(z,p)).



We define the function d: R x R — R by
d(z,y) =sup{w(z) —w(y) |w e S;(R)} for (z,y) € R xR.

It is well-known (see, for instance, [12, 13, 17]) that d(z,z) = 0 for all x € R, d €
C'TH(R?), d(-,y) € S (R) NSy (R\ {y}) for all y € R, and

d(z,y) = inf{/o L(y(s),4(s))ds | t >0, v € AC([0, 1]), 7(t) = =, 7(0) = y}.

We define the (projected) Aubry set Ay for H as the set of those points y € R for
which d(-,y) € Sg(R). See [12, 13, 17] for some properties of Agy. The function d(-,y)
can be regarded, in terms of optimal control, as the value function of the optimal hitting
problem having y and L as its target point and running cost, respectively.

As a reflection of our one-dimensional domain R, we have:

Proposition 1. (a) If z < y < z, then d(x,2) = d(z,y) + d(y,z). (b) Ifx >y > z,
then d(z,z) = d(x,y) + d(y, 2).

We postpone the proof of the above proposition till the next section.

We observe that if z < 0 < y, then d(z,y) — d(0,y) = d(z,0) + d(0,y) — d(0,y) =
d(z,0) and if 0 < x < y, then d(z,y) — d(0,y) = d(z,y) — d(0,z) — d(z,y) = —d(0, x),
and define d, € C°T}(R) by
d(x,0) for z <0,

—d(0, z) for x > 0.

Also, we observe that if y < z <0, then d(z,y) — d(0,y) = d(z,y) — d(0,z) — d(x,y) =
—d(0,z) and if y < 0 < z, then d(x,y) — d(0,y) = d(x,0) + d(0,y) — d(0,y) = d(z,0),
and define d_ € C°*1(R) by

Yy—oo

dy(r) = lim (d(z,y) —d(0,y)) = {

d-() = lim_(d(w,y) - d(0,

| —d(0,2) for x <0,
v) = { d(zx,0) for z > 0.
It is easily seen (see also Proposition 7 (a) below) that dy,d_ € Sy(R).

We assume only (A6) on initial data uy and do not know any existence and unique-
ness result concerning solutions u of (1)—(2) which applies in this generality. Our choice

of solution of (1)—(2) here is the function u given by

u(a, ) = inf{ / L((s),4(s)) ds +uo(1(0)) | v € AC((0, ]), 7(t) =z}, (6)

We understand that formula (6) for ¢ = 0 means that u(x,0) = ug(z). Note that
L(x,£) may take the value +oo at some points (x,§) and that L(z,§) > —H(z,0) >
—sup|,|<g H(2,0) > —oc for all R > 0 and (z,§) € [-R, R] x R. These observations
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clearly give the meaning of the integral fg L(v,%)ds as a real number or +oco. Note
that it may happen that u(z,t) = —oo for some points (z,t) € R x (0, 00). Noting that
L(z,0) = —min,er H(z,p) < oo for all x € R, we see that u(z,t) < L(z,0)t + up(z) <
oo for all (z,t) € Rx[0,00). Hence we have —oo < u(z,t) < oo for all (z,t) € Rx][0,00).
Also we remark (see, e.g., [17, Theorems A.1, A.2]) that if u € C(U) for some open set
U C R x (0,00), then u is a viscosity solution of (1) in U.

We introduce functions u., u, on R as
uy () = sup{v(z) |v € Sy, v<wup in R},
Uso(x) = inf{v(z) |v € Sg, v > u; in R}.
Note that the set {v € S | v < up in R} may be empty, in which case u; (z) = —o0.

Otherwise, uy; € Sz (R), and ug € C°T!(R) because of (A2). Similarly, it may happen
that us () = +00. Otherwise, we have us, € Sy(R) and u, € COT1(R).

Proposition 2. Let u be the function given by (6). (a) If uy(x) = —oo, then
liminfu(x,t) = —oo for all z € R. (b) If uy(x) > —oo and us(z) = 400 for all

t—oo

x € R, then tlim u(z,t) = +oo for all x € R.
— 00
We are now ready to state our main result of this note.

Theorem 3. Assume that uy () > —00 and us(x) < oo for all x € R. Let u be the
solution of (1)—(2) given by (6). Then we have

u(z,t) — uso(z) uniformly on bounded intervals of R ast — oo, (7)

except the following two cases (a) and (b).

( sup Ap < o0,

(a) Uso(2) =dy () +c4 forallzx >R and somecy € R, R >0,
liminf(ug — uy )(x) = 0 < limsup(ug — ug ) ().

\ T T—00

(inf Ay > —oo0,

(b) Uso(x) =d_(z)+c— forallz < —R and somec_ € R, R >0,
liminf(ug — vy )(x) = 0 < limsup(ug — uy )(x) > 0.
\ T~ T——00

The rest of this note is organized as follows. In Section 2 we give some preliminary
observations which are needed in our proof of Theorem 3. Section 3 is devoted to the
proof of Theorem 3. In Section 4 we discuss two examples and classical convergence

results as well as a new twist of “strict convexity” hypothesis on H in connection with

5



Proposition 2 and Theorem 3.

2. Preliminaries

In this section we give some observations on d+, Sg, A, Uy, U, and extremal
curves as well as the proof of Propositions 1 and 2. We use the notation: L[] = L[](¢)
for L(~(t),7(t))-
Proof of Proposition 1. We prove only assertion (a). Assertion (b) can be proved
in a similar way. Let 2 <y < z. We know that d(z, z) < d(x,y) + d(y,2). Fixane >0
and choose a curve v € AC([0, t]), with ¢ > 0, so that y(t) = x, 7v(0) = z, and

d(z,z) 4+ e > /0 L[v](s) ds.

Choose a T € [0, t] so that v(7) = y, and observe that

d(x,z)+£>/

Hence we get d(x,z) > d(z,y) + d(y, z), which proves that d(x,z) = d(z,y) + d(y, 2).
O

t

L) ds + / " Liylds > d(x,y) + d(y, 2).

We need the following lemmas for the proof of Proposition 2.

