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Summary. We present an introduction to the theory of viscosity solutions of first-
order partial differential equations and a review on the optimal control/dynamical
approach to the large time behavior of solutions of Hamilton-Jacobi equations,
with the Neumann boundary condition. This article also includes some of basics of
mathematical analysis related to the optimal control/dynamical approach for easy
accessibility to the topics.

In memory of Riichi Iino, my former adviser at Waseda University.

Introduction

This article is an attempt to present a brief introduction to viscosity solutions
of first-order partial differential equations (PDE for short) and to review some
aspects of the large time behavior of solutions of Hamilton-Jacobi equations with
Neumann boundary conditions.

The notion of viscosity solution was introduced in [20] (see also [18]) by M. G.
Crandall and P.-L. Lions, and it has been widely accepted as the right notion of
generalized solutions of the first-order PDE of the Hamilton-Jacobi type and fully
nonlinear (possibly degenerate) elliptic or parabolic PDE. There have already been
many nice contributions to overview of viscosity solutions of first-order and/or

? Supported in part by JSPS KAKENHI (#20340019, #21340032, #21224001,
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second-order partial differential equations. The following list touches just a few of
them: [47, 6, 2, 29, 19, 15, 42].

This article is meant to serve as a quick introduction for graduate students or
young researchers to viscosity solutions and is, of course, an outcome of the lectures
delivered by the author at the CIME school as well as at Waseda University, Collège
de France, Kumamoto University, King Abdulaziz University and University of
Tokyo. For its easy readability, it contains some of very basics of mathematical
analysis which are usually left aside to other textbooks.

The first section is an introduction to viscosity solutions of first-order partial
differential equations. As a motivation to viscosity solutions we take up an optimal
control problem and show that the value function of the control problem is char-
acterized as a unique viscosity solution of the associated Bellman equation. This
choice is essentially the same as used in the book [47] by P.-L. Lions as well as in
[6, 29, 2, 31].

In Sections 2–5, we develop the theory of viscosity solutions of Hamilton-Jacobi
equations with the linear Neumann boundary condition together with the corre-
sponding optimal control problems, which we follow [39, 38, 8]. In Section 6, fol-
lowing [38], we show the convergence of the solution of Hamilton-Jacobi equation
of evolution type with the linear Neumann boundary condition to a solution of the
stationary problem.

The approach here to the convergence result depends heavily on the variational
formula for solutions, that is, the representation of solutions as the value function
of the associated control problem. There is another approach, due to [3], based on
the asymptotic monotonicity of a certain functional of the solutions as time goes
to infinity, which is called the PDE approach. The PDE approach does not depend
on the variational formula for the solutions and provides a very simple proof of
the convergence with sharper hypotheses. The approach taken here may be called
the dynamical or optimal control one. This approach requires the convexity of
the Hamiltonian, so that one can associate it with an optimal control problem.
Although it requires lots of steps before establishing the convergence result, its
merit is that one can get an interpretation to the convergence result through the
optimal control representation.

The topics covered in this article are very close to the ones discussed by G.
Barles [4]. Both are to present an introduction to viscosity solutions and to discuss
the large time asymptotics for solutions of Hamilton-Jacobi equations. This article
has probably a more elementary flavor than [4] in the part of the introduction to
viscosity solutions, and the paper [4] describes the PDE-viscosity approach to the
large time asymptotics while this article concentrates on the dynamical or optimal
control approach.

The reference list covers only those papers which the author more or les con-
sulted while he was writing this article, and it is far from a complete list of those
which have contributed to the developments of the subject.

The author would like to thank the course directors, Paola Loreti and Nicoletta
Tchou, for their encouragement and patience while he was preparing this article.
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Notation:

• When F is a set of real-valued functions on X, supF and inf F denote the
functions on X given, respectively, by

(supF)(x) := sup{f(x) : f ∈ F} and (inf F)(x) := inf{f(x) : f ∈ F}.
• For any a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}. Also, we

write a+ = a ∨ 0 and a− = (−a)+.
• A function ω ∈ C([0, R)), with 0 < R ≤ ∞, is called a modulus if it is

nondecreasing and satisfies ω(0) = 0.
• For any x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn, x · y denotes the Euclidean inner

product x1y1 + · · ·+ xnyn of x and y.
• For any x, y ∈ Rn the line segment between x and y is denoted by [x, y] :=
{(1− t)x+ ty : t ∈ [0, 1]}.

• For k ∈ N and Ω ⊂ Rn, Ck(Ω,Rm) (or simply, Ck(Ω,Rm)) denotes the col-
lection of functions f : Ω → Rm (not necessarily open), each of which has an
open neighborhood U of Ω and a function g ∈ Ck(U) such that f(x) = g(x)
for all x ∈ Ω.

• For f ∈ C(Ω,Rm), where Ω ⊂ Rn, the support of f is defined as the closure
of {x ∈ Ω : f(x) 6= 0} and is denoted by supp f .

• UC(X) (resp., BUC(X)) denotes the space of all uniformly continuous (resp.,
bounded, uniformly continuous) functions in a metric space X.

• We write 1E for the characteristic function of the set E. That is, 1E(x) = 1 if
x ∈ E and 1E(x) = 0 otherwise.

• The sup-norm of function f on a set Ω is denoted by ‖f‖∞,Ω = ‖f‖∞ :=
supΩ |f |.

• We write R+ for the interval (0, ∞).
• For any interval J ⊂ R, AC(J,Rm) denotes the space of all absolutely contin-

uous functions in J with value in Rm.
• Given a convex Hamiltonian H ∈ C(Ω × Rn), where Ω ⊂ Rn is an open set,

we denote by L the Lagrangian given by

L(x, ξ) = sup
p∈Rn

(ξ · p−H(x, p)) for (x, ξ) ∈ Ω × Rn.

• Let Ω ⊂ Rn be an open subset of Rn, g ∈ C(∂Ω,R), t > 0 and (η, v, l) ∈
L1([0, t],Rn × Rn × R) such that η(s) ∈ Ω for all s ∈ [0, t] and l(s) = 0
whenever η(s) ∈ Ω. We write

L(t, η, v, l) =

∫ t

0

[L(η(s),−v(s)) + g(η(s))l(s)]ds.

1 Introduction to viscosity solutions

We give the definition of viscosity solutions of first-order PDE and study their
basic properties.
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1.1 Hamilton-Jacobi equations

Let Ω be an open subset of Rn. Given a function H : Ω × Rn → R, we consider
the PDE

H(x,Du(x)) = 0 in Ω, (1)

where Du denotes the gradient of u, that is,

Du := (ux1 , ux2 , ..., uxn) ≡ (∂u/∂x1, ..., ∂u/∂xn).

We also consider the PDE

ut(x, t) +H(x,Dxu(x, t)) = 0 in Ω × (0,∞). (2)

Here the variable t may be regarded as the time variable and ut denotes the time
derivative ∂u/∂t. The variable x is then regarded as the space variable and Dxu
(or, Du) denotes the gradient of u in the space variable x.

The PDE of the type of (1) or (2) are called Hamilton-Jacobi equations. A
more concrete example of (1) is given by

|Du(x)| = k(x),

which appears in geometrical optics and describes the surface front of propagating
waves. Hamilton-Jacobi equations arising in Mechanics have the form

|Du(x)|2 + V (x) = 0,

where the terms |Du(x)|2 and V (x) correspond to the kinetic and potential ener-
gies, respectively.

More generally, the PDE of the form

F (x, u(x), Du(x)) = 0 in Ω (3)

may be called Hamilton-Jacobi equations.

1.2 An optimal control problem

We consider the function

X = X(t) = (X1(t), X2(t), ..., Xn(t)) ∈ Rn

of time t ∈ R, and .
X =

.
X(t) =

dX

dt
(t)

denotes its derivative. Let A ⊂ Rm be a given set, let g : Rn × A → Rn, f :
Rn × A → R be given functions and λ > 0 be a given constant. We denote by A
the set of all Lebesgue measurable α : [0,∞)→ A.
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Fix any x ∈ Rn and α ∈ A, and consider the initial value problem for the
ordinary differential equation (for short, ODE)

{ .
X(t) = g(X(t), α(t)) for a.e. t > 0,

X(0) = x.
(4)

The solution of (4) will be denoted by X = X(t) = X(t;x, α). The solution X(t)
may depend significantly on choices of α ∈ A. Next we introduce the functional

J(x, α) =

∫ ∞
0

f(X(t), α(t))e−λt dt, (5)

a function of x and α ∈ A, which serves a criterion to decide which choice of α is
better. The best value of the functional J is given by

V (x) = inf
α∈A

J(x, α). (6)

This is an optimization problem, and the main theme is to select a control α =
αx ∈ A so that

V (x) = J(x, α).

Such a control α is called an optimal control. The ODE in (4) is called the dynamics
or state equation, the functional J given by (5) is called the cost functional, and
the function V given by (6) is called the value function. The function f or t 7→
e−λtf(X(t), α(t)) is called the running cost and λ is called the discount rate.

In what follows, we assume that f, g are bounded continuous functions on
Rn × A and moreover, they satisfy the Lipschitz condition, i.e., there exists a
constant M > 0 such that





|f(x, a)| ≤M, |g(x, a)| ≤M,

|f(x, a)− f(y, a)| ≤M |x− y|,
|g(x, a)− g(y, a)| ≤M |x− y|.

(7)

A basic result in ODE theory guarantees that the initial value problem (4) has a
unique solution X(t).

There are two basic approaches in optimal control theory.

(1) Pontryagin’s Maximum Principle Approach.
(2) Bellman’s Dynamic Programming Approach.

Both of approaches have been introduced and developed since 1950’s.
Pontryagin’s maximum principle gives a necessary condition for the optimality

of controls and provides a powerful method to design an optimal control.
Bellman’s approach associates the optimization problem with a PDE, called

the Bellman equation. In the problem, where the value function V is given by (6),
the corresponding Bellman equation is the following.

λV (x) +H(x,DV (x)) = 0 in Rn, (8)
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where H is a function given by

H(x, p) = sup
a∈A
{−g(x, a) · p− f(x, a)},

with x · y denoting the Euclidean inner product in Rn. Bellman’s idea is to charac-
terize the value function V by the Bellman equation, to use the characterization to
compute the value function and to design an optimal control. To see how it works,
we assume that (8) has a smooth bounded solution V and compute formally as
follows. First of all, we choose a function a : Rn → A so that

H(x,DV (x)) = −g(x, a(x)) ·DV (x)− f(x, a(x)),

and solve the initial value problem

.
X(t) = g(X(t), a(X(t))), X(0) = x,

where x is a fixed point in Rn. Next, writing α(t) = a(X(t)), we have

0 =

∫ ∞
0

e−λt
(
λV (X(t)) +H(X(t), DV (X(t)))

)
dt

=

∫ ∞
0

e−λt
(
λV (X(t))− g(X(t), α(t)) ·DV (X(t))− f(X(t), α(t))

)
dt

=

∫ ∞
0

(
− d

dt
e−λtV (X(t))− eλtf(X(t), α(t))

)
dt

=V (X(0))−
∫ ∞

0

e−λtf(X(t), α(t)) dt.

Thus we have
V (x) = J(x, α).

If PDE (8) characterizes the value function, that is, the solution V is the value
function, then the above equality says that the control α(t) = a(X(t)) is an optimal
control, which we are looking for.

In Bellman’s approach PDE plays a central role, and we discuss this approach in
what follows. The first remark is that the value function may not be differentiable
at some points. A simple example is as follows.

Example 1.1. We consider the case where n = 1, A = [−1, 1] ⊂ R, f(x, a) = e−x
2
,

g(x, a) = a and λ = 1. Let X(t) be the solution of (4) for some control α ∈ A,
which means just to satisfy

|
.
X(t)| ≤ 1 a.e. t > 0.

Let V be the value function given by (6). Then it is clear that V (−x) = V (x) for
all x ∈ R and that



Introduction to viscosity solutions and the large time ... 7

V (x) =

∫ ∞
0

e−t−(x+t)2 dt = ex
∫ ∞
x

e−t−t
2

dt if x > 0.

For x > 0, one gets

V ′(x) = ex
∫ ∞
x

e−t−t
2

dt− e−x
2
,

and

V ′(0+) =

∫ ∞
0

e−t−t
2

dt− 1 <

∫ ∞
0

e−t dt− 1 = 0.

This together with the symmetry property, V (−x) = V (x) for all x ∈ R, shows
that V is not differentiable at x = 0.

Value functions in optimal control do not have enough regularity to satisfy, in
the classical sense, the corresponding Bellman equations in general as the above
example shows.

We introduce the notion of viscosity solution of the first-order PDE

F (x, u(x), Du(x)) = 0 in Ω, (FE)

where F : Ω × R× Rn → R is a given continuous function.

Definition 1.1. (i) We call u ∈ C(Ω) a viscosity subsolution of (FE) if

{
φ ∈ C1(Ω), z ∈ Ω, max

Ω
(u− φ) = (u− φ)(z)

=⇒ F (z, u(z), Dφ(z)) ≤ 0.

(ii) We call u ∈ C(Ω) a viscosity supersolution of (FE) if

{
φ ∈ C1(Ω), z ∈ Ω, min

Ω
(u− φ) = (u− φ)(z)

=⇒ F (z, u(z), Dφ(z)) ≥ 0.

(iii) We call u ∈ C(Ω) a viscosity solution of (FE) if u is both a viscosity subsolution
and supersolution of (FE).

The viscosity subsolution or supersolution property is checked through smooth
functions φ in the above definition, and such smooth functions φ are called test
functions.

Remark 1.1. If we set F−(x, r, p) = −F (x,−r,−p), then it is obvious that u ∈
C(Ω) is a viscosity subsolution (resp., supersolution) of (FE) if and only if u−(x) :=
−u(x) is a viscosity supersolution (resp., subsolution) of

F−(x, u−(x), Du−(x)) = 0 in Ω.

Note also that (F−)− = F and (u−)− = u. With these observations, one property
for viscosity subsolutions can be phrased as a property for viscosity supersolu-
tions. In other words, every proposition concerning viscosity subsolutions has a
counterpart for viscosity supersolutions.
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Remark 1.2. It is easily seen by adding constants to test functions that u ∈ C(Ω)
is a viscosity subsolution of (FE) if and only if

{
φ ∈ C1(Ω), z ∈ Ω, max

Ω
(u− φ) = (u− φ)(z) = 0

=⇒ F (z, φ(z), Dφ(z)) ≤ 0.

One can easily formulate a counterpart of this proposition for viscosity supersolu-
tions.

Remark 1.3. It is easy to see by an argument based on a partition of unity (see
Appendix A.1) that u ∈ C(Ω) is a viscosity subsolution of (FE) if and only if

{
φ ∈ C1(Ω), z ∈ Ω, u− φ attains a local maximum at z

=⇒ F (z, φ(z), Dφ(z)) ≤ 0.

Remark 1.4. It is easily seen that u ∈ C(Ω) is a viscosity subsolution of (FE) if
and only if

{
φ ∈ C1(Ω), z ∈ Ω, u− φ attains a strict maximum at z

=⇒ F (z, φ(z), Dφ(z)) ≤ 0.

Similarly, one may replace “strict maximum” by “strict local maximum” in the
statement. The idea to show these is to replace the function φ by φ(x) + |x − z|2
when needed.

Remark 1.5. The condition, φ ∈ C1(Ω), can be replaced by the condition, φ ∈
C∞(Ω) in the above definition. The argument in the following example explains
how to see this equivalence.

Example 1.2 (Vanishing viscosity method). The term “viscosity solution” originates
to the vanishing viscosity method, which is a one of classical methods to construct
solutions of first-order PDE.

Consider the second-order PDE

−ε∆uε + F (x, uε(x), Duε(x)) = 0 in Ω, (9)

where ε > 0 is a parameter to be sent to zero later on, Ω is an open subset of Rn,
F is a continuous function on Ω × R× Rn and ∆ denotes the Laplacian

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

.

We assume that functions uε ∈ C2(Ω), with ε ∈ (0, 1), and u ∈ C(Ω) are given
and that

lim
ε→0

uε(x) = u(x) locally uniformly on Ω.
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Then the claim is that u is a viscosity solution of

F (x, u(x), Du(x)) = 0 in Ω. (FE)

In what follows, we just check that u is a viscosity subsolution of (FE). For
this, we assume that

φ ∈ C1(Ω), x̂ ∈ Ω, max
Ω

(u− φ) = (u− φ)(x̂),

and moreover, this maximum is a strict maximum of u− φ. We need to show that

F (x̂, u(x̂), Dφ(x̂)) ≤ 0. (10)

First of all, we assume that φ ∈ C2(Ω), and show that (10) holds. Fix an

r > 0 so that Br(x̂) ⊂ Ω. Let xε be a maximum point over Br(x̂) of the function
uε − φ. We may choose a sequence {εj}j∈N ⊂ (0, 1) so that limj→∞ εj = 0 and

limj→∞ xεj = y for some y ∈ Br(x̂). Observe that

(u− φ)(x̂) ≤ (uεj − φ)(x̂) + ‖u− uεj‖∞,Br(x̂)

≤ (uεj − φ)(xεj ) + ‖u− uεj‖∞,Br(x̂)

≤ (u− φ)(xεj ) + 2‖uεj − u‖∞,Br(x̂)

→ (u− φ)(y) as j →∞.
Accordingly, since x̂ is a strict maximum point of u−φ, we see that y = x̂. Hence, if
j is sufficiently large, then xεj ∈ Br(x̂). By the maximum principle from Advanced
Calculus, we find that

∂

∂xi
(uεj − φ)(xεj ) = 0 and

∂2

∂x2
i

(uεj − φ)(xεj ) ≤ 0 for all i = 1, 2, ..., n.

Hence, we get

Duεj (xεj ) = Dφ(xεj ), ∆uεj (xεj ) ≤ ∆φ(xεj ).

These together with (9) yield

−εj∆φ(xεj ) + F (xεj , u
εj (xεj ), Dφ(xεj )) ≤ 0.

Sending j →∞ now ensures that (10) holds.
Finally we show that the C2 regularity of φ can be relaxed, so that (10) holds

for all φ ∈ C1(Ω). Let r > 0 be the constant as above, and choose a sequence
{φk} ⊂ C∞(Ω) so that

lim
k→∞

φk(x) = φ(x) uniformly on Br(x̂).

Let {yk} ⊂ Br(x̂) be a sequence consisting of a maximum point of u − φk. An
argument similar to the above yields
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lim
k→∞

yk = x̂.

If k is sufficiently large, then we have yk ∈ Br(x̂) and, due to (10) valid for C2 test
functions,

F (yk, u(yk), Dφk(yk)) ≤ 0.

Sending k →∞ allows us to conclude that (10) holds.

1.3 Characterization of the value function

In this subsection we are concerned with the characterization of the value function
of V by the Bellman equation

λV (x) +H(x,DV (x)) = 0 in Rn, (11)

where λ is a positive constant and

H(x, p) = sup
a∈A
{−g(x, a) · p− f(x, a)}.

Recall that
V (x) = inf

α∈A
J(x, α),

and

J(x, α) =

∫ ∞
0

f(X(t), α(t))e−λt dt,

where X(t) = X(t;x, α) denotes the solution of the initial value problem

{ .
X(t) = g(X(t), α(t)) for a.e. t > 0,

X(0) = x.

Recall also that for all (x, a) ∈ Rn ×A and some constant M > 0,





|f(x, a)| ≤M, |g(x, a)| ≤M,

|f(x, a)− f(y, a)| ≤M |x− y|,
|g(x, a)− g(y, a)| ≤M |x− y|.

(12)

The following lemma will be used without mentioning, the proof of which may
be an easy exercise.

Lemma 1.1. Let h, k : A→ R be bounded functions. Then
∣∣∣∣sup
a∈A

h(a)− sup
a∈A

k(a)

∣∣∣∣ ∨
∣∣∣∣ inf
a∈A

h(a)− inf
a∈A

k(a)

∣∣∣∣ ≤ sup
a∈A
|h(a)− k(a)|.

In view of the above lemma, the following lemma is an easy consequence of
(12), and the detail of the proof is left to the reader.
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Lemma 1.2. The Hamiltonian H satisfies the following inequalities:

|H(x, p)−H(y, p)| ≤M |x− y|(|p|+ 1) for all x, y, p ∈ Rn,
|H(x, p)−H(x, q)| ≤M |p− q| for all x, p, q ∈ Rn.

In particular, we have H ∈ C(Rn × Rn).

Proposition 1.1. The inequality

|V (x)| ≤ M

λ

holds for all x ∈ Rn. Hence, the value function V is bounded on Rn.

Proof. For any (x, α) ∈ Rn ×A, we have

|J(x, α)| ≤
∫ ∞

0

e−λt|f(X(t), α(t))| dt ≤M
∫ ∞

0

e−λt dt =
M

λ
.

Applying Lemma 1.1 yields

|V (x)| ≤ sup
α∈A
|J(x, α)| ≤ M

λ
. ut

Proposition 1.2. The function V is Hölder continuous on Rn.

Proof. Fix any x, y ∈ Rn. For any α ∈ A, we estimate the difference of J(x, α)
and J(y, α). To begin with, we estimate the difference of X(t) := X(t;x, α) and
Y (t) := X(t; y, α). Since

|
.
X(t)−

.
Y (t)| = |g(X(t), α(t))− g(Y (t), α(t))|

≤M |X(t)− Y (t)| for a.e. t ≥ 0,

we find that

|X(t)− Y (t)| ≤ |X(0)− Y (0)|+
∫ t

0

|
.
X(s)−

.
Y (s)| ds

≤ |x− y|+M

∫ t

0

|X(s)− Y (s)|ds for all t ≥ 0.

By applying Gronwall’s inequality, we get

|X(t)− Y (t)| ≤ |x− y| eMt for all t ≥ 0.

Next, since

|J(x, α)− J(y, α)| ≤
∫ ∞

0

e−λs|f(X(s), α(s))− f(Y (s), α(s))|ds,
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if λ > M , then we have

|J(x, α)− J(y, α)| ≤
∫ ∞

0

e−λsM |X(s)− Y (s)|ds

≤M
∫ ∞

0

e−λs|x− y|eMs ds =
M |x− y|
λ−M ,

and

|V (x)− V (y)| ≤ M

λ−M |x− y|. (13)

If 0 < λ < M , then we select 0 < θ < 1 so that θM < λ, and calculate

|f(ξ, a)− f(η, a)| ≤ |f(ξ, a)− f(η, a)|θ+(1−θ)

≤ (M |ξ − η|)θ(2M)1−θ for all ξ, η ∈ Rn, a ∈ A,
and

|J(x, α)− J(y, α)| ≤ (2M)1−θ
∫ ∞

0

e−λs(M |X(s)− Y (s)|)θ ds

≤ (2M)1−θ
∫ ∞

0

e−λs(M |x− y|)θeθMs ds

≤ 2M |x− y|θ
∫ ∞

0

e−(λ−θM)s ds =
2M |x− y|θ
λ− θM ,

which shows that

|V (x)− V (y)| ≤ 2M |x− y|θ
λ− θM . (14)

Thus we conclude from (13) and (14) that V is Hölder continuous on Rn. ut
Proposition 1.3 (Dynamic programming principle). Let 0 < τ < ∞ and
x ∈ Rn. Then

V (x) = inf
α∈A

(∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτV (X(τ))
)
,

where X(t) denotes X(t;x, α).

Proof. Let 0 < τ <∞ and x ∈ Rn. Fix γ ∈ A. We have

J(x, γ) =

∫ τ

0

e−λtf(X(t), γ(t)) dt+

∫ ∞
τ

e−λtf(X(t), γ(t)) dt

=

∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτ
∫ ∞

0

e−λtf(Y (t), β(t)) dt,

(15)

where

X(t) = X(t;x, γ), α(t) := γ(t), β(t) := γ(t+ τ),

Y (t) := X(t+ τ) = X(t;X(τ), β).
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By (15), we get

J(x, γ) ≥
∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτV (X(τ)),

from which we have

J(x, γ) ≥ inf
α∈A

(∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτV (X(τ))
)
.

Consequently,

V (x) ≥ inf
α∈A

(∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτV (X(τ))
)
. (16)

Now, let α, β ∈ A. Define γ ∈ A by

γ(t) =

{
α(t) if 0 ≤ t ≤ τ,
β(t− τ) if τ < t.

Set
X(t) := X(t;x, α) and Y (t) := X(t;X(τ), β).

We have
{
X(t) = X(t;x, γ) and α(t) = γ(t) for all t ∈ [0, τ ],

β(t) = γ(t+ τ) and Y (t) = X(t+ τ) for all t ≥ 0.

Hence, we have (15) and therefore,

V (x) ≤
∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτJ(X(τ), β).

Moreover, we get

V (x) ≤
∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτV (X(τ)),

and

V (x) ≤ inf
α∈A

(∫ τ

0

e−λtf(X(t), α(t)) dt+ e−λτV (X(τ))
)
. (17)

Combining (16) and (17) completes the proof. ut

Theorem 1.1. The value function V is a viscosity solution of (11).
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Proof. (Subsolution property) Let φ ∈ C1(Rn) and x̂ ∈ Rn, and assume that

(V − φ)(x̂) = max
Rn

(V − φ) = 0.

Fix any a ∈ A and set α(t) := a, X(t) := X(t; x̂, α). Let 0 < h < ∞. Now, since
V ≤ φ, V (x̂) = φ(x̂), by Proposition 1.3 we get

φ(x̂) =V (x̂) ≤
∫ h

0

e−λtf(X(t), α(t)) dt+ e−λhV (X(h))

≤
∫ h

0

e−λtf(X(t), α(t)) dt+ e−λhφ(X(h)).

From this, we get

0 ≤
∫ h

0

e−λtf(X(t), a) dt+

∫ t

0

d

dt
(e−λtφ(X(t))) dt

=

∫ h

0

e−λt
(
f(X(t), a)− λφ(X(t)) +Dφ(X(t)) ·

.
X(t)

)
dt

=

∫ h

0

e−λt
(
f(X(t), a)− λφ(X(t)) +Dφ(X(t)) · g(X(t), a)

)
dt.

(18)

Noting that

|X(t)− x̂| =
∣∣∣
∫ t

0

.
X(s) ds

∣∣∣ ≤
∫ t

0

|g(X(s), a)| ds ≤M
∫ t

0

ds = Mt, (19)

dividing (18) by h and sending h→ 0, we find that

0 ≤ −λφ(x̂) + f(x̂, a) + g(x̂, a) ·Dφ(x̂).

Since a ∈ A is arbitrary, we have λφ(x̂) +H(x̂,Dφ(x̂)) ≤ 0.
(Supersolution property) Let φ ∈ C1(Rn) and x̂ ∈ Rn, and assume that

(V − φ)(x̂) = min
Rn

(V − φ) = 0.

Fix ε > 0 and h > 0. By Proposition 1.3, we may choose α ∈ A so that

V (x̂) + εh >

∫ h

0

e−λtf(X(t), α(t)) dt+ e−λhV (X(h)),

where X(t) := X(t; x̂, α). Since V ≥ φ in Rn and V (x̂) = φ(x̂), we get

φ(x̂) + εh >

∫ h

0

e−λtf(X(t), α(t)) dt+ e−λhφ(X(h)).

Hence we get
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0 ≥
∫ h

0

e−λtf(X(t), α(t)) dt+

∫ t

0

d

dt
(e−λtφ(X(t))) dt− εh

=

∫ h

0

e−λt
(
f(X(t), α(t))− λφ(X(t)) +Dφ(X(t)) ·

.
X(t)

)
dt− εh

=

∫ h

0

e−λt
(
f(X(t), α(t))− λφ(X(t)) +Dφ(X(t)) · g(X(t), α(t))

)
dt− εh.

(20)

By the definition of H, we get

∫ h

0

e−λt(λφ(X(t)) +H(X(t), Dφ(t)) dt+ εh > 0.

As in (19), we have
|X(t)− x̂| ≤Mt.

Dividing (20) by h and sending h→ 0 yield

λφ(x̂) +H(x̂, Dφ(x̂)) + ε ≥ 0,

from which we get λφ(x̂) +H(x̂, Dφ(x̂)) ≥ 0. The proof is now complete. ut

Theorem 1.2. Let u ∈ BUC(Rn) and v ∈ BUC(Rn) be a viscosity subsolution and
supersolution of (11), respectively. Then u ≤ v in Rn.

Proof. Let ε > 0, and define uε ∈ C(Rn) by uε(x) = u(x) − ε(〈x〉 + M), where
〈x〉 = (|x|2 + 1)1/2. A formal calculation

uε(x) +H(x,Duε(x)) ≤u(x)− εM +H(x,Du(x)) + εM |D〈x〉|
≤u(x) +H(x,Du(x)) ≤ 0

reveals that uε is a viscosity subsolution of (11), which can be easily justified.
We show that the inequality uε ≤ v holds, from which we deduce that u ≤ v is

valid. To do this, we assume that supRn(uε − v) > 0 and will get a contradiction.
Since

lim
|x|→∞

(uε − v)(x) = −∞,

we may choose a constant R > 0 so that

sup
Rn\BR

(uε − v) < 0.

The function uε − v ∈ C(BR) then attains a maximum at a point in BR, but not
at any point in ∂BR.

Let α > 1 and consider the function

Φ(x, y) = uε(x)− v(y)− α|x− y|2
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on K := BR × BR. Since Φ ∈ C(K), Φ attains a maximum at a point in K. Let
(xα, yα) ∈ K be its maximum point. Because K is compact, we may choose a
sequence {αj} ⊂ (1, ∞) diverging to infinity so that for some (x̂, ŷ) ∈ K,

(xαj , yαj )→ (x̂, ŷ) as j →∞.
Note that

0 < max
BR

(uε − v) = max
x∈BR

Φ(x, x) ≤ Φ(xα, yα)

= uε(xα)− v(yα)− α|xα − yα|2,
(21)

from which we get
α|xα − yα|2 ≤ sup

Rn
uε + sup

Rn
(−v).

We infer from this that x̂ = ŷ. Once again by (21), we get

max
BR

(uε − v) ≤ uε(xα)− v(yα).

Setting α = αj and sending j →∞ in the above, since u, v ∈ C(Rn), we see that

max
BR

(uε − v) ≤ lim
α=αj ,j→∞

(uε(xα)− v(yα))

= uε(x̂)− v(x̂).

That is, the point x̂ is a maximum point of uε − v. By (21), we have

α|xα − yα|2 ≤ uε(xα)− v(yα)−max
BR

(u− v),

and hence
lim

α=αj ,j→∞
α|xα − yα|2 = 0.

Since x̂ is a maximum point of uε − v, by our choice of R we see that x̂ ∈ BR.
Accordingly, if α = αj and j is sufficiently large, then xα, yα ∈ BR. By the viscosity
property of uε and v, for α = αj and j ∈ N large enough, we have

uε(xα) +H(xα, 2α(xα − yα)) ≤ 0, v(yα) +H(yα, 2α(xα − yα)) ≥ 0.

Subtracting one from the other yields

uε(xα)− v(yα) ≤ H(yα, 2α(xα − yα))−H(xα, 2α(xα − yα)).

Using one of the properties of H from Lemma 1.2, we obtain

uε(xα)− v(yα) ≤M |xα − yα|(2α|xα − yα|+ 1).

Sending α = αj →∞, we get

uε(x̂)− v(x̂) ≤ 0,

which is a contradiction. ut
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1.4 Semicontinuous viscosity solutions and the Perron method

Let u, v ∈ C(Ω) be a viscosity subsolutions of (FE) and set

w(x) = max{u(x), v(x)} for x ∈ Ω.
It is easy to see that w is a viscosity subsolution of (FE). Indeed, if φ ∈ C1(Ω),
y ∈ Ω and w − φ has a maximum at y, then we have either w(y) = u(y) and
(u − φ)(x) ≤ (w − φ)(x) ≤ (w − φ)(y) = (u − φ)(y) for all x ∈ Ω, or w(y) = v(y)
and (v−φ)(x) ≤ (v−φ)(y), from which we get F (y, w(y), Dφ(y)) ≤ 0. If {uk}k∈N ⊂
C(Ω) is a uniformly bounded sequence of viscosity subsolutions of (FE), then the
function w given by w(x) = supk uk(x) defines a bounded function on Ω but it
may not be continuous, a situation that the notion of viscosity subsolution does
not apply.

We are thus led to extend the notion of viscosity solution to that for discon-
tinuous functions.

Let U ⊂ Rn, and recall that a function f : U → R ∪ {−∞,∞} = [−∞, ∞] is
upper semicontinuous if

lim sup
y→x

f(y) ≤ f(x) for all x ∈ U.

The totality of all such upper semicontinuous functions f will be denoted by
USC(U). Similarly, we denote by LSC(U) the space of all lower semicontinuous
functions on U . That is, LSC(U) := −USC(U) = {−f : f ∈ USC(U)}.

Some basic observations regarding semicontinuity are the following three propo-
sitions.

Proposition 1.4. Let f : U → [−∞, ∞]. Then, f ∈ USC(U) if and only if the
set {x ∈ U : f(x) < a} is a relatively open subset of U for any a ∈ R.

Proposition 1.5. If F ⊂ LSC(U), then supF ∈ LSC(U). Similarly, if F ⊂
USC(U), then inf F ∈ USC(U).

Proposition 1.6. Let K be a compact subset of Rn and f ∈ USC(K). Then f
attains a maximum. Here the maximum value may be either −∞ or ∞.

Next, we define the upper (resp., lower) semicontinuous envelopes f∗ (resp.,
f∗) of f : U → [−∞, ∞] by

f∗(x) = lim
r→0+

sup{f(y) : y ∈ U ∩Br(x)}

(resp., f∗ = −(−f)∗ or, equivalently, f∗(x) = limr→0+ inf{f(y) : y ∈ U∩Br(x)}).
Proposition 1.7. Let f : U → [−∞, ∞]. Then we have f∗ ∈ USC(U), f∗ ∈
LSC(U) and

f∗(x) = min{g(x) : g ∈ USC(U), g ≥ f} for all x ∈ U.
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A consequence of the above proposition is that if f ∈ USC(U), then f∗ = f in
U . Similarly, f∗ = f in U if f ∈ LSC(U).

We go back to
F (x, u(x), Du(x)) = 0 in Ω. (FE)

Here we assume neither that F : Ω ×R×Rn → R is continuous nor that Ω ⊂ Rn
is open. We just assume that F : Ω ×R×Rn → R is locally bounded and that Ω
is a subset of Rn.

Definition 1.2. (i) A locally bounded function u : Ω → R is called a viscosity
subsolution (resp., supersolution) of (FE) if

{
φ ∈ C1(Ω), z ∈ Ω, max

Ω
(u∗ − φ) = (u∗ − φ)(z)

=⇒ F∗(z, u
∗(z), Dφ(z)) ≤ 0

(
resp.,

{
φ ∈ C1(Ω), z ∈ Ω, min

Ω
(u∗ − φ) = (u∗ − φ)(z)

=⇒ F ∗(z, u∗(z), Dφ(z)) ≥ 0

)
.

(ii) A locally bounded function u : Ω → R is a viscosity solution of (FE) if it is
both a viscosity subsolution and supersolution of (FE).

We warn here that the envelopes F∗ and F ∗ are taken in the full variables. For
instance, if ξ ∈ Ω × R× Rn, then

F∗(ξ) = lim
r→0+

inf{F (η) : η ∈ Ω × R× Rn, |η − ξ| < r}.

We say conveniently that u is a viscosity solution (or subsolution) of F (x, u(x), Du(x)) ≤
0 in Ω if u is a viscosity subsolution of (FE). Similarly, we say that u is a viscosity
solution (or supersolution) of F (x, u(x), Du(x)) ≥ 0 in Ω if u is a viscosity super-
solution of (FE). Also, we say that u satisfies F (x, u(x), Du(x)) ≤ 0 in Ω (resp.,
F (x, u(x), Du(x)) ≥ 0 in Ω) in the viscosity sense if u is a viscosity subsolution
(resp., supersolution) of (FE).

Once we fix a PDE, like (FE), on a set Ω, we denote by S− and S+ the sets
of all its viscosity subsolutions and supersolutions, respectively.

The above definition differs from the one in [19]. As is explained in [19], the
above one allows the following situation: let Ω be a nonempty open subset of Rn and
suppose that the Hamilton-Jacobi equation (1) has a continuous solution u ∈ C(Ω).
Choose two dense subsets U and V of Ω such that U ∩ V = ∅ and U ∪ V 6= Ω.
Select a function v : Ω → R so that v(x) = u(x) if x ∈ U , v(x) = u(x) + 1 if
x ∈ V and v(x) ∈ [u(x), u(x) + 1] if x ∈ Ω \ (U ∪ V ). Then we have v∗(x) = u(x)
and v∗(x) = u(x) + 1 for all x ∈ Ω. Consequently, v is a viscosity solution of (1).
If U ∪ V 6= Ω, then there are infinitely many choices of such functions v.

The same remarks as Remarks 1–4 are valid for the above generalized definition.
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Definition 1.3. Let Ω ⊂ Rn and u : Ω → R. The subdifferential D−u(x) and
superdifferential D+u(x) of the function u at x ∈ Ω are defined, respectively, by

D−u(x) = {p ∈ Rn : u(x+ h) ≥ u(x) + p · h+ o(|h|) as x+ h ∈ Ω, h→ 0},
D+u(x) = {p ∈ Rn : u(x+ h) ≤ u(x) + p · h+ o(|h|) as x+ h ∈ Ω, h→ 0},

where o(|h|) denotes a function on an interval (0, δ), with δ > 0, having the prop-
erty: limh→0 o(|h|)/|h| = 0.

We remark that D−u(x) = −D+(−u)(x). If u is a convex function in Rn and
p ∈ D−u(x) for some x, p ∈ Rn, then

u(x+ h) ≥ u(x) + p · h for all h ∈ Rn.
See Proposition A.3 for the above claim. In convex analysis, D−u(x) is usually
denoted by ∂u(x).

Proposition 1.8. Let Ω ⊂ Rn and u : Ω → R be locally bounded. Let x ∈ Ω.
Then

D+u(x) = {Dφ(x) : φ ∈ C1(Ω), u− φ attains a maximum at x}.

As a consequence of the above proposition, we have the following: if u is locally
bounded in Ω, then

D−u(x) = −D+(−u)(x)

= − {Dφ(x) : φ ∈ C1(Ω), −u− φ attains a maximum at x}
= {Dφ(x) : φ ∈ C1(Ω), u− φ attains a minimum at x}.

Corollary 1.1. Let Ω ⊂ Rn. Let F : Ω × R× Rn → R and u : Ω → R be locally
bounded. Then u is a viscosity subsolution (resp., supersolution) of (FE) if and
only if

F∗(x, u
∗(x), p) ≤ 0 for all x ∈ Ω, p ∈ D+u∗(x)

( resp., F ∗(x, u∗(x), p) ≥ 0 for all x ∈ Ω, p ∈ D−u∗(x) ).

This corollary (or Remark 3) says that the viscosity properties of a function,
i.e., the properties that the function be a viscosity subsolution, supersolution, or
solution are of local nature. For instance, under the hypotheses of Corollary 1.1,
the function u is a viscosity subsolution of (FE) if and only if for each x ∈ Ω there
exists an open neighborhood Ux, in Rn, of x such that u is a viscosity subsolution
of (FE) in Ux ∩Ω.

Proof. Let φ ∈ C1(Ω) and y ∈ Ω, and assume that u − φ has a maximum at y.
Then

(u− φ)(y + h) ≤ (u− φ)(y) if y + h ∈ Ω,
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and hence, as y + h ∈ Ω, h→ 0,

u(y + h) ≤ u(y) + φ(y + h)− φ(y) = u(y) +Dφ(y) · h+ o(|h|).

This shows that

{Dφ(y) : φ ∈ C1(Ω), u− φ attains a maximum at y} ⊂ D+u(y).

Next let y ∈ Ω and p ∈ D+u(y). Then we have

u(y + h) ≤ u(y) + p · h+ ω(|h|)|h| if y + h ∈ Ω and |h| ≤ δ

for some constant δ > 0 and a function ω ∈ C([0, δ]) satisfying ω(0) = 0. We may
choose ω to be nondecreasing in [0, δ]. In the above inequality, we want to replace
the term ω(|h|)|h| by a C1 function ψ(h) having the property: ψ(h) = o(|h|).
Following [23], we define the function γ : [0, δ/2]→ R by

γ(r) =

∫ 2r

0

ω(t) dt.

Noting that

γ(r) ≥
∫ 2r

r

ω(t) dt ≥ ω(r)r for r ∈ [0, δ/2],

we see that

u(y + h) ≤ u(y) + p · h+ γ(|h|) if y + h ∈ Ω and |h| ≤ δ/2.