Lemma 4. There ezists a constant Cr > 0 for each R > 0 and a curve n € AC([0, T)
for each z,y € [-R, R] and T > Crlz — y| such that n(0) =z, n(T) =y, and

/0 L((t), i(t)) dt < CpT.

Proof. Fix R > 0 and choose constants 6 > 0 and M > 0 (see for instance [17,
Proposition 2.1]), depending on R, such that L(z,£) < M for all (z,§) € [-R, R] x
[—6, 8]. Fix any z,y € [—-R, R] and T' > 0. We define n € AC([0, T]) by setting
n(t) =z + %(y — ) for t € [0, T|. We observe that n(0) = z, n(T) =y, n(t) € [-R, R]
and 1(t) = (y — z)/7 for all t € [0, T|. Hence, if T' > |y — z|/J, then we get |§(t)] < §
for all ¢ € [0, T'] and therefore

/0 " L), (e dt = / ' L), * =) de < M.

Thus the curve 1 has the required properties with Cr = max{M, 1/6}. 0O

Lemma 5. Let U C R be an open interval and v € USC(U x (0,00)) a subsolution of
(1) in U x (0,00). Assume that there ezists a constant Cy > 0 such that —Cy < v(x,t) <
Co(141) for all (z,t) € U x (0, 00). Define w € USC(U) by w(x) = infy~ov(z,t). Then
we Sy WU).



An observation similar to the above lemma can be found in [15, Lemma 4.1].

Proof. We may assume that v € USC(U x [0,00)) by setting v(z,0) =
lim, 4o sup{v(y, s) | (y,s) € U x (0,00), |y — x|+ s < r}. Let € > 0, and consider the
sup-convolution v¢ of v defined by
t—s)?
ve(z,t) = ig}g (v(:l;, s) — %) :

Observe that v*(z,t) > v(z,t) > —Cj for all (x,t) € U x (0,00).

Fix (x,t) € U x (0,00). It is clear that there exists an s > 0 such that v®(z,t) =
v(z,s) — (t — s)?/(2¢). Fix such an s > 0, and observe that

Gy <u(e.t) < vi(et) = vie) - L < g - L
<Co(l+t+t—s|) — (t —s)? < _(t—s)2 +Cg(1+t)+5002,

2 4e
and hence
s — t] < 2{e(2Co(1 +t) +eC2)}1/2.

From this last estimate, we see that for each 7 > 0 there exists a § > 0 such that ift > 7
and 0 < € < 6, then s > 0. Fix any 7 > 0 and choose such a constant § > 0. It is now a
standard observation that if ¢ € (0, ¢), then v° is a subsolution of (1) in U x (7, 00) and
ve € COTL(U x (7, T)) for all T > 7. Fix any o > 0 and define w*° € C(U x (0, o))
by w7 (x,t) = infocs<o v° (2, + 5).

Let ¢ € (0,9), and observe that w®° € CO1(U x (7, T)) for all T > 7 and by the
convexity of H(z,p) in p that w®? is a subsolution of (1) in U X (7, co). Note that
w7 (z,t) is non-increasing as a function of o and therefore that if we set w®(x,t) :=

infssov(z,t + s) for (z,t) € U x (0, 00), then for any (z,t) € U x (0, c0),
w(z,t) = lim sup{w™7(y,s) | (y,5) € U x (0, 00), [y — x| +|s —t| <r, 0 >1/r}.

We now see by the stability of the viscosity property under half relaxed limits that
w® € USC(U x (0, 00)) is a subsolution of (1) in U X (7, co). By the definition of w*®, it
is clear that for any = € U, the function w®(z,t) is non-decreasing in t € (0, 00), from
which we deduce that w(-,t) € S;(U) for all ¢ > 7. In particular, we see that the
family {w®(-,t) |t > 7} C C°T1(U) is locally equi-Lipschitz continuous on U.

Note that we(x,t) is non-decreasing as a function of e, that w(x,t) >
infssov(z,t +s) for all (z,t) € U x (0, ) and € > 0, and that inf.sqw®(z,t) =
inf{v*(z,t+s)|s>0,e>0} for all (z,t) € U x (0,00). It is now easy to see by

using the convexity of H that if we set z(z,t) := inf.sow®(z,t), then z(x,t) =
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infoc.<s w(z,t) for all (x,t) € U x (0,00) and 2(+,t) € S (U) for all ¢ > 7. Since 7 > 0
is arbitrary, we see that z(-,t) € S (U) for all ¢t > 0. Setting w(x) := inf;~¢ 2(z,t) for
x € U, we see that w(x) = inf;~¢v(z,t) for all z € U and moreover that w € S;(U).

O

Lemma 6. Let ¢ € S;; and v € AC([0, t]). Then

5(1(1) — 6(+(0)) < / L] ds.

For a proof of the above lemma we refer, for instance, to [17, Proposition 2.5].

Proof of Proposition 2. We begin with (a). Assume that u, (z) = —oo. We sup-
pose that there exists an xg € R such that liminf;_ . u(xg,t) > —oo, and will get a
contradiction. By translation, we may assume that zg = 0.

We show first that for each R > 0 there exists a constant Mpr > 0 such that
u(z,t) > —Mpg for all (z,t) € [-R,R] x [0,00). For this we fix R > 0 and choose
constants 7 > 0 and Cy > 0 so that u(0,t) > —Cy for all t > 7. Let Cr > 0 be the
constant from Lemma 4 and fix any (z, t) € [-R, R] x [0, c0). By Lemma 4, we may
choose a curve n € AC([0, Tr]), with T := RCr + 7, so that n(0) =z, n(Tr) = 0, and

Tr
/ L[??] ds < CRTR.
0

Fix any v € AC([0, t]) so that v(t) = x, and define ¢ € AC([0, t + Tr]) by

~v(s) for 0 < s <t,

¢(s) =

n(s —t) fort <s<t+Tkg.