It immediate to see that γ ∈ C1([0, δ/2]) and γ(0) = γ′(0) = 0. We set ψ(h) =
γ(|h|) for h ∈ Bδ/2(0). Then ψ ∈ C1(Bδ/2(0)), ψ(0) = 0 and Dψ(0) = 0. It is now
clear that if we set

φ(x) = u(y) + p · (x− y) + ψ(x− y) for x ∈ Bδ/2(y),

then the function u− φ attains a maximum over Ω ∩Bδ/2(y) at y and Dφ(y) = p.
ut

Now, we discuss a couple of stability results concerning viscosity solutions.

Proposition 1.9. Let {uε}ε∈(0,1) ⊂ S−. Assume that Ω is locally compact and
{uε} converges locally uniformly to a function u in Ω as ε→ 0. Then u ∈ S−.

Proof. Let φ ∈ C1(Ω). Assume that u∗−φ attains a strict maximum at x̂ ∈ Ω. We

choose a constant r > 0 so that K := Br(x̂) ∩ Ω is compact. For each ε ∈ (0, 1),
we choose a maximum point (over K) of u∗ε − φ.

Next, we choose a sequence {εj} ⊂ (0, 1) converging to zero such that xεj → z
for some z ∈ K as j →∞. Next, observe in view of the choice of xε that
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(u∗ − φ)(xεj ) ≥ (u∗εj − φ)(xεj )− ‖u∗ − u∗εj‖∞,K
≥ (u∗εj − φ)(x̂)− ‖u∗ − u∗εj‖∞,K
≥ (u∗ − φ)(x̂)− 2‖u∗ − u∗εj‖∞,K .

Sending j →∞ yields

(u∗ − φ)(z) ≥ lim sup(uεj − φ)(xεj ) ≥ lim inf
j→∞

(uεj − φ)(xεj ) ≥ (u∗ − φ)(x̂),

which shows that z = x̂ and limj→∞ uεj (xεj ) = u(x̂). For j ∈ N sufficiently large,
we have xεj ∈ Br(x̂) and, since uεj ∈ S−,

F∗(xεj , u
∗
εj (xεj ), Dφ(xεj )) ≤ 0.

If we send j →∞, we find that u ∈ S−. ut
Proposition 1.10. Let Ω be locally compact. Let F ⊂ S−. That is, F is a family
of viscosity subsolutions of (FE). Assume that supF is locally bounded in Ω. Then
we have supF ∈ S−.

Remark 1.6. By definition, the set Ω is locally compact if for any x ∈ Ω, there
exists a constant r > 0 such that Ω ∩ Br(x) is compact. For instance, every open
subset and closed subset of Rn are locally compact. The set A := (0, 1)×[0, 1] ⊂ R2

is locally compact, but the set A ∪ {(0, 0)} is not locally compact.

Remark 1.7. Similarly to Remark 5, if Ω is locally compact, then the C1 regularity
of the test functions in the Definition 2 can be replaced by the C∞ regularity.

Proof. Set u = supF . Let φ ∈ C1(Ω) and x̂ ∈ Ω, and assume that

max
Ω

(u∗ − φ) = (u∗ − φ)(x̂) = 0.

We assume moreover that x̂ is a strict maximum point of u∗−φ. That is, we have
(u∗ − φ)(x) < 0 for all x 6= x̂. Choose a constant r > 0 so that W := Ω ∩Br(x̂) is
compact.

By the definition of u∗, there are sequences {yk} ⊂W and {vk} ⊂ F such that

yk → x̂, vk(yk)→ u∗(x̂) as k →∞.
Since W is compact, for each k ∈ N we may choose a point xk ∈W such that

max
W

(v∗k − φ) = (v∗k − φ)(xk).

By passing to a subsequence if necessary, we may assume that {xk} converges to
a point z ∈W . We then have

0 = (u∗ − φ)(x̂) ≥ (u∗ − φ)(xk) ≥ (v∗k − φ)(xk)

≥ (v∗k − φ)(yk) ≥ (vk − φ)(yk)→ (u∗ − φ)(x̂) = 0,
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and consequently
lim
k→∞

u∗(xk) = lim
k→∞

v∗k(xk) = u∗(x̂).

In particular, we see that

(u∗ − φ)(z) ≥ lim
k→∞

(u∗ − φ)(xk) = 0,

which shows that z = x̂. That is, limk→∞ xk = x̂.
Thus, we have xk ∈ Br(x̂) for sufficiently large k ∈ N. Since vk ∈ S−, we get

F∗(xk, v
∗
k(xk), Dφ(xk)) ≤ 0

if k is large enough. Hence, sending k →∞ yields

F∗(x̂, u
∗(x̂), Dφ(x̂)) ≤ 0,

which proves that u ∈ S−. ut

Theorem 1.3. Let Ω be a locally compact subset of Rn. Let {uε}ε∈(0,1) and
{Fε}ε∈(0,1) be locally uniformly bounded collections of functions on Ω and Ω×R×
Rn, respectively. Assume that for each ε ∈ (0, 1), uε is a viscosity subsolution of

Fε(x, uε(x), Duε(x)) ≤ 0 in Ω.

Set

ū(x) = lim
r→0+

sup{uε(y) : y ∈ Br(x) ∩Ω, ε ∈ (0, r)},
F (ξ) = lim

r→0+
inf{Fε(η) : η ∈ Ω × R× Rn, |η − ξ| < r, ε ∈ (0, r)}.

Then ū is a viscosity subsolution of

F (x, ū(x), Dū(x)) ≤ 0 in Ω.

Remark 1.8. The function ū is upper semicontinuous in Ω. Indeed, we have

ū(y) ≤ sup{uε(z) : z ∈ Br(x) ∩Ω, ε ∈ (0, r)}

for all x ∈ Ω and y ∈ Br(x) ∩Ω. This yields

lim sup
Ω3y→x

ū(y) ≤ sup{uε(z) : z ∈ Br(x) ∩Ω, ε ∈ (0, r)}

for all x ∈ Ω. Hence,

lim sup
Ω3y→x

ū(y) ≤ ū(x) for all x ∈ Ω.

Similarly, the function F is lower semicontinuous in Ω × R× Rn.
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Proof. It is easily seen that for all x ∈ Ω, r > 0 and y ∈ Br(x) ∩Ω,

u∗ε(y) ≤ sup{uε(z) : z ∈ Br(x) ∩Ω}.

From this we deduce that

ū(x) = lim
r→0+

sup{u∗ε(y) : y ∈ Br(x) ∩Ω, 0 < ε < r} for all x ∈ Ω.

Hence, we may assume by replacing uε by u∗ε if necessary that uε ∈ USC(Ω).
Similarly, we may assume that Fε ∈ LSC(Ω × R× Rn).

Let φ ∈ C1(Ω) and x̂ ∈ Ω. Assume that ū− φ has a strict maximum at x̂. Let

r > 0 be a constant such that Br(x̂) ∩Ω is compact.
For each k ∈ N we choose yk ∈ Br/k(x̂) ∩Ω and εk ∈ (0, 1/k) so that

|ū(x̂)− uεk (yk)| < 1/k,

and then choose a maximum point xk ∈ Br(x̂) ∩Ω of uεk − φ over Br(x̂) ∩Ω.
Since

(uεk − φ)(xk) ≥ (uεk − φ)(yk),

we get
lim sup
k→0

(uεk − φ)(xk) ≥ (ū− φ)(x̂),

which implies that

lim
k→∞

xk = x̂ and lim
k→∞

uεk (xk) = ū(x̂).

If k ∈ N is sufficiently large, we have xk ∈ Br(x̂) ∩Ω and hence

Fεk (xk, uεk (xk), Dφ(xk)) ≤ 0.

Thus, we get
F (x̂, ū(x̂), Dφ(x̂)) ≤ 0. ut

Proposition 1.9 can be now seen as a direct consequence of the above theorem.
The following proposition is a consequence of the above theorem as well.

Proposition 1.11. Let Ω be locally compact. Let {uk} be a sequence of viscosity
subsolutions of (FE). Assume that {uk} ⊂ USC(Ω) and that {uk} is a nonincreas-
ing sequence of functions on Ω, i.e., uk(x) ≥ uk+1(x) for all x ∈ Ω and k ∈ N.
Set

u(x) = lim
k→∞

uk(x) for x ∈ Ω.

Assume that u is locally bounded on Ω. Then u ∈ S−.
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Let us introduce the (outer) normal cone N(z,Ω) at z ∈ Ω by

N(z,Ω) = {p ∈ Rn : 0 ≥ p · (x− z) + o(|x− z|) as Ω 3 x→ z}.
Another definition equivalent to the above is the following:

N(z,Ω) = −D+1Ω(z),

where 1Ω denotes the characteristic function of Ω. Note that if z ∈ Ω is an interior
point of Ω, then N(z,Ω) = {0}.

We say that (FE) or the pair (F,Ω) is proper if F (x, r, p + q) ≥ F (x, r, p) for
all (x, r, p) ∈ Ω × R× Rn and all q ∈ N(x,Ω).

Proposition 1.12. Assume that (FE) is proper. If u ∈ C1(Ω) is a classical sub-
solution of (FE), then u ∈ S−.

Proof. Let φ ∈ C1(Ω) and assume that u − φ attains a maximum at z ∈ Ω. We
may assume by extending the domain of definition of u and φ that u and φ are
defined and of class C1 in Br(z) for some r > 0. By reselecting r > 0 small enough
if needed, we may assume that

(u− φ)(x) < (u− φ)(z) + 1 for all x ∈ Br(z).
It is clear that the function u−φ+ 1Ω attains a maximum over Br(z) at z, which
shows that Dφ(z) − Du(z) ∈ D+1Ω(z). Setting q = −Dφ(z) + Du(z), we have
Du(z) = Dφ(z) + q and

0 ≥ F (z, u(z), Dφ(z) + q) ≥ F (z, u(z), Dφ(z)) ≥ F∗(z, u(z), Dφ(z)),

which completes the proof. ut
Proposition 1.13 (Perron method). Let F be a nonempty subset of S− having
the properties:

(P1) supF ∈ F .
(P2) If v ∈ F and v 6∈ S+, then there exists a w ∈ F such that w(y) > v(y) at

some point y ∈ Ω.

Then supF ∈ S.

Proof. We have supF ∈ F ⊂ S−. That is, supF ∈ S−. If we suppose that
supF 6∈ S+, then, by (P2), we have w ∈ F such that w(y) > (supF)(y) for some
y ∈ Ω, which contradicts the definition of supF . Hence, supF ∈ S+. ut
Theorem 1.4. Assume that Ω is locally compact and that (FE) is proper. Let
f ∈ LSC(Ω) ∩ S− and g ∈ USC(Ω) ∩ S+. Assume that f ≤ g in Ω. Set

F = {v ∈ S− : f ≤ v ≤ g in Ω}.
Then supF ∈ S.
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In the above theorem, the semicontinuity requirement on f, g is “opposite”
in a sense: the lower (resp., upper) semicontinuity for the subsolution f (resp.,
supersolution g). This choice of semicontinuities is convenient in practice since in
the construction of supersolution f , for instance, one often takes the infimum of a
collection of continuous supersolutions and the resulting function is automatically
upper semicontinuous.

Of course, under the same hypotheses of the above theorem, we have following
conclusion as well: if we set F+ = {v ∈ S+ : f ≤ v ≤ g in Ω}, then inf F+ ∈ S.

Lemma 1.3. Assume that Ω is locally compact and that (FE) is proper. Let u ∈ S−
and y ∈ Ω, and assume that u is not a viscosity supersolution of (FE) at y, that
is,

F ∗(y, u∗(y), p) < 0 for some p ∈ D−u∗(y).

Let ε > 0 and U be a neighborhood of y. Then there exists a v ∈ S− such that





u(x) ≤ v(x) ≤ max{u(x), u∗(y) + ε} for all x ∈ Ω,
v = u in Ω \ U,
v∗(y) > u∗(y).

(22)

Furthermore, if u is continuous at y, then there exist an open neighborhood V of
y and a constant δ > 0 such that v is a viscosity subsolution of

F (x, v(x), Dv(x)) = −δ in V ∩Ω. (23)

Proof. By assumption, there exists a function φ ∈ C1(Ω) such that u∗(y) = φ(y),
u∗(x) > φ(x) for all x 6= y and

F ∗(y, u∗(y), Dφ(y)) < 0.

Thanks to the upper semicontinuity of F ∗, there exists a δ ∈ (0, ε) such that

F ∗(x, φ(x) + t,Dφ(x)) < −δ for all (x, t) ∈ (Bδ(y) ∩Ω)× [0, δ], (24)

and Bδ(y) ∩Ω is a compact subset of U .
By replacing δ > 0 by a smaller number if needed, we may assume that

φ(x) + δ ≤ u∗(y) + ε for all x ∈ Bδ(y) ∩Ω. (25)

Since u∗ − φ attains a strict minimum at y and the minimum value is zero, if
(Ω ∩Bδ(y)) \Bδ/2(y) 6= ∅, then the constant

m := min
(Ω∩Bδ(y))\Bδ/2(y)

(u∗ − φ)

is positive. Of course, in this case, we have

u∗(x) ≥ φ(x) +m for all x ∈ (Ω ∩Bδ(y)) \Bδ/2(y).
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Set λ = min{m, δ} if (Ω ∩Bδ(y)) \Bδ/2(y) 6= ∅ and λ = δ otherwise, and observe
that

u∗(x) ≥ φ(x) + λ for all x ∈ (Ω ∩Bδ(y)) \Bδ/2(y). (26)

We define v : Ω → R by

v(x) =

{
max{u(x), φ(x) + λ} if x ∈ Bδ(y),

u(x) if x 6∈ Bδ(y).

If we set ψ(x) = φ(x)+λ for x ∈ Bδ(y)∩Ω. by (24), ψ is a classical subsolution
of (FE) in Bδ(y)∩Ω. Since (FE) is proper, ψ is a viscosity subsolution of (FE) in
Bδ(y) ∩Ω. Hence, by Proposition 1.10, we see that v is a viscosity subsolution of
(FE) in Bδ(y) ∩Ω.

According to (26) and the definition of v, we have

v(x) = u(x) for all x ∈ Ω \Bδ/2(y),

and, hence, v is a viscosity subsolution of (FE) in Ω \Bδ/2(y) Thus, we find that
v ∈ S−.

Since v = u in Ω \Bδ(y) by the definition of v, it follows that v = u in Ω \ U .
It is clear by the definition of v that v ≥ u in Ω. Moreover, by (25) we get

v(x) ≤ max{u(x), u∗(y) + ε} for all x ∈ Ω ∩Bδ(y).

Also, observe that

v∗(y) = max{u∗(y), u∗(y) + λ} = u∗(y) + λ > u∗(y).

Thus, (22) is valid.
Now, we assume that u is continuous at y. Then we find an open neighborhood

V ⊂ Bδ(y) of y such that

u(x) < φ(x) + λ for all x ∈ V ∩Ω,
and hence, we have v(x) = φ(x) + λ for all x ∈ V ∩Ω. Now, by (24) we see that v
is a classical (and hence viscosity) subsolution of (23). ut
Proof (Theorem 1.4). We have F 6= ∅ since f ∈ F . In view of Proposition 1.13, we
need only to show that the set F satisfies (P1) and (P2).

By Proposition 1.10, we see immediately that F satisfies (P1).
To check property (P2), let v ∈ F be not a viscosity supersolution of (FE).

There is a point y ∈ Ω where v is not a viscosity supersolution of (FE). That is,
for some p ∈ D−v∗(y), we have

F ∗(y, v∗(y), p) < 0. (27)

Noting v∗ ≤ g∗ in Ω, there are two possibilities: v∗(y) = g∗(y) or v∗(y) < g∗(y). If
v∗(y) = g∗(y), then p ∈ D−g∗(y). Since g ∈ S+, we have
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F ∗(y, g∗(y), p) ≥ 0,

which contradicts (27). If v∗(y) < g∗(y), then we choose a constant ε > 0 and a
neighborhood V of y so that

v∗(y) + ε < g∗(x) for all x ∈ V ∩Ω. (28)

Now, Lemma 1.3 guarantees that there exist w ∈ S− such that v ≤ w ≤
max{v, v∗(y) + ε} in Ω, v = w in Ω \ V and w∗(y) > v∗(y). For any x ∈ Ω ∩ V , by
(28) we have

w(x) ≤ max{v(x), g∗(x)} ≤ g(x).

For any x ∈ Ω \ V , we have

w(x) = v(x) ≤ g(x).

Thus, we find that w ∈ F . Since w∗(y) > v∗(y), it is clear that w(z) > v(z) at
some point z ∈ Ω. Hence, F satisfies (P2). ut

1.5 An example

We illustrate the use of the stability properties established in the previous subsec-
tion by studying the solvability of the Dirichlet problem for the eikonal equation

|Du(x)| = k(x) in Ω, (29)

u(x) = 0 on ∂Ω, (30)

where Ω is a bounded, open, connected subset of Rn and k ∈ C(Ω) is a positive

function in Ω, i.e., k(x) > 0 for all x ∈ Ω.
Note that the constant function f(x) := 0 is a classical subsolution of (29). Set

M = max
Ω
k. We observe that for each y ∈ ∂Ω the function gy(x) := M |x− y| is

a classical supersolution of (29). We set

g(x) = inf{gy(x) : y ∈ ∂Ω} for x ∈ Ω.
By Proposition 1.10 (its version for supersolutions), we see that g is a viscosity
supersolution of (29). Also, by applying Lemma 1.1, we find that g is Lipschitz

continuous in Ω.
An application of Theorem 1.4 ensures that there is a viscosity solution u :

Ω → R of (29) such that f ≤ u ≤ g in Ω. Since f(x) = g(x) = 0 on ∂Ω, if we set
u(x) = 0 for x ∈ ∂Ω, then the resulting function u is continuous at points on the
boundary ∂Ω and satisfies the Dirichlet condition (30) in the classical sense.

Note that u∗ ≤ g in Ω, which clearly implies that u = u∗ ∈ USC(Ω). Now,
if we use the next proposition, we find that u is locally Lipschitz continuous in Ω
and conclude that u ∈ C(Ω). Thus, the Dirichlet problem (29)–(30) has a viscosity

solution u ∈ C(Ω) which satisfies (30) in the classical (or pointwise) sense.
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Proposition 1.14. Let R > 0, C > 0 and u ∈ USC(BR). Assume that u is a
viscosity solution of

|Du(x)| ≤ C in BR.

Then u is Lipschitz continuous in BR with C being a Lipschitz bound. That is,
|u(x)− u(y)| ≤ C|x− y| for all x, y ∈ BR.

Proof. Fix any z ∈ BR and set r = (R − |z|)/4. Fix any y ∈ Br(z). Note that
B3r(y) ⊂ BR. Choose a function f ∈ C1([0, 3r)) so that f(t) = t for all t ∈ [0, 2r],
f ′(t) ≥ 1 for all t ∈ [0, 3r) and limt→3r− f(t) = ∞. Fix any ε > 0, and we claim
that

u(x) ≤ v(x) := u(y) + (C + ε)f(|x− y|) for all x ∈ B3r(y) (31)

Indeed, if this were not the case, we would find a point ξ ∈ B3r(y) \ {y} such that
u − v attains a maximum at ξ, which yields together with the viscosity property
of u

C ≥ |Dv(ξ)| = (C + ε)f ′(|ξ − y|) ≥ C + ε.

This is a contradiction. Thus we have (31).
Note that if x ∈ Br(z), then x ∈ B2r(y) and f(|x− y|) = |x− y|. Hence, from

(31), we get

u(x)− u(y) ≤ (C + ε)|x− y| for all x, y ∈ Br(z).

By symmetry, we see that

|u(x)− u(y)| ≤ (C + ε)|x− y| for all x, y ∈ Br(z),

from which we deduce that

|u(x)− u(y)| ≤ C|x− y| for all x, y ∈ Br(z), (32)

Now, let x, y ∈ BR be arbitrary points. Set r = 1
4

min{R − |x|, R − |y|}, and
choose a finite sequence {zi}Ni=1 of points on the line segment [x, y] so that z1 = x,
zN = y, |zi − zi−1| < r for all i = 1, ..., N and

∑N
i=1 |zi − zi−1| = |x− y|. By (32),

we get
|u(zi)− u(zi−1)| ≤ C|zi − zi−1| for all i = 1, ..., N.

Summing these over i = 1, ..., N yields the desired inequality. ut

1.6 Sup-convolutions

Sup-convolutions and inf-convolutions are basic and important tools for regulariz-
ing or analyzing viscosity solutions. In this subsection, we recall some properties
of sup-convolutions.

Let u : Rn → R be a bounded function and ε ∈ R+. The standard sup-
convolution uε : Rn → R and inf-convolution uε : Rn → R are defined, respec-
tively, by
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uε(x) = sup
y∈Rn

(
u(y)− 1

2ε
|y − x|2

)
and uε(x) = inf

y∈Rn

(
u(y) +

1

2ε
|y − x|2

)
.

Note that

uε(x) = − sup

(
−u(y)− 1

2ε
|y − x|2

)
= −(−u)ε(x).

This relation immediately allows us to interpret a property of sup-convolutions
into the corresponding property of inf-convolutions.

In what follows we assume that u is bounded and upper semicontinuous in Rn.
Let M > 0 be a constant such that |u(x)| ≤M for all x ∈ Rn.

Proposition 1.15. (i) We have

−M ≤ u(x) ≤ uε(x) ≤M for all x ∈ Rn.
(ii) Let x ∈ Rn and p ∈ D+uε(x). Then

|p| ≤ 2

√
M

ε
and p ∈ D+u(x+ εp).

Another important property of sup-convolutions is that the sup-convolution uε

is semiconvex in Rn. More precisely, the function

uε(x) +
1

2ε
|x|2 = sup

y∈Rn

(
u(y)− 1

2ε
|y|2 +

1

ε
y · x

)

is convex in Rn (see Appendix A.2) as is clear from the form of the right hand side
of the above identity.

Proof. To show assertion (i), we just check that for all x ∈ Rn,

uε(x) ≤ sup
y∈Rn

u(y) ≤M,

and
uε(x) ≥ u(x) ≥ −M.

Next, we prove assertion (ii). Let x̂ ∈ Rn and p̂ ∈ D+uε(x̂). Choose a point
ŷ ∈ Rn so that

uε(x̂) = u(ŷ)− 1

2ε
|ŷ − x̂|2.

(Such a point ŷ always exists under our assumptions on u.) It is immediate to see
that

1

2ε
|ŷ − x̂|2 ≤ uε(x̂)− u(x̂) ≤ 2M. (33)

We may choose a function φ ∈ C1(Rn) so that Dφ(x̂) = p̂ and maxRn(uε−φ) =
(uε − φ)(x̂). Observe that the function

R2n 3 (x, y) 7→ u(y)− 1

2ε
|y − x|2 − φ(x)
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attains a maximum at (x̂, ŷ). Hence, both the functions

Rn 3 x 7→ − 1

2ε
|ŷ − x|2 − φ(x)

and
Rn 3 x 7→ u(x+ ŷ − x̂)− φ(x)

attain maximum values at x̂. Therefore, we find that

1

ε
(x̂− ŷ) +Dφ(x̂) = 0 and Dφ(x̂) ∈ D+u(ŷ),

which shows that

p̂ =
1

ε
(ŷ − x̂) ∈ D+u(ŷ).

From this, we get ŷ = x̂+ εp̂, and, moreover, p̂ ∈ D+u(x̂+ εp̂). Also, using (33),
we get |p̂| ≤ 2

√
M/ε. Thus we see that (ii) holds. ut

The following observations illustrate a typical use of the above proposition. Let
Ω is an open subset of Rn. Let H : Ω × Rn → R and u : Ω → R be bounded
and upper semicontinuous. Let M > 0 be a constant such that |u(x)| ≤ M for all
x ∈ Ω. Let ε > 0. Set δ = 2

√
εM and Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}. Define uε

as above with u extended to Rn by setting u(x) = −M for x ∈ Rn \ Ω. (Or, in a
slightly different and more standard way, one may define uε by

uε(x) = sup
y∈Ω

(
u(y)− 1

2ε
|x− y|2

)
. )

By applying Proposition 1.15, we deduce that if u is a viscosity subsolution of

H(x,Du(x)) ≤ 0 in Ω,

then uε is a viscosity subsolution of both

H(x+ εDuε(x), Duε(x)) ≤ 0 in Ωδ, (34)

and

|Duε(x)| ≤ 2

√
M

ε
in Ωδ. (35)

If we set
G(x, p) = inf

y∈Bδ
H(x+ y, p) for x ∈ Ωδ,

then (34) implies that uε is a viscosity subsolution of

G(x,Duε(x)) ≤ 0 in Ωδ.

If we apply Proposition 1.14 to uε, we see from (35) that uε is locally Lipschitz in
Ωδ.
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2 Neumann boundary value problems

We assume throughout this section and the rest of this article that Ω ⊂ Rn is open.
We will be concerned with the initial value problem for the Hamilton-Jacobi

equation of evolution type

∂u

∂t
(x, t) +H(x,Dxu(x, t)) = 0 in Ω × (0, ∞),

and the asymptotic behavior of its solutions u(x, t) as t→∞.
The stationary problem associated with the above Hamilton-Jacobi equation

is stated as {
H(x,Du(x)) = 0 in Ω,

boundary condition on ∂Ω.
(36)

In this article we will be focused on the Neumann boundary value problem
among other possible choices of boundary conditions like periodic, Dirichlet, state-
constraints boundary conditions.

We are thus given two functions γ ∈ C(∂Ω,Rn) and g ∈ C(∂Ω,R) which satisfy

ν(x) · γ(x) > 0 for all x ∈ ∂Ω, (37)

where ν(x) denotes the outer unit normal vector at x, and the boundary condition
posed on the unknown function u is stated as

γ(x) ·Du(x) = g(x) for x ∈ ∂Ω.

This condition is called the (inhomogeneous, linear) Neumann boundary condition.

We remark that if u ∈ C1(Ω), then the directional derivative ∂u/∂γ of u in the
direction of γ is given by

∂u

∂γ
(x) = γ(x) ·Du(x) = lim

t→0

u(x+ tγ(x))− u(x)

t
for x ∈ ∂Ω.

(Note here that u is assumed to be defined in a neighborhood of x.)
Our boundary value problem (36) is now stated precisely as




H(x,Du(x)) = 0 in Ω,

∂u

γ
(x) = g(x) on ∂Ω.

(SNP)

Let U be an open subset of Rn such that U ∩ Ω 6= ∅. At this stage we briefly
explain the viscosity formulation of a more general boundary value problem

{
F (x, u(x), Du(x)) = 0 in U ∩Ω,
B(x, u(x), Du(x)) = 0 on U ∩ ∂Ω, (38)
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where the functions F : (U ∩ Ω) × R × Rn → R, B : (U ∩ ∂Ω) × R × Rn → R
and u : (U ∩ Ω) → R are assumed to be locally bounded in their domains of
definition. The function u is said to be a viscosity subsolution of (38) if the following
requirements are fulfilled:





φ ∈ C1(Ω), x̂ ∈ Ω, max
Ω

(u∗ − φ) = (u∗ − φ)(x̂)

=⇒
(i) F∗(x̂, u

∗(x̂), Dφ(x̂)) ≤ 0 if x̂ ∈ U ∩Ω,
(ii) F∗(x̂, u

∗(x̂), Dφ(x̂)) ∧B∗(x̂, u∗(x̂), Dφ(x̂)) ≤ 0 if x̂ ∈ U ∩ ∂Ω.
The upper and lower semicontinuous envelopes are taken in all the variables. That
is, for x ∈ U ∩Ω, ξ ∈ (U ∩Ω)× R× Rn and η ∈ (U ∩ ∂Ω)× R× Rn,

u∗(x) = lim
r→0+

sup{u(y) : y ∈ Br(x) ∩ U ∩Ω)},
F∗(ξ) = lim

r→0+
inf{F (X) : X ∈ (U ∩Ω)× R× Rn, |X − ξ| < r},

B∗(η) = lim
r→0+

inf{B(Y ) : Y ∈ (U ∩ ∂Ω)× R× Rn, |Y − η| < r}.

The definition of viscosity supersolutions of the boundary value problem (38) is
given by reversing the upper and lower positions of ∗, the inequalities, and “sup”
and “inf” (including ∧ and ∨), respectively. Then viscosity solutions of (38) are
defined as those functions which are both viscosity subsolution and supersolution
of (38).

Here, regarding the above definition of boundary value problems, we point out
the following: define the function G : (U ∩Ω)× R× Rn → R by

G(x, u, p) =

{
F (x, u, p) if x ∈ Ω,
B(x, u, p) if x ∈ ∂Ω,

(39)

and note that the lower (resp., upper) semicontinuous envelope G∗ (resp., G∗) of
G is given by

G∗(x, u, p) =

{
F∗(x, u, p) if x ∈ Ω,
F∗(x, u, p) ∧B∗(x, u, p) if x ∈ ∂Ω

(
resp., G∗(x, u, p) =

{
F ∗(x, u, p) if x ∈ Ω,
F ∗(x, u, p) ∨B∗(x, u, p) if x ∈ ∂Ω

)
.

Thus, the above definition of viscosity subsolutions, supersolutions and solutions
of (38) is the same as that of Definition 1.2 with F and Ω replaced by G defined

by (39) and U ∩ Ω, respectively. Therefore, the propositions in Subsection 1.4
are valid as well to viscosity subsolutions, supersolutions and solutions of (38). In
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order to apply the above definition to (SNP), one may take Rn as U or any open

neighborhood of Ω.
In Subsection 1.4 we have introduced the notion of properness of PDE (FE).

The following example concerns this property.

Example 2.1. Consider the boundary value problem (38) in the case where n = 1,
Ω = (0, 1), U = R, F (x, p) = p− 1 and B(x, p) = p− 1. The function u(x) = x on
[0, 1] is a classical solution of (38). But this function u is not a viscosity subsolution
of (38). Indeed, if we take the test function φ(x) = 2x, then u−φ takes a maximum
at x = 0 while we have B(0, φ(0)) = F (0, φ′(0)) = 2 − 1 = 1 > 0. However, if we
reverse the direction of derivative at 0 by replacing the above B by the function

B(x, p) =

{
p− 1 for x = 1,

−p+ 1 for x = 0,

then the function u is a classical solution of (38) as well as a viscosity solution of
(38).

Definition 2.1. The domain Ω is said to be of class C1 (or simply Ω ∈ C1) if
there is a function ρ ∈ C1(Rn) which satisfies

Ω = {x ∈ Rn : ρ(x) < 0},
Dρ(x) 6= 0 for all x ∈ ∂Ω.

The functions ρ having the above properties are called defining functions of Ω.

Remark 2.1. If ρ is chosen as in the above definition, then the outer unit normal
vector ν(x) at x ∈ ∂Ω is given by

ν(x) =
Dρ(x)

|Dρ(x)| .

Indeed, we have

N(x,Ω) = {tν(x) : t ≥ 0} for all x ∈ ∂Ω.

To see this, observe that if t ≥ 0, then 1
Ω

+ tρ as a function in Rn attains a local
maximum at any point x ∈ ∂Ω, which shows that

t|Dρ(x)|ν(x) ∈ −D+1
Ω

(x) = N(x,Ω).

Next, let z ∈ ∂Ω and φ ∈ C1(Rn) be such that 1
Ω
− φ attains a strict maximum

over Rn at z. Observe that −φ attains a strict maximum over Ω at x. Fix a constant
r > 0 and, for each k ∈ N, choose a maximum (over Br(z)) point xk ∈ Br(z) of
−φ−kρ2, and observe that −(φ+kρ2)(xk) ≥ −(φ+kρ2)(z) = −φ(z) for all k ∈ N
and that xk → z as k →∞. For k ∈ N sufficiently large we have
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D(φ+ kρ2)(xk) = 0,

and hence
Dφ(xk) = −2kρ(xk)Dρ(xk),

which shows in the limit as k →∞ that

Dφ(z) = −tDρ(z) = −t|Dρ(z)|ν(z),

where t = limk→∞ 2kρ(xk) ∈ R. Noting that −(φ+ kρ2)(x) < −φ(x) ≤ −φ(z) for

all x ∈ Ω, we find that xk 6∈ Br(z)\Ω for all k ∈ N. Hence, we have t ≥ 0. Thus, we

see that N(z,Ω) ⊂ {tν(z) : t ≥ 0} and conclude that N(z,Ω) = {tν(z) : t ≥ 0}

Henceforth in this section we assume that Ω is of class C1.

Proposition 2.1. If u ∈ C1(Ω) is a classical solution (resp., subsolution, or su-
persolution) of (SNP), then it is a viscosity solution (resp., subsolution, or super-
solution) of (SNP).

Proof. Let G be the function given by (39), with B(x, u, p) = γ(x) · p− g(x). Ac-
cording to the above discussion on the equivalence between the notion of viscosity
solution for (SNP) and that for PDE G(x,Du(x)) = 0 in Ω and Proposition 1.12,

it is enough to show that the pair (G,Ω) is proper. From the above remark, we

know that for any x ∈ ∂Ω we have N(x,Ω) = {tν(x) : t ≥ 0} and

G(x, p+ tν(x)) = γ(x) · (p+ tν(x)) ≥ γ(x) · p = G(x, p) for all t ≥ 0.

As we noted before, we have N(x,Ω) = {0} if x ∈ Ω. Thus, we have for all x ∈ Ω
and all q ∈ N(x,Ω),

G(x, p+ q) ≥ G(x, p). ut

We may treat in the same way the evolution problem




ut(x, t) +H(x, t,Dxu(x, t)) = 0 in Ω × J,
∂u

∂γ
(x, t) = g(x, t) on ∂Ω × J, (40)

where J is an open interval in R, H : Ω × J × Rn → R and g : ∂Ω × J → R. If
we set Ω̃ = Ω × R, U = Rn × J ,

F (x, t, p, q) = q +H(x, p) for (x, t, p, q) ∈ Ω × J × Rn × R,

and

B(x, t, p, q) = γ(x) · p− g(x, t) for (x, t, p, q) ∈ ∂Ω × J × Rn × R,

then the viscosity formulation for (38) applies to (40), with Ω replaced by Ω̃.
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We note here that if ρ is a defining function of Ω, then it, as a function of (x, t),
is also a defining function of the “cylinder” Ω×R. Hence, if we set γ̃(x, t) = (γ(x), 0)
and ν̃(x, t) = (ν(x), 0) for (x, t) ∈ ∂(Ω × R) = ∂Ω × R, then ν̃(x, t) is the outer
unit normal vector at (x, t) ∈ ∂Ω × R. Moreover, if γ satisfies (37), then we have
γ̃(x, t) · ν̃(x, t) = γ(x) · ν(x) > 0 for all (x, t) ∈ ∂Ω × R. Thus, as Proposition 2.1
says, if (37) holds, then any classical solution (resp., subsolution or supersolution)
of (40) is a viscosity solution (resp., subsolution or supersolution) of (40).

Before closing this subsection, we add two lemmas concerning C1 domains.

Lemma 2.1. Let Ω be a bounded, open, connected subset of Rn. Assume that Ω
is of class C1. Then there exists a constant C > 0 and, for each x, y ∈ Ω with
x 6= y, a curve η ∈ AC([0, t(x, y)]), with t(x, y) > 0, such that t(x, y) ≤ C|x − y|,
η(s) ∈ Ω for all s ∈ (0, t(x, y)), and |.η(s)| ≤ 1 for a.e. s ∈ [0, t(x, y)].

Lemma 2.2. Let Ω be a bounded, open, connected subset of Rn. Assume that Ω
is of class C1. Let M > 0 and u ∈ C(Ω) be a viscosity subsolution of |Du(x)| ≤M
in Ω. Then the function u is Lipschitz continuous in Ω.

The proof of these lemmas is given in Appendix A.3.

3 Initial-boundary value problem for Hamilton-Jacobi
equations

We study the initial value problem for Hamilton-Jacobi equations with the Neu-
mann boundary condition.

To make the situation clear, we collect our assumptions on Ω, γ and H.

(A1) Ω is bounded open connected subset of Rn.
(A2) Ω is of class C1.
(A3) γ ∈ C(∂Ω,Rn) and g ∈ C(∂Ω,R).
(A4) γ(x) · ν(x) > 0 for all x ∈ ∂Ω．
(A5) H ∈ C(Ω × Rn).
(A6) H is coercive, i.e.,

lim
R→∞

inf{H(x, p) : (x, p) ∈ Ω × Rn, |p| ≥ R} =∞,

In what follows, we assume always that (A1)–(A6) hold.

3.1 Initial-boundary value problems

Given a function u0 ∈ C(Ω), we consider the problem of evolution type
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{
ut +H(x,Dxu) = 0 in Ω × (0,∞),

γ(x) ·Dxu = g(x) on ∂Ω × (0, ∞),
(ENP)

u(x, 0) = u0(x) for x ∈ Ω. (ID)

Here u = u(x, t) is a function of (x, t) ∈ Ω × [0,∞) and represents the unknown
function.

When we say u is a (viscosity) solution of (ENP)–(ID), u is assumed to satisfy
the initial condition (ID) in the pointwise (classical) sense.

Henceforth Q denotes the set Ω × (0, ∞).

Theorem 3.1 (Comparison). Let u ∈ USC(Q) and v ∈ LSC(Q) be a viscos-
ity subsolution and supersolution of (ENP), respectively. Assume furthermore that

u(x, 0) ≤ v(x, 0) for all x ∈ Ω. Then u ≤ v in Q.

To proceed, we concede the validity of the above theorem and will come back
to its proof in Subsection 3.3.

Remark 3.1. The above theorem guarantees that if u is a viscosity solution of
(ENP)–(ID) and continuous for t = 0, then it is unique.

Theorem 3.2 (Existence). There exists a viscosity solution u of (ENP)–(ID) in

the space C(Q).

Proof. Fix any ε ∈ (0, 1). Choose a function u0,ε ∈ C1(Ω) so that

|u0,ε(x)− u0(x)| < ε for all x ∈ Ω.

Let ρ ∈ C1(Rn) be a defining function of Ω. Since

Dρ(x) = |Dρ(x)|ν(x) for x ∈ ∂Ω,

we may choose a constant Mε > 0 so large that

Mεγ(x) ·Dρ(x) ≥ max
∂Ω

(|g|+ |γ ·Du0,ε|) for all x ∈ ∂Ω.

Next choose a function ζ ∈ C1(R) so that





ζ′(0) = 1,

−1 ≤ζ(r) ≤ 0 for r ≤ 0,

0 ≤ζ′(r) ≤ 1 for r ≤ 0.

Setting
χε(x) = εζ(Mερ(x)/ε),

we have
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{
− ε ≤ χε(x) ≤ 0 for all x ∈ Ω,
γ(x) ·Dχε(x) ≥ |g(x)|+ |γ(x) ·Du0,ε(x)| for all x ∈ ∂Ω,

and we may choose a constant Cε > 0 such that

|Dχε(x)| ≤ Cε for all x ∈ Ω.
Then define the functions f±ε ∈ C1(Ω) by

f±ε (x) = u0,ε(x)± (χε(x) + 2ε),

and observe that



u0(x) ≤ f+
ε (x) ≤ u0(x) + 3ε for all x ∈ Ω,

u0(x) ≥ f−ε (x) ≥ u0(x)− 3ε for all x ∈ Ω,
γ(x) ·Df+

ε (x) ≥ g(x) for all x ∈ ∂Ω,
γ(x) ·Df−ε (x) ≤ g(x) for all x ∈ ∂Ω.

Now, we choose a constant Aε > 0 large enough so that

|H(x,Df±ε (x))| ≤ Aε for all x ∈ Ω,
and set

g±ε (x, t) = f±ε (x)±Aεt for (x, t) ∈ Q.
The functions g+

ε , g
−
ε ∈ C1(Q) are a viscosity supersolution and subsolution of

(ENP), respectively, and satisfy the inequality

|g±ε (x, 0)− u0(x)| ≤ 3ε for all x ∈ Ω.
Setting

h+(x, t) = inf{g+
ε (x, t) : ε ∈ (0, 1)},

h−(x, t) = sup{g−ε (x, t) : ε ∈ (0, 1)},
we observe that h+ ∈ USC(Q) and h− ∈ LSC(Q) are, respectively, a viscosity
supersolution and subsolution of (ENP). Moreover we have

u0(x) = h±(x, 0) for all x ∈ Ω,
h−(x, t) ≤ u0(x) ≤ h+(x, t) for all (x, t) ∈ Q.