We observe that

—Co <u(0,t+tg) S/o L[’y]ds+/0RL[n]ds+u0(C(0))

<enti+ [ Ll ds + uo(+(0),

from which we deduce that u(z,t) > —Cy — CgTr. Thus we conclude that u(z,t) >
—Mp, for all (z,t) € [-R, R] x [0, o), where Mp := Cy + CRTg.

Next we observe from (6) that u(x,t) < L(x,0)t 4+ ug(x) for all (z,t) € R x [0, 00).
Since L(z,0) = —minycr H(x,p) is a continuous function of = because of (Al) and
(A2), we see that u is locally bounded on R x [0, 00) and hence by [17, Theorem A.1] for
instance that u* is a viscosity subsolution of (1), where u* is the upper semicontinuous
envelope of u, i.e., u*(x,t) := lim,_, o sup{u(y, s) | (y,s) € Rx[0,00), |[y—z|+|s—t| <
r}. Set w(z) = infisou*(x,t) for z € R. According to Lemma 5, we have w € S (R).
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Also, since u*(z,t) < L(z,0)t + ug(z) for all (z,t) € R x (0, 00), we have w(x) < ug(z)
for all x € R. Now we see that u, () > w(x) > —oo for all z € R. This is a

contradiction, which proves (a).

We now turn to (b). Assume that uy (x) > —oo and us(z) = +oo for all x € R. We

suppose that lim inf; o, u(zg,t) < 0o for some zy € R, and will obtain a contradiction.

Define the function v~ on R x [0, 00) by

¢
w () = nt{ | L)) ds+ 5 ((0) | v € AC(O. 6 () =2} (9
0
Since u, < up in R, we have u™ (z,t) < u(z,t) for all (z,t) € R x [0,00). Note that the
function v~ satisfies the dynamic programming principle
t
u(z,t+s) = inf{/ Liy)(r) dr +u™(7(0),s) | v € AC([0, ¢]), ~(t) = z}.
0

The term inside the above infimum sign can be oo — 0o, which we agree to mean +oo.
Since u, € Sy, by Lemma 6, we have for all v € AC([0, ¢]),

w5 (10) = 45 () < [ Zp(s)ds.
0
Consequently, we get
uy () <u(x,t) forall (x,t) € R x [0, 00).

This together the dynamic programming principle yields

u (x,t+s)> inf{/O Liv](r) dr 4+ ug (7(0)) | v € AC([0, t]), v(t) = 90} =u" (x,t)

for all z € R and ¢, s € [0,00). Thus we see that the function v~ (z,t) is non-decreasing

in ¢t for any =z € R.

We may assume without any loss of generality that xyp = 0. We choose a constant
C1 > 0 so that liminf; ., u(0,t) < Cy. By the monotonicity of v~ (0,t), we have

u (0,t) < Cy forall t > 0.

Fix any R > 0. By the dynamic programming principle and Lemma 4 with 7' = Cr R+1,
we get for all (z,t) € [-R, R] x [0, c0),

u (z,t+7T) < CrT +u (0,t) < CrT + (4,
where Cr > 0 is the constant from Lemma 4. Hence we get
u (z,t) < Kg for all (z,t) € [-R, R] x [0,00),
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where K := CrT + C.

Since ug € C'1(R), we have u= € C°THR x [0, 00)). Indeed, we fix R > 0,
x,y € [-R, R] with z # y, and ¢t > 0, and observe by using the dynamic programming
principle and Lemma 4, with T' > Cgr|z — y|, that for all z,y € [-R, R] and t > 0,

u (1) < u” (gt +T) < u(a,1) + CrT. )
Thus we have
lu™(y,t) —u~ (z,t)| < Cxlz —y| forall z,y € [-R, R] and t > 0.

On the other hand, using the dynamic programming principle and Lemma 4, we have
for x € [-R, R] and ¢, s € [0, 00),

u (z,t) <u (z,t+s) <u (z,t) + Crs,

and hence |u™(z,t) — u™ (z,s)| < Cg|t — s| for all z € [-R, R] and t,s € [0, o).
Thus we conclude that u= € COT1(R x [0, o0)). It is now standard to see that if we
set w(x) = limy_ oo u™ (x,t), then w € CO*1(R) and w € Sy(R). The monotonicity
of the function u™(x,t) in ¢ guarantees that u, < w in R. Therefore we see that

Uso () < w(x) < 0o for all z € R, which is a contradiction. 0O

Proposition 7. (a) dy € Sg(R). (b) If x <y, then d(x,y) = dy(x) — dy(y). (c) If
x>y, thend(x,y) = d_(x)—d_(y). (d) The function dy —d_ is non-increasing on R.

Proof. (a) Since d(-,y) € Sg(R\ {y}) for any y € R, by the stability of the viscosity
property, we see that do € Sy(R). (b) Let x < y < z, and observe that d(z,z) —
d(0,z) = d(x,y) + d(y,z) — d(0,z). Hence, sending z — oo, we get dy(x) = d(z,y) +
d+(y), that is, if x < gy, then d(x,y) = d4(x) — d4(y). (c) An argument parallel to
(b) readily yields d(z,y) = d_(z) — d_(y) for x > y. (d) Let x < y and observe that
d_(2)—d_(y) < d(z,y) = ds (x)—ds (), from which we get (ds —d_)(z) > (ds —d_)(y).
O

Proposition 8. We have
uy () = inf{uo(y) + d(z,y) |y € R} for all z € R.

Proof. We denote by w the function defined by the right hand side of the above equality.
Let v € S5 (R) satisfy v < up in R. Then we have v(z) < v(y)+d(z,y) < uo(y)+d(z,y)
for all z € R. Hence we get v(z) < w(z) and consequently u, (z) < w(x) for all z € R.
On the other hand, if w(zg) > —oo for some o € R, then we see that w € C°T1(R)
and w € S;(R). It is clear that w(x) < ug(x) for all x € R. Therefore we have
w(x) < wuy (x) for all x € R. Thus we have w(x) =u, (z) forallz € R. 0O
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Let I C R be an interval and ¢ € Sy. We call a function (curve) v € C(I) an

extremal curve on [ for ¢ if for any a,b € I, with a < b, we have

v € AC([a, b]) and  ¢(v(b)) — ¢(v(a)) =/ L[y](s) ds. (10)

We denote by E(I,¢) the set of all extremal curves on I for ¢. When 0 € I, for
y € R, we denote by (I, ¢,y) the set of those v € £(I, ¢) which satisfy v(0) = y.

Proposition 9. Let ¢ € Sy and y € R. Then E((—o0, 0], ¢,y) # 0.

We can adapt the proof of [17, Corollary 6.2] to the above lemma. We will not give

the details of the proof here, and instead give a key observation:

Lemma 10. Let ¢ € Sy andt > 0. Then, for any x € R,

1nf{/ 7]ds + ¢(v(0)) | 7€ AC([0, 1]), y(t) = z}. (11)
Proof. Thanks to (A5), we may choose a function 1 € C°*1(R) and a constant C' > 0
so that ¢ € Sp_ and lim;| (¥ — ¢)(x) = —oo. Then, we apply [17, Theorem

1.1], with ¢g and ¢ replaced by ¢ and 1), respectively, to conclude that the solution
u(z,t) ;= ¢(x) of (1)—(2) can be represented as

(z,t) mf{/ vlds + ¢(v(0)) | v € AC([0, ¢]), 7(t) =z},

which shows that (11) holds true. (In [17, Theorem 1.1], the Hamiltonian H(x,p) is
assumed to be strictly convex in p, but this assumption is actually superfluous and can

be replaced by our convexity assumption (A3). ) 0O

Proposition 11. Ay = &y, where £y denotes the set of equilibria, that is, Eg =
{z e R| L(z,0) = 0}.

Lemma 12. Let y € R and 6 > 0. Then we have y € Ay if and only if

inf{/o Lilds | ¢> 6,7 € AC(0, ), () = 7(0) = y} = 0.

We refer to [17, Proposition A.3] (see also [12, 13]) for a proof of the above lemma.

Proof of Proposition 11. Let z € Ay, and we need to show that L(z,0) < 0. Fix
any € € (0, 1). Let 6 > 0 be a constant to be fixed later on. According to Lemma 12, for
any n € N there exists a v, € AC([0,T,]), with T,, > 4, such that v,(0) = v,,(T,) = =

and
T, 1
/ L(yn,yn)ds < —.
0 n
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We claim that we may assume by choosing § > 0 small enough that

— < e.
oax, |yn(s) — 2l <e

To see this, we first consider the case where maxo<s<7, (7n(s) — 2) > €. It is easily
seen that there are 0 < s, < t, < 0, < 7,y < T, such that v,(s,) = V() = 2,
Tn(tn) = Yn(on) = 2+ ¢, and v,(s) € (z, z +¢) for all s € (s, tn) U (0, 7). Observe
that .
0=d(z, 2) < / L[vy,]ds.
0

Similarly we have

On Tn
/ L[y,]ds >0 and / Ll[y,]ds > 0.
t T

n n

Therefore we get

1 T, tn Tn
> [ ihasz [ rpalas+ [z s
0 s o

n

We define 5,, € AC(|0, Tn]), with T}, := t, — Sp + Tn — On, by setting 3, (s) = (s + spn)
for s € [0, t,, — s,] and 3, (s) = (s + op —ty + sp) for s € [t, — s, Tn], and note that

T,
n 1
max |n(s) —z| =€, An(tn —sn) =2+¢, and / L[] ds < =.
0<s<T), 0 n

By (A1), there exists a constant C. > 0 such that eL(z,&) > (|¢| — C¢) for all (z,¢) €
[z — 1, z+ 1] x R. We compute that
2¢ = [ (tn = 5n) = 0 (0)] + [ (T) = T (tn — )|
tn—Sn ~ %n ~
< / d¥n(s) ds +/ d¥n(s)
0 trn—Sn

ds as |9
Tn .
< / (eL[An] + C:)ds < e + C.T,.
0

Hence we have T, > ¢/C.. We now fix § = £/C. and observe that 7, (0) = 5(T},) = z,

T
" 1
/ L[A,]ds < —, and max |y,(s) —z| <e.
0 n 0<s<T,
Similarly, if ming<s<7, (Yn(s) — 2) < —¢, then we can build a 7,, € AC([0, T},]), with
T, > 6, so that 5, (0) = 7, (T},) = 2,

T
" 1
max |Y,(s) —z| <e, and / L[A,)ds < —.
0<s<T), 0 n

12



Thus we may assume by replacing 7, if necessary that maxo<s<7, |70 (s) — 2| < e.

Next, let R > 0 and set

Lp(z,§) = max (&p — H(x,p)).

Ip|<R

Observe that Lg is continuous on RxR, Lr(x,§) < L(z,§) for all (z,§), and Lr(z,§) —
L(z,&) as R — oo for all (z,&). Let wr be a modulus of the function H on [z — 1, z +
1] x [- R, R] and observe that for all z,y € [z — 1, z+ 1] and £ € R,

|LR($7£) - LR(y7£)| < |I;|12)é |H(x,p) - H(yap)‘ < WR(’:E - y|)

We compute that

1 [Tn 1 [Tn
= Ln(2 7 / (1) dt) <= / L(z3n(t)) dt
n 0 Tn 0

I
< | RO ©: () dt+ on( max ) <)
IR
< — _
<7 | 005 0) t + wn( ma 1,0 = 2)
<1+< n(t) = 21) < =+ wr(e)
nT,, W ogg):%n Tn 2= TWRE)

Sending n — oo and then ¢ — +0, we get Lgr(z,0) < 0, from which we conclude by
sending R — oo that L(z,0) < 0. The proof is complete. O

3. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. We assume all the hypotheses of
Theorem 3 in what follows. Let u be the function on R x [0, 0o) given by (6) and u™
denote the function on R defined by

ut (x) = limsup u(z, t).

t—o0
Lemma 13. For all z € R we have
w'(z) = lim sup{u(y,s) [s>r7" [y —af <rl, (12)
Uoo () < lirﬁ}oinf{u(y, s)|s>r7 b Jy—x <r} (13)

Inequality (13) is a modification of (18) in [15, Lemma 4.1].
Proof. By Lemma 4 and the dynamic programming principle, we get

u(y,t+T) <wu(x,t)+ CgT forall z,y € [-R, R|,t>0and T > Cgl|x — y,
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where C'r > 0 is a constant depending only on R, from which we easily obtain (12) for
all z € R.