By Theorem 1.4, we find that there exists a viscosity solution u of (ENP) which
satisfies

h−(x, t) ≤ u(x, t) ≤ h+(x, t) for all (x, t) ∈ Q.
Applying Theorem 3.1 to u∗ and u∗ yields

u∗ ≤ u∗ for all (x, t) ∈ Q,
while u∗ ≤ u∗ in Q by definition, which in particular implies that u ∈ C(Q). The
proof is complete. ut
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Theorem 3.3 (Uniform continuity). The viscosity solution u ∈ C(Q) of

(ENP)–(ID) is uniformly continuous in Q. Furthermore, if u0 ∈ Lip(Ω), then

u ∈ Lip(Q).

Lemma 3.1. Let u0 ∈ Lip(Ω). Then there is a constant C > 0 such that the
functions u0(x)+Ct and u0(x)−Ct are, respectively, a viscosity supersolution and
subsolution of (ENP)–(ID).

Proof. Let ρ and ζ be the fucntions which are used in the proof of Theorem 3.2.
Choose the collection {u0,ε}ε∈(0, 1) ⊂ C1(Ω) of functions so that





lim
ε→0
‖u0,ε − u0‖∞,Ω = 0,

sup
ε∈(0, 1)

‖Du0,ε‖∞,Ω <∞.

As in the proof of Theorem 3.2, we may fix a constant M > 0 so that

Mγ(x) ·Dρ(x) =M |ρ(x)|ν(x) · γ(x)

≥ |g(x)|+ |γ(x) ·Du0,ε(x)| for all x ∈ ∂Ω.
Next set

R = sup
ε∈(0, 1)

‖Du0,ε‖∞,Ω +M‖Dρ‖∞,Ω ,

and choose C > 0 so that
max
Ω×BR

|H| ≤ C.

Now, we put

v±ε (x, t) = u0,ε(x)± (Mεζ(ρ(x)/ε) + Ct) for (x, t) ∈ Q,

and note that v+
ε and v−ε are a classical supersolution and subsolution of (ENP).

Sending ε→ 0+, we conclude by Proposition 1.9 that the functions u0(x)+Ct and
u0(x) − Ct are a viscosity supersolution and subsolution of (ENP), respectively.
ut

Proof (Theorem 3.3). We first assume that u0 ∈ Lip(Ω), and show that u ∈
Lip(Q). According to Lemma 3.1, there exists a constant C > 0 such that the
function u0(x)− Ct is a viscosity subsolution of (ENP). By Theorem 3.1, we get

u(x, t) ≥ u0(x)− Ct for all (x, t) ∈ Q.

Fix any t > 0, and apply Theorem 3.1 to the functions u(x, t+ s) and u(x, s)−Ct
of (x, s), both of which are viscosity solutions of (ENP), to get

u(x, t+ s) ≥ u(x, s)− Ct for all (x, s) ∈ Q.
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Hence, if (p, q) ∈ D+u(x, s), then we find that as t→ 0+,

u(x, s) ≤ u(x, s+ t) + Ct ≤ u(x, s) + qt+ Ct+ o(t),

and consequently, q ≥ −C. Moreover, if x ∈ Ω, we have

0 ≥ q +H(x, p) ≥ H(x, p)− C.

Due to the coercivity of H, there exists a constant R > 0 such that

p ∈ BR.

Therefore, we get
q ≤ −H(x, p) ≤ max

Ω×BR
|H|.

Thus, if (x, s) ∈ Ω × (0,∞) and (p, q) ∈ D+u(x, s), then we have

|p|+ |q| ≤M := R+ C + max
Ω×BR

|H|.

Thanks to Proposition 1.14, we conclude that u is Lipschitz continuous in Q.
Next, we show in the general case that u ∈ UC(Q). Let ε ∈ (0, 1), and choose

a function u0,ε ∈ Lip(Ω) so that

‖u0,ε − u0‖∞ ≤ ε.

Let uε be the viscosity solution of (ENP) satisfying the initial condition

uε(x, 0) = u0,ε(x) for all x ∈ Ω.

As we have shown above, we know that uε ∈ Lip(Q). Moreover, by Theorem 3.1
we have

‖uε − u‖∞,Q ≤ ε.
It is now obvious that u ∈ UC(Q). ut

3.2 Additive eigenvalue problems

Under our hypotheses (A1)–(A6), the boundary value problem

{
H(x,Du) = 0 in Ω,

γ(x) ·Du = g(x) on ∂Ω
(SNP)

may not have a viscosity solution. For instance, the Hamiltonian H(x, p) = |p|2 +1
satisfies (A5) and (A6), but, since H(x, p) > 0, (SNP) does not have any viscosity
subsolution.

Instead of (SNP), we consider the additive eigenvalue problem
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{
H(x,Dv) = a in Ω,

γ(x) ·Dv = g(x) on ∂Ω.
(EVP)

This is a problem to seek for a pair (a, v) ∈ R × C(Ω) such that v is a viscosity

solution of the stationary problem (EVP). If (a, v) ∈ R×C(Ω) is such a pair, then a
and v are called an (additive) eigenvalue and eigenfunction of (EVP), respectively.
This problem is often called the ergodic problem in the viewpoint of ergodic optimal
control.

Theorem 3.4. (i) There exists a solution (a, v) ∈ R× Lip(Ω) of (EVP).

(ii) The eigenvalue of (EVP) is unique. That is, if (a, v), (b, w) ∈ R × C(Ω) are
solutions of (EVP), then a = b.

The above result has been obtained by Lions-Papanicolaou-Varadhan [44].
In what follows we write c# for the unique eigenvalue a of (EVP).

Corollary 3.1. Let u ∈ C(Q) be the solution of (ENP)–(ID). Then the function

u(x, t) + c#t is bounded on Q.

Corollary 3.2. We have

c# = inf{a ∈ R : (EVP) has a viscosity subsolution v}.

Lemma 3.2. Let b, c ∈ R and v, w ∈ C(Ω). Assume that v (resp., w) is a viscosity
supersolution (resp., subsolution) of (EVP) with a = b (resp., a = c). Then b ≤ c.

Remark 3.2. As the following proof shows, the assertion of the above lemma is
valid even if one replaces the continuity of v and w by the boundedness.

Proof. By adding a constant to v if needed, we may assume that v ≥ w in Ω. Since
the functions v(x)− bt and w(x)− ct are a viscosity supersolution and subsolution
of (ENP), by Theorem 3.1 we get

v(x)− bt ≥ w(x)− ct for all (x, t) ∈ Q,

from which we conclude that b ≤ c. ut

Proof (Theorem 3.4). Assertion (ii) is a direct consequence of Lemma 3.2.
We prove assertion (i). Consider the boundary value problem

{
λv +H(x,Dv) = 0 in Ω,

γ(x) ·Dv = g on ∂Ω,
(41)

where λ > 0 is a given constant. We will take the limit as λ→ 0 later on.
We fix λ ∈ (0, 1). Let ρ ∈ C1(Rn) be a defining function of the domain Ω.

Select a constant A > 0 so large that Aγ(x) ·Dρ(x) ≥ |g(x)| for all x ∈ ∂Ω, and



Introduction to viscosity solutions and the large time ... 41

then B > 0 so large that B ≥ A|ρ(x)| + |H(x,±ADρ(x))| for all x ∈ Ω. Observe
that the functions Aρ(x) + B/λ and −Aρ(x) − B/λ are a classical supersolution
and subsolution of (41), respectively.

The Perron method (Theorem 1.4) guarantees that there is a viscosity solution
vλ of (41) which satisfies

|vλ(x)| ≤ Aρ(x) +B/λ ≤ B/λ for all x ∈ Ω.

Now, since
−λvλ(x) ≤ B for all x ∈ Ω,

vλ satisfies in the viscosity sense

H(x,Dvλ(x)) ≤ B for all x ∈ Ω,

which implies, together with the coercivity of H, the equi-Lipschitz continuity of
{vλ}λ∈(0, 1). Thus the collections {vλ−infΩ vλ}λ∈(0, 1) and {λvλ}λ∈(0, 1) of functions

on Ω are relatively compact in C(Ω). We may select a sequence {λj}j∈N ⊂ (0, 1)
such that

λj → 0,

vλj (x)− inf
Ω
vλj → v(x),

λjvλj (x)→ w(x)

for some functions v, w ∈ C(Ω) as j →∞, where the convergences to v and w are

uniform on Ω. Observe that for all x ∈ Ω,

w(x) = lim
j→∞

λjvλj (x)

= lim
j→∞

λj
[
(vλj (x)− inf

Ω
vλj ) + inf

Ω
vλj
]

= lim
j→∞

λj inf
Ω
vλj ,

which shows that w is constant on Ω. If we write this constant as a, then we see by
Proposition 1.9 that v is a viscosity solution of (EVP). This completes the proof
of (i). ut

Proof (Corollary 3.1). Let v ∈ C(Ω) be an eigenfunction of (EVP). That is, v is
a viscosity solution of (EVP), with a = c#. Then, for any constant C ∈ R, the
function w(x, t) := v(x)−c#t+C is a visocosity solution of (ENP). We may choose

constants Ci, i = 1, 2, so that v(x) + C1 ≤ u0(x) ≤ v(x) + C2 for all x ∈ Ω. By
Theorem 3.1, we see that

v(x)− c#t+ C1 ≤ u(x, t) ≤ v(x)− c#t+ C2 for all (x, t) ∈ Q,

which shows that the function u(x, t) + c#t is bounded on Q. ut
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Proof (Corollary 3.2). It is clear that

c# ≥ c? := inf{a ∈ R : (EVP) has a viscosity subsolution v}.

To show that c# ≤ c?, we suppose by contradiction that c# > c?. By the definition
of c?, there is a b ∈ [c?, c#) such that (EVP), with a = b, has a viscosity subsolution
ψ. Let v be a viscosity solution of (EVP), with a = c#. Since b < c#, v is a viscosity

supersolution of (EVP), with a = b. We may assume that ψ ≤ v in Ω. Theorem 1.4
now guarantees the existence of a viscosity solution of (EVP), which contradicts
Theorem 3.4, (ii) (see Remark 3.2). ut

Example 3.1. We consider the case where n = 1, Ω = (−1, 1), H(x, p) = H(p) :=
|p| and γ(±1) = ±1, respectively, and evaluate the eigenvalue c#. We set gmin =
min{g(−1), g(1)}. Assume first that gmin ≥ 0. In this case, the fucntion v(x) = 0
is a classical subsolution of (SNP) and, hence, c# ≤ 0. On the other hand, since
H(p) ≥ 0 for all p ∈ R, we have c# ≥ 0. Thus, c# = 0. We next assume that
gmin < 0. It is easily checked that if g(1) = gmin, then the function v(x) = gminx is
a viscosity solution of (EVP), with a = |gmin|. (Notice that

−D+v(−1) = (−∞, −|gmin| ] ∪ [−|gmin|, |gmin| ],
−D−v(−1) = [ |gmin|, ∞).)

Similarly, if g(−1) = gmin, then the function v(x) = |gmin|x is a viscosity solution
of (EVP), with a = |gmin|. These observations show that c# = |gmin|.

3.3 Proof of comparison theorem

This subsection will be devoted to the proof of Theorem 3.1.
We begin with the following two lemmas.

Lemma 3.3. Let u be the function from Theorem 3.1. Set P = Ω× (0, ∞). Then,
for every (x, t) ∈ ∂Ω × (0, ∞), we have

u(x, t) = lim sup
P3(y,s)→(x,t)

u(y, s). (42)

Proof. Fix any (x, t) ∈ ∂Ω×(0, ∞). To prove (42), we argue by contradiction, and
suppose that

lim sup
P3(y,s)→(x,t)

u(y, s) < u(x, t).

We may choose a constant r ∈ (0, t) so that

u(y, s) < u(x, t) for all (y, s) ∈ P ∩ (Br(x)× [t− r, t+ r]). (43)

Note that
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P ∩ (Br(x)× [t− r, t+ r]) = (Ω ∩Br(x))× [t− r, t+ r].

Since u is bounded on Ω × [t − r, t + r], we may choose a constant α > 0 so

that for all (y, s) ∈ Ω × [t− r, t+ r],

u(y, s)− α(|y − x|2 + (s− t)2) < u(x, t) if |y − x| ≥ r/2 or |s− t| ≥ r/2. (44)

Let ρ be a defining function of Ω. For k ∈ N we define the function ψ ∈
C1(Rn+1) by

ψ(y, s) = kρ(y)− α(|y − x|2 + (s− t)2).

Consider the function
u(y, s) + ψ(y, s)

on the set
(
Ω ∩Br(x)

)
× [t− r, t+ r]. Let (yk, sk) ∈

(
Ω ∩Br(x)

)
× [t− r, t+ r]

be a maximum point of the above function.
Noting that

ψ(y, s) < 0 for all (y, s) ∈ P
and using (43) and (44), we observe that for all (y, s) ∈ (Ω ∩Br(x))× [t− r, t+ r],

u(y, s) + ψ(y, s) < u(x, t) = u(x, t) + ψ(x, t)

if either y ∈ Ω, |y − x| ≥ r/2, or |s− t| ≥ r/2. Accordingly, we have

(yk, sk) ∈
(
∂Ω ∩Br/2(x)

)
× (t− r/2, t+ r/2).

Hence, setting

pk = kDρ(yk) + 2α(yk − x) and qk = 2α(sk − t),

we have
min{qk +H(yk, pk), γ(yk) · pk − g(yk)} ≤ 0.

If we note that
γ(yk) ·Dρ(yk) ≥ min

∂Ω
γ ·Dρ > 0,

then, by sending k →∞, we get a contradiction. ut

Lemma 3.4. Let y, z ∈ Rn, and assume that y·z > 0. Then there exists a quadratic
function ζ in Rn which satisfies:





ζ(tx) = t2ζ(x) for all (x, t) ∈ Rn × R,
ζ(x) > 0 if x 6= 0,

z ·Dζ(x) = 2(y · z)(y · x) for all x ∈ Rn.
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Proof. We define the fucntion ζ by

ζ(x) =
∣∣∣x− y · x

y · z z
∣∣∣
2

+ (y · x)2.

We observe that for any t ∈ R,

ζ(x+ tz) =

∣∣∣∣x+ tz − y · (x+ tz)

y · z z

∣∣∣∣
2

+ (y · (x+ tz))2

=

∣∣∣∣x−
y · x
y · z z

∣∣∣∣
2

+ (y · x)2 + 2t(y · x)(y · z) + t2(y, z)2,

from which we find that

z ·Dζ(x) = 2(y · z)(y · x).

If ζ(x) = 0, then y · x = 0 and

0 = ζ(x) =
∣∣∣x− y · x

y · z z
∣∣∣
2

= |x|2.

Hence, we have x = 0 if ζ(x) = 0, which shows that ζ(x) > 0 if x 6= 0. It is obvious
that the function ζ is homogeneous of degree two. The function ζ has the required
properties. ut

For the proof of Theorem 3.1, we argue by contradiction: we suppose that

sup
Ω×[0,∞)

(u− v) > 0,

and, to conclude the proof, we will get a contradiction.

Reduction 1: We may assume that there exist a constant δ > 0 and a finite
open interval J ⊂ (0, ∞) such that

u is a viscosity subsolution of
{
ut(x, t) +H(x,Dxu(x, t)) ≤ −δ in Ω × J,
γ(x) ·Dxu(x, t) ≤ g(x) on ∂Ω × J,

(45)

max
Ω×J

(u− v) > 0 > max
Ω×∂J

(u− v), (46)

and

u and v are bounded on Ω × J . (47)



Introduction to viscosity solutions and the large time ... 45

Proof. We choose a T > 0 so that sup
Ω×(0, T )

(u− v) > 0 and set

uε(x, t) = u(x, t)− ε

(T − t)2
for (x, t) ∈ Ω × [0, T ),

where ε > 0 is a constant. It is then easy to check that uε is a viscosity subsolution
of 




uε,t +H(x,Dxuε(x, t)) ≤ − ε

T 2
in Ω × (0, T ),

∂uε
∂γ

(x, t) ≤ g(x) on ∂Ω × (0, T ).

Choosing ε > 0 sufficiently small, we have

sup
Ω×[0,T )

(uε − v) > 0 > max
Ω×{0}

(uε − v).

If we choose α > 0 sufficiently small, then

max
Ω×[0,T−α]

(uε − v) > 0 > max
Ω×∂[0,T−α]

(uε − v).

Thus, if we set J = (0, T −α) and replace u by uε, then we are in the situation of
(45)–(47). ut

We may assume furthermore that u ∈ Lip(Ω × J) as follows.

Reduction 2: We may assume that there exist a constant δ > 0 and a finite
open interval J ⊂ (0, ∞) such that

u is a viscosity subsolution of
{
ut(x, t) +H(x,Dxu(x, t)) ≤ −δ in Ω × J,
γ(x) ·Dxu(x, t) ≤ g(x) on ∂Ω × J,

(48)

max
Ω×J

(u− v) > 0 > max
Ω×∂J

(u− v), (49)

and

u ∈ Lip(Ω × J) and v is bounded on Ω × J . (50)

Proof. Let J be as in Reduction 1. We set J = (a, b). Let M > 0 be a bound of

|u| on Ω × [a, b].
For each ε > 0 we define the sup-convolution in the t-variable

uε(x, t) = max
s∈[a,b]

(
u(x, s)− (t− s)2

2ε

)
.

We note as in Subsection 1.6 that
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M ≥ uε(x, t) ≥ u(x, t) ≥ −M for all (x, t) ∈ Ω × [a, b].

Noting that
1

2ε
(t− s)2 ≤ 2M ⇐⇒ |t− s| ≤ 2

√
εM (51)

and setting mε = 2
√
εM , we find that

uε(x, t) = max
a<s<b

(
u(x, s)− (t− s)2

2ε

)
for all (x, t) ∈ Ω × (a+mε, b−mε).

Let (x, t) ∈ Ω × (a+mε, b−mε). Choose an s ∈ (a, b) so that

uε(x, t) = u(x, s)− (t− s)2

2ε
.

Note by (51) that
|t− s| ≤ mε.

Let (p, q) ∈ D+uε(x, t) and choose a function φ ∈ C1(Ω × (a, b)) so that
Dφ(x, t) = (p, q) and max(uε − φ) = (uε − φ)(x, t). Observe as in Subsection 1.6
that

(p, (s− t)/ε) ∈ D+u(x, s) and
(t− s)
ε

+ q = 0.

Hence,
(p, q) ∈ D+u(x, s).

Therefore, we have
{
q +H(x, p) + δ ≤ 0 if x ∈ Ω,
min{q +H(x, p) + δ, γ(x) · p− g(x)} ≤ 0 if x ∈ ∂Ω. (52)

Moreover, we see that

|q| = |t− s|
ε
≤ mε

ε
,

and
H(x, p) ≤ −q ≤ mε

ε
if x ∈ Ω.

Hence, by the coercivity of H, we have

|q|+ |p| ≤ R(ε) if x ∈ Ω, (53)

for some constant R(ε) > 0.
Thus, we conclude from (52) that uε is a viscosity subsolution of

{
ut +H(x,Dxu) ≤ −δ in Ω × (a+mε, b−mε),

γ ·Dxu ≤ g on ∂Ω × (a+mε, b−mε),

and from (53) that uε is Lipschitz continuous in Ω× (a+mε, b−mε). By Lemma
3.3, we have
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uε(x, t) = lim sup
Ω×(a+mε, b−mε)3(y,s)

uε(y, s) for all (x, t) ∈ ∂Ω × (a+mε, b−mε).

Since uε ∈ Lip(Ω × (a+mε, b−mε)), the limsup operation in the above formula
can be replaced by the limit operation. Hence,

uε ∈ C(Ω × (a+mε, b−mε)),

which guarantees that uε is Lipschitz continuous in Ω × (a+mε, b−mε).
Finally, if we replace u and J by uε and (a+ 2mε, b− 2mε), respectively, and

select ε > 0 small enough so that

max
Ω×[a+2mε,b−2mε]

(uε − v) > 0 > max
Ω×∂[a+2mε,b−2mε]

(uε − v),

then conditions (48)–(50) are satisfied. ut

Reduction 3: We may assume that there exist a constant δ > 0 and a finite
open interval J ⊂ (0, ∞) such that

u is a viscosity subsolution of
{
ut(x, t) +H(x,Dxu(x, t)) ≤ −δ in Ω × J,
γ(x) ·Dxu(x, t) ≤ g(x)− δ on ∂Ω × J,

(54)

v is a viscosity supersolution of
{
vt(x, t) +H(x,Dxv(x, t)) ≥ δ in Ω × J,
γ(x) ·Dxv(x, t) ≥ g(x) + δ on ∂Ω × J,

(55)

max
Ω×J

(u− v) > 0 > max
Ω×∂J

(u− v), (56)

and

u ∈ Lip(Ω × J) and v is bounded on Ω × J . (57)

Proof. Let u, v, J be as in Reduction 2. Set J = (a, b). Let ρ be a defining function
of Ω as before. Let 0 < ε < 1. We set

uε(x, t) = u(x, t)− ερ(x) and vε(x, t) = v(x, t) + ερ(x) for (x, t) ∈ Ω × J,

and
Hε(x, p) = H(x, p− εDρ(x)) + ε for (x, p) ∈ Ω × Rn.