Let u~ be the function on R x [0, 00) defined by (8). As in the proof of Proposition
2, we have v~ € COT1 (R x[0,00)), v~ < uin Rx [0, 00), and s (x) = lim;_, oo u™ (2, 1).
Therefore we have

Uoo(T) = 7”l_i)Izrloinf{u_(y, s)|s>r t jy—x| <r}

< liriloinf{u(y, s)|s>r7t jy—x| <rl,

which completes the proof. 0O

In order to show that u(x,t) — uco(x) uniformly on bounded intervals of R, due
to the above lemma, we only need to prove that u™(z) < us(z) for all z € R. We
fix y € R and will prove that u; (y) < us(y). By Proposition 9, we may choose a
v € E((—00, 0], uso, y). We first divide our considerations into two cases.

Case 1: dist (y((—00,0]), Ag) = 0 and Case 2: dist (y(—00,0]), Ag) > 0,
where we set dist (y((—00,0]), Ag) = oo when Ay = (). We first treat Case 1.

Lemma 14. In Case 1, we have u™ (y) < uoo(y).

Proof. Since vy((—o0, 0]) is an interval and Ay is a closed set (see. e.g., [12, 13, 17]),
it is not hard to see that there exists a z € Ay such that dist (y((—o0, 0]),2) = 0. Fix
such a z € Ay and set R = |z|+ 1. Let Cg > 0 be the constant from Lemma 4. Fix any
e € (0, 1), and choose an r > 0 so that |y(—r) — z| < € and U (2) < U (Y(—7)) + €.
By Lemma 4, we may choose a curve n € AC([0, 7]), with 7 = Cr|z — y(—7r)| + €, so
that n(0) = z, n(r) = y(—r), and

/OT Ligldt < Crr = C%(|z — 7(—1)| + &) < 202 e.
In view of Proposition 8 and the variational representation for d, we have
ug (2) = mf{/ot L[¢]ds + uo(¢(0)) | t >0, ¢ € AC([0,1]), ¢(t) = =}.
Hence we may choose a curve ( € AC([0, 0]), with o > 0, so that {(¢) = z and
ug (2) +e> /OU L[¢]ds + uo(¢(0)).

Let t > r+7+o0 and define the curve u € AC([—t,0]) as follows: weset T' = t—(r+7+0)

and

~(s) for s € [—r,0],
(s) = n(s+r+r7) for s € (—(r+7),—r],
# P for s € (—(r + 7+ 1), —(r +7)],
C(s+1) for s € [-t,—t+ o] =[-t,—(r+7+T).

14



We compute that

0
u(y,1) < / Li] ds + uo(u(~1)

—t

0 T T o
§/ L[y]ds—k/o L[n]ds—l—/o L(z,O)ds+/0 L[¢]ds + up(¢(0))

—-T

< Uoo (Y) = Uoo (Y(=7)) + 20%e + ugy (2) + € < Uso(y) + 2(C3 + 1),

where we have used the fact that ug (2) < ueo(2) < uso(y(—7)) + €, and conclude that
ut(y) < us(y). O

Now, we turn to Case 2 and begin with a few lemmas.

Lemma 15. Let c € R. Assume that dy +c¢ > ug on R and infr(dy +c—uy ) =0.
Then lim (dy(x) 4+ c—ug (z)) = 0.

Proof. Suppose on the contrary that limsup,_, . (d+(x) + ¢ — ug () > 0 and choose
a 0 > 0 and a sequence z, — oo such that d4(z,) + ¢ —ug (z,) > J for all n € N. We
show that di (x) + ¢ —ugy (z) > /2 for all x € R, which is an obvious contradiction to
the assumption that infr(d4+ +c¢—uy ) = 0.

Fix any x € R, and choose an n so that x < z, and then a y, € R in view
of Proposition 8 so that ug (zy,) + 0/2 > uo(yn) + d(zn,yn). Noting that d(z,z,) =
dy(z) — dy(z,), we compute that

ug (z) <ug(yn) + d(z,yn) < uo(yn) + d(z, ) + d(z0, yn)

J J
<u5(xn) + 5 +d(1’,$n) < d+(xn) +c— 5 + d+<l‘) - d+(mn)
J
—d+(l’) +c— 5,
and conclude that di () + ¢ —uy (z) > /2. 0O

Lemma 16. In Case 2, the set y((—o0,0]) is unbounded.

Proof. On the contrary we suppose that v((—o0,0]) is bounded. We may choose a
sequence {t,} C (—o0,0] so that t,; <t, —1 for all n € N and {7(¢,)} is convergent.

Set z := lim, o (¢, ). Observe that as n — oo,

/ " LAYt = e (1(tn)) — e (1(tas1)) — 0.

tnil
Fix any n € N. By Lemma 4, there are curves n, € AC([0,7,]) and (, € AC([0,0,]),
with 7, > 0 and o,, > 0, such that 7,,(0) = (. (0n) = 2, M (Th) = Y(tn+1), Ca(0) = y(tn),
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and . .
| Lt <Cobrttar) ~ 21+
0

On 1
| tiGlar<Cotn) — 2|+ .
0
where Cy > 0 is a constant independent of n. We set T;, = t,, — t,41 + 7, + 0, and
define the curve =, € AC([0, T3,]) by
N (t) for t € [0, 7],

V() = Yt +tpye1 — ) for t € (Tn, T + tn — tntal,
Cn(t — (Tn +tn — thy1)) for t € (1, +tn, — tny1, Tl

Observe that v, (0) = v,(7},) = z and

/0 " L dt < oo ((n)) — 100 (1(tns1))

2
+CO(‘7(tn)_Z|+|’Y(tn+1)_z|)+ﬁ — 0 asn— oo,

and conclude by Lemma 12 that z € Ag. This is a contradiction. 0O

In what follows we divide our considerations concerning Case 2 into two subcases:
Case 2a: sup y((—00,0]) = co and Case 2b: inf y((—o0,0]) = —oc.
We now deal with Case 2a.

Lemma 17. In Case 2a, we have [y,00) N Ag = 0. Moreover, the function ~ is
decreasing on (—oo, 0] and there exists a constant ¢ € R such that us(z) = d4(x) + ¢

for all x > y.

Proof. Since supvy((—o0,0]) = oo and y is in the interval v((—oc, 0]), we see that
[y, 00) C ¥((—00,0]) and hence dist ([y, 00), Ag) > dist (7((—00,0]), Ar) > 0. That is,
we have [y,00) N Ay = 0.

To see that v is decreasing, we suppose on the contrary that there exist a < b < 0
such that v(a) < ~(b). Since v([a, b]) is a compact interval and [y, co) C y((—o0, 0]),

we see that there exists an a’ € (—o0, a] such that «y(a’) = «(b). Then we have

/

/ L] dt = 1 (4(5)) — e (7(a)) =0,

which implies that y(a’) € Ay N[y, o). This is a contradiction, which ensures that
is decreasing on (—o0, 0].

It is now clear that v((—oo, 0]) = [y, 00). Fix = € [y, co) and choose a (unique)
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ty € (—o0, 0] so that y(t;) = x. We have

0
Ao (y) — dy (z) < / Ly dt

oo (y) — wnela) < dly, @) = i (y) — di (@),

where the last equality is a consequence of Proposition 7 (b). Therefore we get
Uoo () =dy(z) + ¢, with ¢:=ux(y) — dy(y). 0

Lemma 18. In Case 2a, let 3, z € R be such that y < 8 < z. Then there exists a
curve n € E((—o0,7],d_, 3), with 7 > 0, such that n(1) = z. Moreover, 1 is increasing

on [0, 7].

Proof. By Proposition 9, we may choose a ( € £((—o0, 0],d_, z). By continuity, there
is a T > 0 such that (—oo, 8)N¢([-T, 0]) = . We fix such a T' > 0, and will show that
that ¢ is increasing on [T, 0]. Suppose on the contrary that ¢(a) > ((b) for some a,b €
[T, 0] satisfying a < b. By Proposition 7, we have d({(b), ((a)) = d+({(b)) — d+(¢(a))
and d({(a), ¢(b)) =d_(¢(a)) —d_(¢(b)). Also, we have

b

d(¢(b)) — dy(C(a) = / L[¢lds = d_(C(b)) = d—(¢(a)) < d(¢(b), C(a)).

From these we conclude that
b
| s
which yields

0 =d(¢(b), ¢(a)) + d(¢(a), ((b))
mf{/ nlds | t>b—a, e AC(0, ), n(t) = 1(0) = C(B)}.

This implies that ¢(b) € Ag C (—o0, y), which is a contradiction.

Next, we show that § € (((—oo, 0]). Suppose on the contrary that 8 & ¢((—oo, 0]).
Then, since (((—o0, 0]) is an interval and z € (((—o0, 0]), we infer that (—oo, 5] N
¢((—o0, 0]) = 0. Therefore, ¢ is increasing on (—oo, 0] and inf {((—oo, 0]) > 3. Set
a = lim;_,_ ((¢) and note that o € [, z). Now the proof of Lemma 16 guarantees
that o € Apy, which yields a contradiction, « € Ay C (—o0, y).

We choose a 7 > 0 so that {((—7) = f and (—o0, 8) N {([—7, 0]) = 0. We see
immediately that ([—7, 0]) = [3, 2] and ( is increasing on [—7, 0]. We define the curve
n € E((—o0, 7],d_) by n(s) = ((s—7). The curve n has all the required properties. 0O

I
QU
—~
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—~~
=
~
A
—~
S
~
~
I
|
U
—
Iy
~
S
~
Iy
~
=
~~
SN—

Since uy < ug on R, we have liminf, . (uo(z) — ug (z)) > 0. Because of one of
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assumptions of Theorem 3, we have only two cases to consider.

Case (i): liminf, o (uo(x) —uy (x)) > 0 and Case (ii): limy,_, o0 (uo(z) —ug (z)) = 0.
Proposition 19. In Case (i), we have ut(y) < uoo(y)-

Proof. We choose a 6 > 0 so that liminf, . (uo(z) —ug (z)) > J and then a 8 > y so
that uo(x) — ug () > 0 for all x > 3. We have

uy () <wg (2) +d(z,2) <up(z) +d(x,z) —6 forall z € Rand z > g,
and therefore, by Proposition 8, we get

ug () = ig%(uo(z) +d(z,z)) forall x € R.

In particular, we have for all x > 3,

ug (z) = inf (uo(2) +d—(z) —d_(2)) = d_(z) +,

where b :=inf,<g(ug(z) — d_(z)). Since u(x) > uy (x) for all z € R, we have
di(z)—d_(x)+c—0b>0 forall z > f,

where ¢ is the constant from Lemma 17.

Fix any € > 0. By the definition of b, we may choose an « € (—o0, 3] so that b+¢& >
uo(a) —d_ (). Since y(0) =y < f and lim;_,_, y(t) = 00, we may choose a ¢ > 0 so
that v(—o) = (. Since d(f,«) = d_(8) — d—(«), we may choose a ( € AC([0, p]), with
p > 0, so that ((0) = «a, ((p) = B, and

A (B)—d () +e> /OPL[C] ds.