Let (x, t) ∈ Ω × J and (p, q) ∈ D−vε(x, t). Then we have

(p− εDρ(x), q) ∈ D−v(x, t).

Since v is a viscosity supersolution of (ENP), if x ∈ Ω, then
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q +H(x, p− εDρ(x)) ≥ 0.

If x ∈ ∂Ω, then either
q +H(x, p− εDρ(x)) ≥ 0,

or
γ(x) · p = γ(x) · (p− εDρ(x)) + εγ(x) ·Dρ(x)

≥ g(x) + εγ(x) ·Dρ(x) ≥ g(x) + λε,

where
λ = min

∂Ω
γ ·Dρ (> 0 ).

Now let (p, q) ∈ D+uε(x, t). Note that (p + εDρ(x), q) ∈ D+u(x, t). Since

u ∈ Lip(Ω × [a, b]), we have a bound C0 > 0 such that

|q| ≤ C0.

If x ∈ Ω, then

q +H(x, p− εDρ(x)) ≤ q +H(x, p+ εDρ(x)) + ω(2ε|Dρ(x)|)
≤ − δ + ω(2εC1),

where
C1 = max

Ω

|Dρ|,

and ω denotes the modulus of continuity of H on the set Ω ×BR+C1 , with R > 0
being chosen so that

min
Ω×(Rn\BR)

H > C0.

(Here we have used the fact that H(x, p + εDρ(x)) ≤ C0, which implies that
|p+ εDρ(x)| ≤ R.)

If x ∈ ∂Ω, then either

q +H(x, p− εDρ(x)) ≤ −δ + ω(2εC1),

or
γ(x) · p ≤ γ(x) · (p+ εDρ(x))− εγ(x) ·Dρ(x) ≤ g(x)− λε.

Thus we see that vε is a viscosity supersolution of

{
vε,t +Hε(x,Dxvε) ≥ ε in Ω × J,
γ(x) ·Dvε(x) ≥ g(x) + λε on ∂Ω × J,

and uε is a viscosity subsolution of

{
uε,t +Hε(x,Dxuε) ≤ −δ + ω(2C1ε) + ε in Ω × J,
γ ·Duε ≤ g(x)− λε on ∂Ω × J,
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If we replace u, v, H and δ by uε, vε, Hε and

min{ε, λε, δ − ω(2C1ε)− ε},

respectively, and choose ε > 0 sufficiently small, then conditions (54)–(57) are
satisfied. ut

Final step: Let u, v, J and δ be as in Reduction 3. We choose a maximum
point (z, τ) ∈ Ω × J of the function u− v. Note that τ ∈ J , that is, τ 6∈ ∂J .

By replacing u, if necessary, by the function

u(x, t)− ε|x− z|2 − ε(t− τ)2,

where ε > 0 is a small constant, we may assume that (z, τ) is a strict maximum
point of u− v.

By making a change of variables, we may assume that z = 0 and

Ω ∩B2r = {x = (x1, ..., xn) ∈ B2r : xn < 0},

while we may assume as well that [τ − r, τ + r] ⊂ J .
We set γ̂ = γ(0) and apply Lemma 3.4, with y = (0, ..., 0, 1) ∈ Rn and z = γ̂,

to find a quadratic function ζ so that





ζ(tξ) = t2ζ(ξ) for all (ξ, t) ∈ Rn × R,
ζ(ξ) > 0 if ξ 6= 0,

γ̂ ·Dζ(ξ) = 2γ̂nξn for all ξ = (ξ1, ..., ξn) ∈ Rn,
where γ̂n denotes the n-th component of the n-tuple γ̂.

By replacing ζ by a constant multiple of ζ, we may assume that

ζ(ξ) ≥ |ξ|2 for all ξ ∈ Rn,
|Dζ(ξ)| ≤ C0|ξ| for all ξ ∈ Rn,

γ̂ ·Dζ(ξ)
{
≥ 0 if ξn ≥ 0,

≤ 0 if ξn ≤ 0,

where C0 > 0 is a constant.
Let M > 0 be a Lipschitz bound of the function u. Set

ĝ = g(0), µ = ĝ
γ̂

|γ̂|2 and M1 = M + |µ|.

We may assume by replacing r by a smaller positive constant if needed that for all
x ∈ Br ∩ ∂Ω,

|γ(x)− γ̂| < δ

2(|µ|+ C0M1)
and |g(x)− ĝ| < δ

2
. (58)
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For α > 1 we consider the function

Φ(x, t, y, s) = u(x, t)− v(y, s)− µ · (x− y)− αζ(x− y)− α(t− s)2

on K :=
(

(Ω ∩Br(0, τ)× [τ − r, τ + r]
)2

. Let (xα, tα, yα, sα) be a maximum point

of the function Φ. By the inequality Φ(yα, sα, yα, sα) ≤ Φ(xα, tα, yα, sα), we get

α(|xα − yα|2 + (tα − sα)2) ≤α(ζ(xα − yα) + (tα − sα)2)

≤u(xα, tα)− u(yα, sα) + |µ||xα − yα|
≤M1(|xα − yα|2 + |tα − sα|2)1/2,

and hence
α(|xα − yα|2 + |tα − sα|2)1/2 ≤M1. (59)

As usual we may deduce that as α→∞,





(xα, τα), (yα, sα)→ (0, τ),

u(xα, tα)→ u(0, τ),

v(yα, sα)→ v(0, τ).

Let α > 1 be so large that

(xα, tα), (yα, sα) ∈ (Ω ∩Br)× (τ − r, τ + r).

Accordingly, we have

(µ+ αDζ(xα − yα), 2α(tα − sα)) ∈ D+u(xα, tα),

(µ+ αDζ(xα − yα), 2α(tα − sα)) ∈ D−v(yα, sα).

Using (59), we have

α|Dζ(xα − yα)| ≤ C0α|xα − yα| ≤ C0M1. (60)

If xα ∈ ∂Ω, then xα,n = 0 and (xα − yα)n ≥ 0. Hence, in this case, we have

γ̂ ·Dζ(xα − yα) ≥ 0,

and moreover, in view of (58) and (60),

γ(xα) · (µ+ αDζ(xα − yα)) ≥ γ̂ · (µ+ αDζ(xα − yα))

− |γ(xα)− γ̂|(|µ|+ C0M1)

>g(xα)− |ĝ − g(xα)| − δ

2
> g(xα)− δ.

Now, by the viscosity property of u, we obtain

2α(tα − sα) +H(xα, µ+ αDζ(xα − yα)) ≤ −δ,
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which we certainly have when xα ∈ Ω.
If yα ∈ ∂Ω, then (xα − yα)n ≤ 0 and

γ̂ ·Dζ(xα − yα) ≤ 0.

As above, we find that if yα ∈ ∂Ω, then

γ(yα) · (µ+ αDζ(xα − yα)) < δ,

and hence, by the viscosity property of v,

2(tα − sα) +H(yα, µ+ αDζ(xα − yα)) ≥ δ,
which is also valid in case when yα ∈ Ω.

Thus, we always have
{

2α(tα − sα) +H(xα, µ+ αDζ(xα − yα)) ≤ −δ,
2(tα − sα) +H(yα, µ+ αDζ(xα − yα)) ≥ δ.

Sending α→∞ along a sequence, we obtain

q +H(0, µ+ p) ≤ −δ and q +H(0, µ+ p) ≥ δ
for some p ∈ BC0M1 and q ∈ [−2M1, 2M1], which is a contradiction. This completes
the proof of Theorem 3.1. ut

4 Stationary problem: weak KAM aspects

In this section we discuss some aspects of weak KAM theory for Hamilton-Jacobi
equations with the Neumann boundary condition. We refer to A. Fathi [26, 25],
W. E [22] and L. C. Evans [24] for origins and developments of weak KAM theory.

Throughout this section we assume that (A1)–(A6) and the following (A7)
hold:

(A7) The Hamiltonian H is convex. That is, the function p 7→ H(x, p) is convex in

Rn for any x ∈ Ω.

As in Section 2 we consider the stationary problem



H(x,Du(x)) = 0 in Ω,

∂u

∂γ
(x) = g(x) on ∂Ω.

(SNP)

As remarked before this boundary value problem may have no solution in general,
but, due to Theorem 3.4, if we replace H by H − a with the right choice of a ∈ R,
the problem (SNP) has a viscosity solution. Furthermore, if we replace H by H−a
with a sufficiently large a ∈ R, the problem (SNP) has a viscosity subsolution. With
a change of Hamiltonians of this kind in mind, we make the following hypothesis
throughout this section:

(A8) The problem (SNP) has a viscosity subsolution.
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4.1 Aubry sets and representation of solutions

We start this subsection by the following Lemma.

Lemma 4.1. Let u ∈ USC(Ω) be a viscosity subsolution of (SNP). Then u ∈
Lip(Ω). Moreover, u has a Lipschitz bound which depends only on H and Ω.

Proof. By the coercivity of H, there exists a constant M > 0 such that H(x, p) > 0

for all (x, p) ∈ Ω × (Rn \ BM ). Fix such a constant M > 0 and note that u is a
viscosity subsolution of |Du(x)| ≤M in Ω. Accordingly, we see by Lemma 2.2 that
u ∈ Lip(Ω). Furthermore, if C > 0 is the constant from Lemma 2.1, then we have
|u(x)− u(y)| ≤ CM |x− y| for all x, y ∈ Ω. (See also Appendix A.3.)

Since the function u(x), as a function of (x, t), is a viscosity subsolution of
(ENP), Lemma 3.3 guarantees that u is continuous up to the boundary ∂Ω. Thus,

we get |u(x)− u(y)| ≤ CM |x− y| for all x, y ∈ Ω, which completes the proof. ut

We introduce the distance-like function d : Ω ×Ω → R by

d(x, y) = sup{v(x)− v(y) : v ∈ USC(Ω) ∩ S−},

where S− = S−(Ω) has been defined as the set of all viscosity subsolutions of

(SNP). By (A8), we have S− 6= ∅ and hence d(x, x) = 0 for all x ∈ Ω. Since

USC(Ω) ∩ S− is equi-Lipschitz continuous on Ω by Lemma 4.1, we see that the

functions (x, y) 7→ v(x)−v(y), with v ∈ USC(Ω)∩S−, are equi-Lipschitz continuous

and d is Lipschitz continuous on Ω × Ω. By Proposition 1.10, the functions x 7→
d(x, y), with y ∈ Ω, are viscosity subsolutions of (SNP). Hence, by the definition
of d(x, z) we get

d(x, y)− d(z, y) ≤ d(x, z) for all x, y, z ∈ Ω.

We set
Fy = {v(x)− v(y) : v ∈ S−}, with y ∈ Ω,

and observe by using Proposition 1.10 and Lemma 1.3 that Fy satisfies (P1) and

(P2), with Ω replaced by Ω \ {y}, of Proposition 1.13. Hence, by Proposition 1.13,

the function d(·, y) = supFy is a viscosity solution of (SNP) in Ω \ {y}.
The following proposition collects these observations.

Proposition 4.1. We have:

(i) d(x, x) = 0 for all x ∈ Ω.

(ii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Ω.

(iii) d(·, y) ∈ S−(Ω) for all y ∈ Ω.

(iv) d(·, y) ∈ S(Ω \ {y}) for all y ∈ Ω.
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The Aubry set (or Aubry-Mather set) A associated with (SNP) is defined by

A = {y ∈ Ω : d(·, y) ∈ S(Ω)}.

Example 4.1. Let n = 1, Ω = (−1, 1), H(x, p) = |p| − f(x), f(x) = 1 − |x|,
γ(±1) = ±1 and g(±1) = 0. The function v ∈ C1([−1, 1]) given by

v(x) =

{
1− 1

2
(x+ 1)2 if x ≤ 0,

1
2
(x− 1)2 if x ≥ 0

is a classical solution of (SNP). We show that d(x, 1) = v(x) for all x ∈ [−1, 1]. It
is enough to show that d(x, 1) ≤ v(x) for all x ∈ [−1, 1]. To prove this, we suppose
by contradiction that maxx∈[−1,1](d(x, 1) − v(x)) > 0. We may choose a constant
ε > 0 so small that maxx∈[−1,1](d(x, 1) − v(x) − ε(1 − x)) > 0. Let xε ∈ [−1, 1]
be a maximum point of the function d(x, 1)− v(x)− ε(1− x). Since this function
vanishes at x = 1, we have xε ∈ [−1, 1). If xε > −1, then we have

0 ≥ H(xε, v
′(xε)− ε) = |v′(xε)|+ ε− f(xε) = ε > 0,

which is impossible. Here we have used the fact that v′(x) = |x| − 1 ≤ 0 for all
x ∈ [−1, 1]. On the other hand, if xε = −1, then we have

0 ≥ min{H(−1, v′(−1)− ε), −(v′(−1)− ε)} = min{ε, ε} = ε > 0,

which is again impossible. Thus we get a contradiction. That is, we have d(x, 1) ≤
v(x) and hence d(x, 1) = v(x) for all x ∈ [−1, 1]. Arguments similar to the above
show moreover that

d(x,−1) =

{
1
2
(x+ 1)2 if x ≤ 0,

1− 1
2
(x− 1)2 if x ≥ 0,

and

d(x, y) =

{
d(x, 1)− d(y, 1) if x ≤ y,
d(x,−1)− d(y,−1) if x ≥ y.

Since two functions d(x,±1) are classical solutions of (SNP), we see that ±1 ∈ A.
Noting that d(x, y) ≥ 0 and d(x, x) = 0 for all x, y ∈ [−1, 1], we find that for
each fixed y ∈ [−1, 1] the function x 7→ d(x, y) has a minimum at x = y. If
y ∈ (−1, 1), then H(y, 0) = −f(y) < 0. Hence, we see that the interval (−1, 1)
does not intersect A. Thus, we conclude that A = {−1, 1}.

A basic observation on A is the following:

Proposition 4.2. The Aubry set A is compact.



54 Hitoshi Ishii

Proof. It is enough to show that A is a closed subset of Ω. Note that the function
d is Lipschitz continuous in Ω×Ω. Therefore, if {yk}k∈N ⊂ A converges to y ∈ Ω,

then the sequence {d(·, yk)}k∈N converges to the function d(·, y) in C(Ω). By
the stability of the viscosity property under the uniform convergence, we see that
d(·, y) ∈ S. Hence, we have y ∈ A. ut

The main assertion in this section is the following and will be proved at the
end of the section.

Theorem 4.1. Let u ∈ C(Ω) be a viscosity solution of (SNP). Then

u(x) = inf{u(y) + d(x, y) : y ∈ A} for all x ∈ Ω. (61)

We state the following approximation result on viscosity subsolutions of (SNP).

Theorem 4.2. Let u ∈ C(Ω) be a viscosity subsolution of (SNP). There exists a

collection {uε}ε∈(0, 1) ⊂ C1(Ω) such that for any ε ∈ (0, 1),




H(x,Duε(x)) ≤ ε in Ω,

∂uε

∂γ
(x) ≤ g(x) on ∂Ω,

and
‖uε − u‖∞,Ω < ε.

A localized version of the above theorem is in [39] (see also Appendix A.4 and
[8]) and the above theorem seems to be new in the global nature.

As a corollary, we get the following theorem.

Theorem 4.3. Let f1, f2 ∈ C(Ω) and g1, g2 ∈ C(∂Ω). Let u, v ∈ C(Ω) be viscosity
solutions of 



H(x,Du) ≤ f1 in Ω,

∂u

∂γ
≤ g1 on ∂Ω,

and 


H(x,Dv) ≤ f2 in Ω,

∂v

∂γ
≤ g2 on ∂Ω,

respectively. Let 0 < λ < 1 and set w = (1 − λ)u + λv. Then w is a viscosity
subsolution of 



H(x,Dw) ≤ (1− λ) + λf2 in Ω,

∂w

∂γ
≤ (1− λ)g1 + λg2 on ∂Ω,

(62)
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Proof. By Theorem 4.2, for each ε ∈ (0, 1) there are functions uε, vε ∈ C1(Ω)
such that

‖uε − u‖∞,Ω + ‖vε − v‖∞,Ω < ε,



H(x,Duε(x)) ≤ f1(x) + ε in Ω,

∂uε

∂γ
(x) ≤ g1(x) + ε on ∂Ω,

and 



H(x,Dvε(x)) ≤ f2(x) + ε in Ω,

∂vε

∂γ
(x) ≤ g2(x) + ε on ∂Ω.

If we set wε = (1− λ)uε + λvε, then we get with use of (A7)





H(x,Dwε(x)) ≤ (1− λ)f1(x) + λf2(x) + ε in Ω,

∂wε

∂γ
(x) ≤ (1− λ)g1(x) + λg2(x) + ε on ∂Ω.

Thus, in view of the stability property (Proposition 1.9), we see in the limit as
ε→ 0 that w is a viscosity subsolution of (62). ut

The following theorem is also a consequence of (A7), the convexity of H, and
Theorem 4.2.

Theorem 4.4. Let F be a nonempty collection of viscosity subsolutions of (SNP).

Assume that u(x) := inf F(x) > −∞ for all x ∈ Ω. Then u ∈ Lip(Ω) and it is a
viscosity subsolution of (SNP).

This theorem may be regarded as part of the theory of Barron-Jensen’s lower
semicontinuous viscosity solutions. There are at least two approaches to this theory:
the original one by Barron-Jensen [11] and the other due to Barles [5]. The following
proof is close to Barles’ approach.

Proof. By the coercivity of H, the collection F is equi-Lipschitz in Ω. Hence,
u is a Lipschitz continuous function in Ω. For each x ∈ Ω there is a sequence
{ux,k}k∈N ⊂ F such that limk→∞ ux,k(x) = u(x). Fix such sequences {ux,k}k∈N,

with x ∈ Ω and select a countable dense subset Y ⊂ Ω. Observe that Y × N is a
countable set and

u(x) = inf{uy,k(x) : (y, k) ∈ Y × N} for all x ∈ Ω.

Thus we may assume that F is a sequence.
Let F = {uk}k∈N. Then we have

u(x) = lim
k→∞

(u1 ∧ u2 ∧ · · · ∧ uk)(x) for all x ∈ Ω.
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We show that u1 ∧ u2 ∧ · · · ∧ uk is a viscosity subsolution of (SNP) for every
k ∈ N. It is enough to show that if v and w are viscosity subsolutions of (SNP),
then so is the function v ∧ w.

Let v and w be viscosity subsolutions of (SNP). Fix any ε > 0. In view of

Theorem 4.2, we may select functions vε, wε ∈ C1(Ω) so that both for (φε, φ) =
(vε, v) and (φε, φ) = (wε, w), we have





H(x,Dφε(x)) ≤ ε for all x ∈ Ω,
∂φε
∂γ

(x) ≤ g(x) for all x ∈ ∂Ω,

‖φε − φ‖∞,Ω < ε.

Note that (vε ∧wε)(x) = vε(x)− (vε −wε)+(x). Let {ηk}k∈N ⊂ C1(R) be such
that {

ηk(r)→ r+ uniformly on R as k →∞,
0 ≤ η′k(r) ≤ 1 for all r ∈ R, k ∈ N.

We set zε,k = vε − ηk ◦ (vε − wε) and observe that

Dzε,k(x) =
(
1− η′k(vε(x)− wε(x))

)
Dvε(x) + η′k(vε(x)− wε(x))Dwε(x).

By the convexity of H, we see easily that zε,k satisfies



H(x,Dzε,k(x)) ≤ ε for all x ∈ Ω,
∂zε,k
∂γ

(x) ≤ g(x) for all x ∈ ∂Ω.

Since v ∧w is a uniform limit of zε,k in Ω as k →∞ and ε→ 0, we see that v ∧w
is a viscosity subsolution of (SNP).