Fix any ¢ > 0 and set z = y(—t — o). In view of Lemma 18, we may choose an
n € E((—o0, 7],d_, 3), with 7 > 0, such that n(7) = z. Remark that 7 is increasing on
[0, 7]. Set T' = min{r, t}. We define the function f on [0, T| by f(s) = n(s)—y(s—t—0),
and observe that f(0) =  —~v(—t —0) < 8 —y(—0) = 0 and that if T = 7, then
f(IT)=z—~(t—t—0)>z—7(—-t—0)=0andif T =t, then f(T) =n(t) —y(—0o) >
n(0) — 8 = 0. By the continuity of f, we may choose a A € (0, T') so that f(\) = 0, that
is, n(A) =~v(A =t — o).
We define p € AC([—(t 4+ o + p),0]) by
v(s) for s e A= (t+0), 0],
u(s) =< nis+t+o) forse[—(t+o0), A\— (t+0)],
((s+t+o+p) for se [—(t+ o+ p), —(t +0)].
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Observe that ©(0) =y and pu(—(t + o + p)) = ((0) = «, and compute that

0
/ Ll ds + uo(u(—(t + 0 + p)))
—(t+o+p)

:/OPL[g]der/O/\L[n]der/)\o L] ds + uo()

—(t+0)
<d_(f) —d—() +e+d_(n(A)) —d—(n(0))
7(0) = dy (v(A = (£ +0))) + uo(a)
d—(n(A) = dy(n(A) +uo(e) —d—(a) +¢
<di(y) +d-(n(A) — d(n(N) + b+ 2.

As noted above, we have

dy(n(A) —d-(n(A)) +¢—b=>0,
and therefore
w(y,t+o+p) <di(y) +c+ 2 =ux(y) + 2¢,
from which we conclude that ut(y) < us(y). O

The switch-back construction of u in the proof above is adapted from [16].
Proposition 20. In Case (ii), we have u™ (y) < uso (y).

Proof. Fix any € > 0. By assumption, there exists an R > y such that if z > R, then
uo(x) < uy (x) + €. Since limy,_ o y(t) = 00, there exists a 7" > 0 such that if ¢ > T,
then v(—t) > R. Fix any ¢t > T and compute that

0
u(y, ) < / L) s+ u0((—) < too(y) — e (=) + 5 (1(~1)) + <

oo (Y) — Uoo (V(—1)) + thos (Y(—1)) + € = uoo(y) + &
From this we conclude that u(y) <wuy (y). 0O

We may treat Case 2b by an argument parallel to the above, to conclude that

ut(y) < uso(y). The proof of Theorem 3 is now complete. 0O

4. Concluding remarks

We first discuss two examples in connection with Theorem 3 and Proposition 2.
Barles-Souganidis [5] gave a simple example of Hamiltonian H and initial data wu for
which convergence (5) does not hold. In the example H and ug are given, respectively,
by H(p) = |p+ 1] — 1 and ug(z) = sinz for p,x € R. The solution u of (1)—(2) is
then given by wu(z,t) := sin(xz — t), for which (5) does not hold with any asymptotic
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solution v(z) — ct, and all assumptions (A1l)—(A6) are satisfied. Noting that H(p) <0
if and only if p € [-2, 0], we see that dy(z) = —2x and d_(z) = 0 for all z € R
and that Ay = ). Also, it is easily seen that u; () = infyer(uo(y) + d(z,y)) = —1
and us(z) = —1 for all x € R. Hence we have u(x) = d_(z) — 1 for all x € R,
liminf, o (up — uy )(x) = 0, and limsup,_,_ . (up — uy )(x) = 2. These explicitly
violate one of assumptions of Theorem 3.

Lions-Souganidis [20] examined the following Hamilton-Jacobi equation %|Dv|* —
f(z) = 0 in R, where f is given by f(x) = 2 + sinz + sinv/2x. Note that f(z) > 0
for all z € R and infg f = 0. The Lagrangian L of H(z,p) := %|p|* — f(z) is given by
L(z,&) = 1|¢]2 + f(z) and satisfies L(z,£) > 0 for all (z, &), which implies that Ay = 0.
The function d, dy, and d_ are given, respectively, by

/z\/Qf(s)ds, d+(x):—/0x\/2f(s)ds, and d_(x) = —d4(x).

Consider the evolution equation u; + H (z, Du) = 0 together with initial data ug(z) = 0.

d(:L‘,y) =

We write u for the solution of this problem as usual. It is easy to see that ug (z) =
infyer d(z,y) = 0 and uo(x) = 400 for all x € R. Proposition 2 ensures that
limy oo u(z,t) = oo for all z € R and u does not “converge” to any asymptotic so-

lution in this case.

Next we discuss two existing convergence results in light of Theorem 3. In [17], the
Cauchy problem for (3), with 2 = R", are treated and, in addition to (A1)—(A6), it is
there assumed that there exist functions ¢g, g € C(R"™) such that H[¢o] < —op in R”
and lim|;|—, 00(x) = 00. Most of results in [17] are concerned with solutions u of (3)
with © = R" for which ue(z) > ¢o(x) — Cy for all x and for some constant Cy € R.

We restrict ourselves to the case when n = 1, and assume that (A1)—(A6) hold, that
there exist functions ¢g, o9 € C(R) having the properties described above, and that
Uoo () > ¢Pp(x) — Cp for all x and for some constant Cy € R. We show as a consequence
of Theorem 3 that convergence (7) holds. The first thing to note is that if sup Ay < oo,
then d (z) — ¢p(x) — —o00 as £ — co. Indeed, assuming that Ay C (—oo, 3) for some
B € R, for any v € £((—00,0],d,3), we see, as in the proof of Lemma 18, that v is
decreasing on (—oo, 0] and y(s) — oo as s — —oo. Moreover, for t > 0, we get

0

04 (1(0)) — dy (v(—1)) = / L] ds > ¢o(1(0)) — do(v(~1)) + / oo((s)) ds.

—t —t

Since fi)t opds — oo as t — oo, we conclude that (¢pg — dy)(x) — o0 as z — oc.
Similarly, if inf Ay > —oo, then we have (d_ — ¢o)(z) — 00 as * — —oo. These

observations guarantee that, under our current hypotheses, there is no possibility that
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either us(x) = di(z) + ¢4 for all x > r and for some constants ¢y and r € R, or
Uoo(z) = d_(x) 4+ c— for all z < r and for some constants c_ and r € R. Now, Theorem

3 ensures that convergence (7) holds.