By the Ascoli-Arzela theorem or Dini’s lemma, we deduce that the convergence

u(x) = lim
k→∞

(u1 ∧ · · · ∧ uk)(x)

is uniform in Ω. Thus we conclude that u is a viscosity subsolution of (SNP). ut
Remark 4.1. Theorem 4.2 has its localized version which concerns viscosity subso-
lutions of 



H(x,Du(x)) ≤ 0 in U ∩Ω,
∂u

∂γ
(x) ≤ g(x) on U ∩ ∂Ω,

where U is an open subset of Rn having nonempty intersection with Ω. More im-
portantly, it has a version for the Neumann problem for Hamilton-Jacobi equations
of evolution type, which concerns solutions of




ut(x, t) +H(x,Dxu(x, t)) ≤ 0 in U ∩ (Ω × R+),

∂u

∂γ
(x, t) ≤ g(x) on U ∩ (∂Ω × R+),



Introduction to viscosity solutions and the large time ... 57

where U is an open subset of Rn × R+, with U ∩ (Ω × R+) 6= ∅. Consequently,
Theorems 4.3 and 4.4 are valid for these problems with trivial modifications. For
these, see Appendix A.4.

Theorem 4.5. We have

c# = inf

{
max
x∈Ω

H(x,Dψ(x)) : ψ ∈ C1(Ω), ∂ψ/∂γ ≤ g on ∂Ω

}
.

Remark 4.2. A natural question here is if there is a function ψ ∈ C1(Ω) which
attains the infimum in the above formula. See [28, 12].

Proof. Let c? denote the right hand side of the above minimax formula. By the
definition of c?, it is clear that for any a > c?, there is a classical subsolution of
(EVP). Hence, by Corollary 3.2, we see that c# ≤ c?.

On the other hand, by Theorem 3.4, there is a viscosity solution v of (EVP),
with a = c#. By Theorem 4.2, for any a > c# there is a classical subsolution of
(EVP). That is, we have c? ≤ c#. Thus we conclude that c# = c?. ut

Theorem 4.6 (Comparison). Let v, w ∈ C(Ω) be a viscosity subsolution and

supersolution of (SNP), respectively. Assume that v ≤ w on A. Then v ≤ w in Ω.

For the proof of the above theorem, we need the following lemma.

Lemma 4.2. Let K be a compact subset of Ω \ A. Then there exists a function

ψ ∈ C1(U ∩ Ω), where U is an open neighborhood of K in Rn, and a positive
constant δ > 0 such that




H(x,Dψ(x)) ≤ −δ in U ∩Ω,
∂ψ

∂γ
(x) ≤ g(x)− δ on U ∩ ∂Ω. (63)

We assume temporarily the validity of the above lemma and complete the proof
of Theorems 4.6 and 4.1. The proof of the above lemma will be given in the sequel.

Proof (Theorem 4.6). By contradiction, we suppose that M := sup
Ω

(v − w) > 0.
Let

K = {x ∈ Ω : (v − w)(x) = M},
which is a compact subset of Ω \A. According to Lemma 4.2, there are δ > 0 and

ψ ∈ C1(U∩Ω), where U is an open neighborhood of K such that ψ is a subsolution
of (63).

According to Theorem 4.2, for each ε ∈ (0, 1) there is a function vε ∈ C1(Ω)
such that 



H(x,Dvε(x)) ≤ ε in Ω,

∂vε

∂γ
(x) ≤ g(x) on ∂Ω,
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and
‖vε − v‖∞,Ω < ε.

We fix a λ ∈ (0, 1) so that δε := −(1− λ)ε+ δλ > 0 and set

uε(x) = (1− λ)vε(x) + λψ(x).

This function satisfies



H(x,Duε(x)) ≤ −δε in U ∩Ω,
∂uε
∂γ

(x) ≤ g(x)− δε on U ∩ ∂Ω.

This contradicts the viscosity property of the function w if uε −w attains a maxi-
mum at a point z ∈ U ∩Ω. Hence, we have

max
U∩Ω

(uε − w) = max
∂U∩Ω

(uε − w).

Sending ε→ 0 and then λ→ 0 yields

max
U∩Ω

(v − w) = max
∂U∩Ω

(v − w),

that is,
M = max

∂U∩Ω
(v − w).

This is a contradiction. ut

Remark 4.3. Obviously, the continuity assumption on v, w in the above lemma can
be replaced by the assumption that v ∈ USC(Ω) and w ∈ LSC(Ω).

Proof (Theorem 4.1). We write w(x) for the right hand side of (61) in this proof.
By the definition of d, we have

u(x)− u(y) ≤ d(x, y) for all x, y ∈ Ω,

from which we see that u(x) ≤ w(x).
By the definition of w, for every x ∈ A, we have

w(x) ≤ u(x) + d(x, x) = u(x).

Hence, we have w = u on A.
Now, by Proposition 1.10 (its version for supersolutions), we see that w is a

viscosity supersolution of (SNP) while Theorem 4.4 guarantees that w is a viscosity

subsolution of (SNP). We invoke here Theorem 4.6, to see that u = w in Ω. ut
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Proof (Lemma 4.2). In view of Theorem 4.2, it is enough to show that there exist

functions w ∈ Lip(Ω) and f ∈ C(Ω) such that
{
f(x) ≥ 0 in Ω,

f(x) > 0 in K,

and w is a viscosity subsolution of




H(x,Dw(x)) ≤ −f(x) in Ω,

∂w

∂γ
(x) ≤ g(x) on ∂Ω.

For any z ∈ Ω \ A, the function x 7→ d(x, z) is not a viscosity supersolution
of (SNP) at z while it is a viscosity subsolution of (SNP). Hence, according to

Lemma 1.3, there exist a function ψz ∈ Lip(Ω), a neighborhood Uz of z in Rn
and a constant δz > 0 such that ψz is a viscosity subsolution of (SNP) and it is
moreover a viscosity subsolution of




H(x,Dψz(x)) ≤ −δz in Uz ∩Ω,
∂ψz
∂γ

(x) ≤ g(x)− δz on Uz ∩ ∂Ω.

We choose a function fz ∈ C(Ω) so that 0 < fz(x) ≤ δ for all x ∈ Ω ∩ Uz and

fz(x) = 0 for all x ∈ Ω \ Uz, and note that ψz is a viscosity subsolution of



H(x,Dψz(x)) ≤ −fz(x) in Ω,

∂ψz
∂γ

(x) ≤ g(x)− fz(x) on ∂Ω.

We select a finite number of points z1, ..., zk of K so that {Uzi}ki=1 covers K.

Now, we define the function ψ ∈ Lip(Ω) by

ψ(x) =
1

k

k∑
i=1

ψzi(x),

and observe by Theorem 4.3 that ψ is a viscosity subsolution of



H(x,Dψ(x)) ≤ −f(x) in Ω,

∂ψ

∂γ
(x) ≤ g(x)− f(x) on ∂Ω,

where f ∈ C(Ω) is given by

f(x) =
1

k

k∑
i=1

fzi(x).

Finally, we note that infK f > 0. ut
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4.2 Proof of Theorem 4.2

We give a proof of Theorem 4.2 in this subsection.
We begin by choosing continuous functions on Rn which extend the functions

g, γ and ν. We denote them again by the same symbols g, γ and ν.
The following proposition guarantees the existence of test functions which are

convenient to prove Theorem 4.2.

Theorem 4.7. Let ε > 0 and M > 0. Then there exist a constant Λ > 0 and
moreover, for each R > 0, a neighborhood U of ∂Ω, a function χ ∈ C1((Ω∪U)×Rn)
and a constant δ > 0 such that for all (x, ξ) ∈ (Ω ∪ U)× Rn,

M |ξ| ≤ χ(x, ξ) ≤ Λ(|ξ|+ 1),

and for all (x, ξ) ∈ U ×BR,

γ(x) ·Dξχ(x, ξ)




≤ g(x) + 2ε if ν(x) · ξ ≤ δ,
≥ g(x) +

ε

2
if ν(x) · ξ ≥ −δ.

It should be noted that the constant Λ in the above statement does not depend
on R while U , χ and δ do.

We begin the proof with two Lemmas.
We fix r > 1 and set

R2n
r = {(y, z) ∈ Rn × Rn : y · z ≥ r−1, max{|y|, |z|} ≤ r}.

We define the function ζ ∈ C∞(R2n
r × Rn) by

ζ(y, z, ξ) =
∣∣∣ξ − y · ξ

y · z z
∣∣∣
2

+ (y · ξ)2.

Lemma 4.3. The function ζ has the properties:





ζ(y, z, tξ) = t2ζ(y, z, ξ) for all (y, z, ξ, t) ∈ R2n
r × Rn × R,

ζ(y, z, ξ) > 0 for all (y, z, ξ) ∈ R2n
r × (Rn \ {0}),

z ·Dξζ(y, z, ξ) = 2(y · z)(y · ξ) for all (y, z, ξ) ∈ R2n
r × Rn.

This is a version of Lemma 3.4, the proof of which is easily adapted to the
present case.

We define the function φ : R2n
r × Rn → R by

φ(y, z, ξ) = (ζ(y, z, ξ) + 1)1/2 .



Introduction to viscosity solutions and the large time ... 61

Lemma 4.4. There exists a constant Λ > 1, which depends only on r, such that
for all (y, z, ξ) ∈ R2n

r × Rn,




z ·Dξφ(y, z, ξ) = φ(y, z, ξ)−1(y · z)(y · ξ),
max{Λ−1|ξ|, 1} ≤ φ(y, z, ξ) ≤ Λ(|ξ|+ 1),

max{|Dyφ(y, z, ξ)|, |Dzφ(y, z, ξ)|} ≤ Λ(|ξ|+ 1),

|Dξφ(y, z, ξ)| ≤ Λ.
Proof. It is clear by the definition of φ that

φ(y, z, ξ) ≥ 1.

We may choose a constant C > 1 so that for all (y, z, ξ) ∈ R2n
r × Sn−1,

max{ζ(y, z, ξ), ζ(y, z, ξ)−1, |Dyζ(y, z, ξ)|, |Dzζ(y, z, ξ)|, |Dξζ(y, z, ξ)|} ≤ C,
where Sn−1 := {x ∈ Rn : |x| = 1}. By the homogeneity of the function ζ(y, z, ξ)
in ξ, we have

max{ζ(y, z, ξ), |Dyζ(y, z, ξ)|, |Dzζ(y, z, ξ)|} ≤C|ξ|2,
|Dξζ(y, z, ξ)| ≤C|ξ|,

ζ(y, z, ξ) ≥C−1|ξ|2
(64)

for all (y, z, ξ) ∈ R2n
r × Rn. From this it is follows that

C−1/2|ξ| ≤ φ(y, z, ξ) ≤ C1/2(|ξ|+ 1).

By a direct computation, we get

Dxφ(y, z, ξ) =
Dxζ(y, z, ξ)

2φ(y, z, ξ)
for x = y, z, ξ.

Hence, using (64), we get

|Dyφ(y, z, ξ)| ≤ C|ξ|2 + 1

2φ(y, z, ξ)
≤ C|ξ|2

2φ(y, z, ξ)
+

1

2φ(y, z, ξ)
≤ C3/2(|ξ|+ 1).

In the same way, we get

|Dzφ(y, z, ξ)| ≤ C3/2(|ξ|+ 1).

Also, we get

|Dξφ(y, z, ξ)| ≤ C|ξ|+ 1

2φ(y, z, ξ)
≤ C|ξ|

2φ(y, z, ξ)
+

1

2φ(y, z, ξ)
≤ C3/2.

Using (64) again, we observe that

z ·Dξφ(y, z, ξ) =
z ·Dξζ(y, z, ξ)

2φ(y, z, ξ)
=

(y · z)(y · ξ)
φ(y, z, ξ)

.

By setting Λ = C3/2, we conclude the proof. ut



62 Hitoshi Ishii

Let α > 0. For any W ⊂ Rn we denote by Wα the α–neighborhood of W , that
is,

Wα = {x ∈ Rn : dist(x,W ) < α}.
For each δ ∈ (0, 1) we select νδ ∈ C1(Ω1,Rn), γδ ∈ C1(Ω1,Rn) and gδ ∈ C1(Ω1,R)
so that for all x ∈ Ω1,

max{|νδ(x)− ν(x)|, |γδ(x)− γ(x)|, |gδ(x)− g(x)|} < δ. (65)

(Just to be sure, note that Ω1 = {x ∈ Rn : dist(x,Ω) < 1}.)
By assumption, we have

ν(x) · γ(x) > 0 for all x ∈ ∂Ω.

Hence, we may fix δ0 ∈ (0, 1) so that

inf{νδ(x) · γδ(x) : x ∈ (∂Ω)δ0 , δ ∈ (0, δ0)} > 0.

We choose a constant r > 1 so that if δ ∈ (0, δ0), then





min{νδ(x) · γδ(x), |γδ(x)|} ≥ r−1,

max{|νδ(x)|, |γδ(x)|} ≤ r,
|gδ(x)|+ 1 < r.

(66)

for all x ∈ (∂Ω)δ0 . In particular, we have

(νδ(x), γδ(x)) ∈ R2n
r for all x ∈ (∂Ω)δ0 and δ ∈ (0, δ0). (67)

To proceed, we fix any ε ∈ (0, 1), M > 0 and R > 0. For each δ ∈ (0, δ0) we
define the function ψδ ∈ C1((∂Ω)δ0 × Rn,R) by

ψδ(x, ξ) = (gδ(x) + ε)
γδ(x) · ξ
|γδ(x)|2 ,

choose a cut-off function ηδ ∈ C1
0 (Rn) so that





supp ηδ ⊂ (∂Ω)δ,

0 ≤ ηδ(x) ≤ 1 for all x ∈ Rn,
ηδ(x) = 1 for all x ∈ (∂Ω)δ/2,

and define the function χδ ∈ C1(Ωδ0) by

χδ(x, ξ) = M〈ξ〉(1− ηδ(x)) + ηδ(x)
[
ψδ(x, ξ) + (r2 +M)Λφδ(x, ξ)

]
,

where Λ is the constant from Lemma 4.4, 〈ξ〉 := (|ξ|2 + 1)1/2 and φδ(x, ξ) :=
φ(νδ(x), γδ(x), ξ). Since supp ηδ ⊂ (∂Ω)δ0 for all δ ∈ (0, δ0), in view of (67) we see
that χδ is well-defined.
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Proof (Theorem 4.7). Let δ0 ∈ (0, 1) and ψδ, φδ, χδ ∈ C1(Ωδ0 ×Rn) be as above.
Let δ ∈ (0, δ0), which will be fixed later on. It is obvious that for all (x, ξ) ∈

(Ω)δ0 × Rn, {
γδ(x) ·Dξψδ(x, ξ) = gδ(x) + ε,

|ψδ(x, ξ)| ≤ r2|ξ|.
(68)

For any (x, ξ) ∈ (∂Ω)δ × Rn, using (66), (68) and Lemma 4.4, we get

ψδ(x, ξ) + (r2 +M)Λφδ(x, ξ) ≥ −r2|ξ|+ (r2 +M)|ξ| ≥M |ξ|,
and

ψδ(x, ξ) + (r2 +M)Λφδ(x, ξ) ≤ r2|ξ|+ (r2 +M)Λ2(|ξ|+ 1)

≤ (2r2 +M)Λ2(|ξ|+ 1).

Thus, we have

M |ξ| ≤ χδ(x, ξ) ≤ (2r2 +M)Λ2(|ξ|+ 1) for all (x, ξ) ∈ Ωδ × Rn. (69)

Now, note that if (x, ξ) ∈ (∂Ω)δ/2 × Rn, then

χδ(x, ξ) = ψδ(x, ξ) + (r2 +M)Λφδ(x, ξ).

Hence, by Lemma 4.4 and (68), we get

γδ(x) ·Dξχδ(x, ξ) = gδ(x) + ε+ (r2 +M)Λ
(νδ(x) · γδ(x))(νδ(x) · ξ)

φδ(x, ξ)

for all (x, ξ) ∈ (∂Ω)δ/2 × Rn.
Next, let (x, ξ) ∈ Ωδ × Rn. Since

Dξχδ(x, ξ)

= (1− ηδ(x))D〈ξ〉+ ηδ(x)
[
Dξψδ(x, ξ) + (r2 +M)ΛDξφδ(x, ξ)

]
,

using Lemma 4.4, we get

|Dξχδ(x, ξ)| ≤ max

{
M |D〈ξ〉|, |gδ(x) + ε|

|γδ(x)| + (r2 +M)Λ|Dξφδ(x, ξ)|
}

≤ max{M, r2 + (r2 +M)Λ2} = (2r2 +M)Λ2.

(70)

Let (x, ξ) ∈ (∂Ω)δ/2 ×BR. Note by (65) and (70) that

|(γδ(x)− γ(x)) ·Dξχδ(x, ξ)| ≤ δ(2r2 +M)Λ2.

Note also that if ν(x) · ξ ≤ δ, then

(r2 +M)Λ
(νδ(x) · γδ(x))(νδ(x) · ξ)

φδ(x, ξ)

≤ (r2 +M)Λ
(νδ(x) · γδ(x))(ν(x) · ξ)

φδ(x, ξ)
+ (r2 +M)Λr2Rδ

≤ (r2 +M)Λr2δ(1 +R).
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Hence, if ν(x) · ξ ≤ δ, then

γ(x)·Dξχδ(x, ξ) ≤ γδ(x) ·Dξχδ(x, ξ) + δ(2r2 +M)Λ2

≤ δ(2r2 +M)Λ2 + gδ(x) + ε

+ (r2 +M)Λ
(νδ(x) · γδ(x))(νδ(x) · ξ)

φδ(x, ξ)

≤ g(x) + ε+ δ
[
1 + (2r2 +M)Λ2r2 + (r2 +M)Λr2(1 +R)

]
.

Similarly, we see that if ν(x) · ξ ≥ −δ, then

γ(x)·Dξχδ(x, ξ)
≥g(x) + ε− δ [1 + (2r2 +M)Λ2r2 + (r2 +M)Λr2(1 +R)

]
.

If we select δ ∈ (0, δ0) so that

δ
[
1 + (2r2 +M)Λ2r2 + (r2 +M)Λr2(1 +R)

] ≤ ε

2
,

then we have for all (x, ξ) ∈ (∂Ω)δ/2 ×BR,

γ(x) ·Dξχδ(x, ξ)
{
≤ g(x) + 2ε if ν(x) · ξ ≤ δ,
≥ g(x) + ε

2
if ν(x) · ξ ≥ −δ.

Thus, the function χ = χδ has the required properties, with (∂Ω)δ/2 and (2r2 +
M)Λ2 in place of U and Λ, respectively. ut

We are ready to prove the following theorem.

Theorem 4.8. Let ε > 0 and u ∈ Lip(Ω) be a viscosity subsolution of (SNP).
Then there exist a neighborhood U of ∂Ω and a function uε ∈ C1(Ω∪U) such that





H(x,Duε(x)) ≤ ε for all x ∈ Ω ∪ U,
γ(x) ·Duε(x) ≤ g(x) + ε for all x ∈ U,
‖uε − u‖∞,Ω ≤ ε.

(71)

Proof. Fix any ε > 0 and a constant M > 1 so that M − 1 is a Lipschitz bound
of the function u. With these constants ε and M , let Λ > 0 be the constant from
Theorem 4.7. Set R = M + 2Λ, and let U , χ and δ be as in Theorem 4.7.

Let α > 0. We define the sup-convolution uα ∈ C(Ω ∪ U) by

uα(x) = max
y∈Ω

(u(y)− αχ(x, (y − x)/α)).

Let x ∈ Ω ∪U , p ∈ D+uα(x) and y ∈ Ω be a maximum point in the definition
of uα, that is,

uα(x) = u(y)− αχ(x, (y − x)/α). (72)
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It is easily seen that
{
Dξχ(x, (y − x)/α) ∈ D+u(y),

p = Dξχ(x, (y − x)/α)− αDxχ(x, (y − x)/α).
(73)

Fix an α0 ∈ (0, 1) so that

(∂Ω)α
2
0 ⊂ U.

Here, of course, V denotes the closure of V . For α ∈ (0, α0) we set Uα = (∂Ω)α
2

and Vα = Ω ∪ Uα = Ωα
2
. Note that χ ∈ C1(Vα × Rn). We set Wα = {(x, y) ∈

Vα ×Ω : (72) holds}.
Now, we fix any α ∈ (0, α0). Let (x, y) ∈ Wα. We may choose a point z ∈ Ω

so that |x− z| < α2. Note that

u(y)− αχ(x, (y − x)/α) = uα(x) ≥ u(z)− αχ(x, (z − x)/α).

Hence,
αχ(x, (y − x)/α) ≤ (M − 1)|z − y|+ αχ(x, (z − x)/α).