Let us consider the Cauchy problem (1)—(2) in the case where the functions H(z, p)
in x and ug are periodic with period 1. In addition to (A1)—(A6), we assume as in
[15] (see also [5]) that there exists a function wy € C([0, 00)) satisfying wy(0) = 0 and
wo(r) > 0 for all 7 > 0 such that for all (z,p) € R? satisfying H(z,p) = 0 and for all
€€ Dy H(x,p) and ¢ € R, if £g > 0, then

H(z,p+q) > &g+ wo(&q). (14)

Note that if v € Sp; (resp., v € Sg), then v(-+1) € Sy (resp., v(-+1) € Sy). Hence,
by the definition of u;, and u, we infer that u, and u., are periodic with period 1.
Note also by the periodicity of H(z,p) in x that d(x+1,y+1) = d(z,y) for all z, y € R.
In order to apply Theorem 3, we assume that sup Ay < 0o and ue(z) = dy () + ¢4 for
all x > R and for some constants ¢y, R € R. By the above periodicity of d, we deduce
that Ay = 0 and us (z) = do () + ¢4 for all z € R.

Fix any y € R and choose a v € £((—o0, 0],d+,y). As in the proof of Lemma 18,
we see that 7 is decreasing on (—oo, 0] and supy((—oc, 0]) = co. We may choose a
7 > 0 so that y(—7) = y + 1. We extend ¥|(_; ] to R by periodicity and integrating
the resulting periodic function, we may assume that v(t — 7) = v(¢) + 1 for all ¢ € R.

We assume that

0 = liminf(up — ug )(z) < limsup(ug — uy )(x).

(Otherwise, by Theorem 3, we know that u®(y) < us(y).) By the periodicity of
ug and Us, we have ming, ,41)(uo — uy) = 0 for all z € R. Moreover we have

Minge(e, ¢47)(uo — ugy )(7(—s)) = 0 for all £ € R.

It has been proved in [15] that there exist a constant § > 0 and a non-decreasing

function w € C([0, 00)) satisfying w(0) = 0 such that for any 0 < e < 4, we have

/ Lie]ds < oo (7(0)) — e (e (—t/(1 + €)) + tew(e), (15)
—t/(1+¢)

where 7. (s) :=vy((1 +¢)s) for all s € R.

We fix any ¢ > 7/d. Choose a o € [t, t + T) so that (
1=2t<

uo — Uy )(7(—0o)) = 0 and then
an € > 0 so that 1"? =t. Note that ¢ = ¢ — 7= < 7 < 0. Therefore, by (15), we

21



get .
/ Le] ds < toe (16(0)) — tioo (76 (~1)) + o2(e)

—t

< uso () — o (Y(=0)) + Zw(7)
St (y) — neelr(=0)) + D (T

_ T
<Uoo(y) —uy (v(=0)) + 7(1 + 5)w(;),
and furthermore

u(y, ) < / Live] ds + up (7 (~1))

Ctoe () — g (7(=0)) + uo(Y(—0)) + 7(1 + ) ( )

= oo (y) + (1 + 6w ().

Thus we obtain u™(y) < ux(y). Similarly, if we assume that inf Ay > —oo and
Uso(x) = d_(x) + c_ for all x > R for some constant c_, R € R and also that 0 =
liminf, , o (ug — ug )(z) < limsup,_, . (ug — ug )(x), then we get u™(y) < uoo(y).

These observations and Theorem 3 guarantee that convergence (7) holds.

We continue to consider the Cauchy problem (1)—(2), where the functions H(-,p)
and ug are periodic with period 1. Now we assume in addition to (A1)—(A6) that there
exists a function wy € C([0, 00)) satisfying wy(0) = 0 and wp(r) > 0 for all » > 0 such
that for all (z,p) € R? satisfying H(z,p) = 0 and for all ¢ € D, H(x,p) and ¢ € R, if
£q < 0, then

H(z,p+q) = &g+ wo(l€ql)- (16)
We will show that convergence (7) holds under these hypotheses, which seems to be a

new observation.

We argue as in the previous result and thus assume that sup Ay < oo and u(z) =
d4(z) 4+ ¢4 for all x > R and for some constants ¢y, R € R. We then observe that
Ap = 0 and us(z) = di () + ¢4 for all x € R and that liminf, o (up — uy )(z) <
limsup, _, . (uo—ug )(x). Fix any y € R and choose ay € £(R, dy,y) so that y(t—7) =
~(t) 41 for all t € R and for some constant 7 > 0. A careful review of [15, Lemmas 3.1,
3.2, Proposition 3.4] reveals that there exist a constant § € (0, 1) and a non-decreasing
function w € C([0, 00)) satisfying w(0) = 0 such that for any 0 < e < § and ¢t > 0, we

have

/—t/(l— ) L[ne] ds < UOO(UE(O)) - Uoo(ne(—t/(l — 6)) + tgw(g), (17)
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where n.(s) :=y((1 —¢)s) for all s € R.

As before we fix any ¢ > 7/6 and choose a o € (t—7, t] so that (ug—ug )(y(—0)) =0

and then an € > 0 so that IL_E — t. Note that € = 1—% = t_T" < % < 6. Hence by (17)

we

get
0
/ Line] ds < oo (n(0)) — oo (e (—)) + o0(e)

—t

<o () — e (Y(=0)) + Zo0(3)
< us(y) — up (v(=0) + Tw(),

and consequently

0
ulyet) < [ Dindds + wolo.(-0)
<use(y) = up (v(=0)) + uo(y(~0)) + 7w()

:uoo<y> + Tw(z)a

from which we get u*(y) < uso(y). Similarly, if we assume that inf Ay > —oo and

Uoo

(x) = d—(x) + c— for all z > R for some constants c_, R € R and also that

0 = liminf, .o (up—ug )(x) < limsup,_,_ . (up—ug )(z), then we get u™ (y) < uoo(y).

Theorem 3 now guarantees that convergence (7) holds.

For possible relaxations of the periodicity of H(-,p) and ug in the above convergence

results, we refer to [15] as well as [6, Théoreme 1].
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