Now, since M |ξ| ≤ χ(x, ξ) ≤ Λ(|ξ|+1)) for all (x, ξ) ∈ Vα×Rn and |x−z| ≤ α2 < α,
we get

M |x− y| ≤ (M − 1)(|x− y|+ α2) + αΛ(|z − x|/α+ 1)

≤ (M − 1)|x− y|+ α(M + 2Λ).

Consequently,

|y − x| ≤ α(M + 2Λ) = Rα for all (x, y) ∈Wα. (74)

Next, we choose a constant C > 0 so that

|Dxχ(x, ξ)|+ |Dξχ(x, ξ)| ≤ C for all (x, ξ) ∈ Vα0 ×BR.
Let (x, y) ∈ Wα and z ∈ BRα(x) ∩ Vα0 . Assume moreover that x ∈ U . In view of
(74) and the choice of χ and δ, we have

γ(x) ·Dξχδ(x, (y − x)/α)




≤ g(x) + 2ε if ν(x) · (y − x) ≤ αδ,
≥ g(x) +

ε

2
if ν(x) · (y − x) ≥ −αδ.

We observe that

ν(x) · (y − x)




≤ αδ

2
+ ων(Rα)Rα if ν(z) · (y − x) ≤ αδ

2
,

≥ αδ

2
− ων(Rα)Rα if ν(z) · (y − x) ≥ −αδ

2
,

where ων denotes the modulus of continuity of the function ν on Vα0 . Observe as
well that
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|γ(z) ·Dξχ(x, (y − x)/α)− γ(x) ·Dξχ(x, (y − x)/α)| ≤Cωγ(Rα),

|g(z)− g(x)| ≤ωg(Rα),

where ωγ and ωg denote the moduli of continuity of the functions γ and g on the
set Vα0 , respectively.

We may choose an α1 ∈ (0, α0) so that

ων(Rα1)R <
δ

2
and Cωγ(Rα1) + ωg(Rα1) <

ε

4
,

and conclude from the above observations that for all (x, y) ∈ Wα and zi ∈
BRα(x) ∩ Vα0 , with i = 1, 2, 3, if x ∈ U and α < α1, then

γ(z1) ·Dξχ(x, (y − x)/α)




≤ g(z2) + 3ε if ν(z3) · (y − x) ≤ αδ/2,
≥ g(z2) +

ε

4
if ν(z3) · (y − x) ≥ −αδ/2.

(75)

We may assume, by reselecting α1 > 0 small enough if necessary, that

(∂Ω)Rα1 ⊂ U. (76)

In what follows we assume that α ∈ (0, α1). Let (x, y) ∈ Wα and p ∈ D+uα(x).
By (73) and (74), we have

max{|p|, |Dξχ(x, (y − x)/α)|} ≤ C(1 + α). (77)

Let ωH denote the modulus of continuity of H on Vα0 ×BC(1+α0).
We now assume that y ∈ ∂Ω. By (74) and (76), we have x ∈ U . Let ρ be

a defining function of Ω. We may assume that |Dρ| ≤ 1 in Vα0 and ρ0 :=
infUα0

|Dρ| > 0. Observe that

α2 > ρ(x) = ρ(x)− ρ(y) = Dρ(z) · (x− y) = |Dρ(z)|ν(z) · (x− y)

for some point z on the line segment [x, y]. Hence, we get

ν(z) · (x− y) ≤ ρ−1
0 α2.

If α ≤ ρ0δ/2, then
ν(z) · (y − x) ≥ −αδ/2.

Hence, noting that |z − x| ≤ |x− y| < Rα, by (75), we get

γ(y) ·Dξχδ(x, (y − x)/α) ≥ g(y) +
ε

4
,

and, by the viscosity property of u,

0 ≥ H(y,Dξχδ(x, (y − x)/α)) ≥ H(x, p)− ωH((R+ C)α).

Thus, if ωH((R+ C)α) < ε and α ≤ ρ0δ/2, then we have
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H(x, p) ≤ ε.

On the other hand, if y ∈ Ω, then, by the viscosity property of u, we have

0 ≥ H(y,Dξχδ(x, (y − x)/α)).

Therefore, if ωH((R+ C)α) < ε, then

H(x, p) ≤ ε.

We may henceforth assume by selecting α1 > 0 small enough that

ωH((R+ C)α1) < ε and α1 ≤ ρ0δ/2,

and we conclude that uα is a viscosity subsolution of

H(x,Duα(x)) ≤ ε in Vα. (78)

As above, let (x, y) ∈Wα and p ∈ D+uα(x). We assume that x ∈ Uα. Then

−α2 < ρ(x) ≤ ρ(x)− ρ(y) ≤ Dρ(z) · (x− y)

for some z ∈ [x, y], which yields

ν(z) · (y − x) < |Dρ(z)|−1α2 ≤ ρ−1
0 α2.

Hence, if α ≤ ρ0δ/2, then

ν(z) · (y − x) ≤ δα

2
,

and, by (75), we get

γ(x) ·Dξχ(x, (y − x)/α) ≤ g(x) + 3ε.

Furthermore,

γ(x) · p ≤ γ(x) ·Dξχε,α(x, (y − x)/α) + αC‖γ‖∞,Uα0

≤ g(x) + 3ε+ αC‖γ‖∞,Uα0
.

We may assume again by selecting α1 > 0 small enough that

α1C‖γ‖∞,Uα0
< ε.

Thus, uα is a viscosity subsolution of

γ(x) ·Duα(x) ≤ g(x) + 4ε in Uα. (79)

Let (x, y) ∈Wα and observe by using (74) that if x ∈ Ω, then

|u(x)− uα(x)| ≤ |u(x)− u(y)|+ α|χ(x, (y − x)/α)| ≤ α(MR+ C).
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We fix α ∈ (0, α1) so that α1(MR + C) < ε, and conclude that uα is a viscosity
subsolution of (78) and (79) and satisfies

‖uα − u‖∞,Ω ≤ ε.

The final step is to mollify the function uα. Let {kλ}λ>0 be a collection of
standard mollification kernels.

We note by (77) or (78) that uα is Lipschitz continuous on any compact subset
of Vα. Fix any λ ∈ (0, α2/4). We note that if the closure of Vα/2 +Bλ is a compact
subset of Vα. Let M1 > 0 be a Lipschitz bound of the function uα on Vα/2 +Bλ.

We set
uλ(x) = uα ∗ kλ(x) for x ∈ Vα/2.

In view of Rademacher’s theorem (see Appendix A.6), we have

H(x,Duα(x)) ≤ ε for a.e. x ∈ Vα,
γ(x) ·Duα(x) ≤ g(x) + 4ε for a.e. x ∈ Uα.

Here Duα denotes the distributional derivative of uα, and we have

Duλ = kλ ∗Duα in Vα/2.

By Jensen’s inequality, we get

H(x,Duλ(x)) ≤
∫

Bλ

H(x,Duα(x− y))kλ(y) dy

≤
∫

Bλ

H(x− y,Duε(x− y))kλ(y) dy + ωH(λ)

≤ ε+ ωH(λ),

where ωH is the modulus of continuity of H on the set Vα×BM1 . Similarly, we get

γ(x) ·Duλ(x) ≤ g(x) + 4ε+ ωg(λ) +M1ωγ(λ),

where ωg and ωγ are the moduli of continuity of the functions g and γ on Vα,
respectively. If we choose λ > 0 small enough, then (71) holds with uλ ∈ C1(Vα/2),
Uα/2 and 5ε in place of uε, U and ε, respectively. The proof is complete. ut

Proof (Theorem 4.2). Let ε > 0 and u ∈ Lip(Ω) be a viscosity subsolution of
(SNP). Let ρ be a defining function of Ω. We may assume that

Dρ(x) · γ(x) ≥ 1 for all x ∈ ∂Ω.

For δ > 0 we set
uδ(x) = u(x)− δρ(x) for x ∈ Ω.

It is easily seen that if δ > 0 is small enough, then uδ is a viscosity subsolution of
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{
H(x,Duδ(x)) ≤ ε in Ω,

γ(x) ·Duδ(x) ≤ g(x)− δ on ∂Ω,

and the following inequality holds:

‖uδ − u‖∞,Ω ≤ ε.
Then, Theorem 4.8, with min{ε, δ}, uδ, H − ε and g − δ in place of ε, u, H and
g, respectively, ensures that there are a neighborhood U of ∂Ω and a function
uε ∈ C1(Ω ∪ U) such that





H(x,Duε(x)) ≤ 2ε in Ω ∪ U,
γ(x) ·Duε(x) ≤ g(x) in U,

‖uε − u‖∞,Ω ≤ 2ε,

which concludes the proof. ut

5 Optimal control problem associated with (ENP)–(ID)

In this section we introduce an optimal control problem associated with the initial-
boundary value problem (ENP)–(ID),

5.1 Skorokhod problem

In this section, following [38, 45], we study the Skorokhod problem. We recall that

R+ denotes the interval (0, ∞), so that R+ = [0, ∞). We denote by L1
loc(R+, Rk)

(resp., ACloc(R+, Rk)) the space of functions v : R+ → Rk which are integrable

(resp., absolutely continuous) on any bounded interval J ⊂ R+.

Given x ∈ Ω and v ∈ L1
loc(R+,Rn), the Skorokhod problem is to seek for a

pair of functions, (η, l) ∈ ACloc(R+,Rn)× L1
loc(R+, R), such that





η(0) = x,

η(t) ∈ Ω for all t ∈ R+,
.
η(t) + l(t)γ(η(t)) = v(t) for a.e. t ∈ R+,

l(t) ≥ 0 for a.e. t ∈ R+,

l(t) = 0 if η(t) ∈ Ω for a.e. t ∈ R+.

(80)

Regarding the solvability of the Skorokhod problem, our main claim is the
following.

Theorem 5.1. Let v ∈ L1
loc(R+, Rn) and x ∈ Ω. Then there exits a pair (η, l) ∈

ACloc(R+, Rn)× L1
loc(R+, R) such that (80) holds.
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We refer to [45] and references therein for more general viewpoints (especially,
for applications to stochastic differential equations with reflection) on the Sko-
rokhod problem.

A natural question arises whether uniqueness of the solution (η, l) holds or not
in the above theorem. On this issue we just give the following counterexample and
do not discuss it further.

Example 5.1. Let n = 2 and Ω = {x = (x1, x2) ∈ R2 : x1 > 0}. (For simplicity of
presentation, we consider the case where Ω is unbounded.) Define γ ∈ C(∂Ω, R2)

and v ∈ L∞(R+, R2) by

γ(0, x2) = (−1, −3|x2|−1/3x2) and v(t) = (−1, 0).

Set
η±(t) = (0, ±t3) for all t ≥ 0.

Then the pairs (η+, 1) and (η−, 1) are both solutions of (80), with η±(0) = (0, 0).

We first establish the following assertion.

Theorem 5.2. Let v ∈ L∞(R+, Rn) and x ∈ Ω. Then there exits a pair (η, l) ∈
Lip(R+, Rn)× L∞(R+, R) such that (80) holds.

Proof. We may assume that γ is defined and continuous on Rn. Let ρ ∈ C1(Rn)
be a defining function of Ω. We may assume that lim inf |x|→∞ ρ(x) > 0 and that
Dρ is bounded on Rn. We may select a constant δ > 0 so that for all x ∈ Rn,

γ(x) ·Dρ(x) ≥ δ|Dρ(x)| and |Dρ(x)| ≥ δ if 0 ≤ ρ(x) ≤ δ.

We set q(x) = (ρ(x) ∨ 0) ∧ δ for x ∈ Rn and observe that q(x) = 0 for all x ∈ Ω
and q(x) > 0 for all x ∈ Rn \Ω.

Fix ε > 0 and x ∈ Ω. We consider the initial value problem for the ODE

.
ξ(t) +

1

ε
q(ξ(t))γ(ξ(t)) = v(t) for a.e. t ∈ R+, ξ(0) = x. (81)

By the standard ODE theory, there is a solution ξ ∈ Lip(R+) of (81). Fix such a

solution ξ ∈ Lip(R+, Rn) in what follows.

Note that (d q ◦ ξ/dt)(t) = Dρ(ξ(t)) ·
.
ξ(t) a.e. in the set {t ∈ R+ : ρ ◦ ξ(t) ∈

(0, δ)}. Moreover, noting that q ◦ ξ ∈ Lip(R+, R) and hence it is differentiable a.e.,
we deduce that (d q ◦ ξ/dt)(t) = 0 a.e. in the set {t ∈ R+ : ρ ◦ ξ(t) ∈ {0, δ}}.

Let m ≥ 2. We multiply the ODE of (81) by mq(ξ(t))m−1Dρ(ξ(t)), to get

d

dt
q(ξ(t))m +

m

ε
q(ξ(t))mDq(ξ(t)) · γ(ξ(t)) = mq(ξ(t))m−1Dq(ξ(t)) · v(t)

a.e. in the set {t ∈ R+ : ρ ◦ ξ(t) ∈ (0, δ)}. For any T ∈ R+, integration over
ET := {t ∈ [0, T ] : ρ ◦ ξ(t) ∈ (0, δ)} yields
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q(ξ(T ))m − q(ξ(0))m +
m

ε

∫

ET

q(ξ(s))mγ(ξ(s)) ·Dρ(ξ(s))ds

= m

∫

ET

q(ξ(s))m−1Dρ(ξ(s)) · v(s)ds.

Here we note
∫

ET

q(ξ(s))mγ(ξ(s)) ·Dρ(ξ(s))ds ≥ δ
∫

ET

q(ξ(s))m|Dρ(ξ(s))|ds,

and
∫

ET

q(ξ(s))m−1Dρ(ξ(s)) · v(s)ds

≤
(∫

ET

q(ξ(s))m|Dρ(ξ(s)|ds
)1− 1

m
(∫

ET

|v(s)|m|Dρ(ξ(s))|ds
) 1
m

.

Combining these, we get

q(ξ(T ))m +
mδ

ε

∫

ET

q(ξ(s))m|Dρ(ξ(s))|ds

≤ m
(∫

ET

q(ξ(s))m|Dρ(ξ(s)|ds
)1− 1

m
(∫

ET

|v(s)|m|Dρ(ξ(s))|ds
) 1
m

.

Hence,

δ

ε

(∫

ET

q(ξ(s))m|Dρ(ξ(s))|ds
) 1
m

≤
(∫

ET

|v(s)|m|Dρ(ξ(s))|ds
) 1
m

and

q(ξ(T ))m ≤
(ε
δ

)m−1

m

∫

ET

|v(s)|m|Dρ(ξ(s))|ds.

Thus, setting C0 = ‖Dρ‖L∞(Rn), we find that for any T ∈ R+,

q(ξ(t))m ≤
(ε
δ

)m−1

mC0T‖v‖mL∞(0,T ) for all t ∈ [0, T ]. (82)

We henceforth write ξε for ξ, in order to indicate the dependence on ε of ξ, and
observe from (82) that for any T > 0,

lim
ε→0+

max
t∈[0, T ]

dist(ξε(t), Ω) = 0. (83)

Also, (82) ensures that for any T > 0,

δ

ε
‖q ◦ ξε‖L∞(0,T ) ≤

(
δmC0T

ε

) 1
m

‖v‖L∞(0,T ).
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Sending m→∞, we find that (δ/ε)‖q ◦ ξε‖L∞(0, T ) ≤ ‖v‖L∞(0, T ), and moreover

δ

ε
‖q ◦ ξε‖L∞(R+) ≤ ‖v‖L∞(R+). (84)

We set lε = (1/ε)q ◦ ξε. Thanks to (84), we may choose a sequence εj → 0+ (see
Lemma A.7) so that lεj → l weakly-star in L∞(R+) as j → ∞ for a function
l ∈ L∞(R+). It is clear that l(s) ≥ 0 for a.e. s ∈ R+.

ODE (81) together with (84) guarantees that {
.
ξε}ε>0 is bounded in L∞(R+).

Hence, we may assume as well that ξεj converges locally uniformly on R+ to a
function η ∈ Lip(R+) as j → ∞. It is then obvious that η(0) = x and the pair
(η, l) satisfies

η(t) +

∫ t

0

(
l(s)γ(η(s))− v(s)

)
ds = 0 for all t ∈ R+,

from which we get

.
η(t) + l(t)γ(η(t)) = v(t) for a.e. t ∈ R+.

It follows from (83) that η(t) ∈ Ω for t ≥ 0.
In order to show that the pair (η, l) is a solution of (80), we need only to prove

that for a.e. t ∈ R+, l(t) = 0 if η(t) ∈ Ω. Set A = {t ≥ 0 : η(t) ∈ Ω}. It is clear
that A is an open subset of [0, ∞). We can choose a sequence {Ik}k∈N of closed
finite intervals of A such that A =

⋃
k∈N Ik. Note that for each k ∈ N, the set

η(Ik) is a compact subset of Ω and the convergence of {ξεj} to η is uniform on Ik.
Hence, for any fixed k ∈ N, we may choose J ∈ N so that ξεj (t) ∈ Ω for all t ∈ Ik
and j ≥ J . From this, we have q(ξεj (t)) = 0 for t ∈ Ik and j ≥ J . Moreover, in
view of the weak-star convergence of {lεj}, we find that for any k ∈ N,

∫

Ik

l(t)dt = lim
j→∞

∫

Ik

1

εj
q(ξj(t))

mdt = 0,

which yields l(t) = 0 for a.e. t ∈ Ik. Since A =
⋃
k∈N Ik, we see that l(t) = 0 a.e.

in A. The proof is now complete. ut
For x ∈ Ω, let SP(x) denote the set of all triples

(η, v, l) ∈ ACloc(R+,Rn)× L1
loc(R+,Rn)× L1

loc(R+)

which satisfies (80). We set SP =
⋃
x∈Ω SP(x).

We remark that for any x, y ∈ Ω and T ∈ R+, there exists a triple (η, v, l) ∈
SP(x) such that η(T ) = y. Indeed, given x, y ∈ Ω and T ∈ R+, we choose a curve

η ∈ Lip([0, T ], Ω) (see Lemma 2.1) so that η(0) = x, η(T ) = y and η(t) ∈ Ω for

all t ∈ R+. We extend the domain of definition of η to R+ by setting η(t) = y for
t > T . If we set v(t) =

.
η(t) and l(t) = 0 for t ≥ 0, we have (η, v, l) ∈ SP(x), which

has the property, η(T ) = y.
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We note also that problem (80) has the following semi-group property: for any

(x, t) ∈ Ω × R+ and (η1, v1, l1), (η2, v2, l2) ∈ SP, if η1(0) = x and η2(0) = η1(t)

hold and if (η, v, l) is defined on R+ by

(η(s), v(s), l(s)) =

{
(η1(s), v1(s), l1(s)) for s ∈ [0, t),

(η2(s− t), v2(s− t), l2(s− t)) for s ∈ [t, ∞),

then (η, v, l) ∈ SP(x).
The following proposition concerns a stability property of sequences of points

in SP.

Proposition 5.1. Let {(ηk, vk, lk)}k∈N ⊂ SP. Let x ∈ Ω and (w, v, l) ∈ Lloc(R+,R2n+1).
Assume that as k →∞,

ηk(0)→ x,

(
.
ηk, vk, lk)→ (w, v, l) weakly in L1([0, T ],R2n+1)

for every T ∈ R+. Set

η(s) = x+

∫ s

0

w(r)dr for s ≥ 0.

Then (η, v, l) ∈ SP(x).

Proof. For all t > 0 and k ∈ N, we have

ηk(t) = ηk(0) +

∫ t

0

.
ηk(s)ds = ηk(0) +

∫ t

0

(vk(s)− lk(s)γ(ηk(s))) ds.

First, we observe that as k →∞,

ηk(t)→ η(t) locally uniformly on R+,

and then we get in the limit as k →∞,

η(t) = x+

∫ t

0

(v(s)− l(s)γ(η(s))) ds for all t > 0.

This shows that η ∈ ACloc(R+,Rn) and

.
η(s) + l(s)γ(η(s)) = v(s) for a.e. s ∈ R+.

It is clear that η(0) = x, η(s) ∈ Ω for all s ∈ R+ and l(s) ≥ 0 for a.e. s ∈ R+.
To show that (η, l) ∈ SP(x), it remains to prove that for a.e. t ∈ R+, l(t) = 0

if η(t) ∈ Ω. As in the last part of the proof of Theorem 5.2, we set A = {t ≥ 0 :
η(t) ∈ Ω} and choose a sequence {Ij}j∈N of closed finite intervals of A such that
A =

⋃
j∈N Ij . Fix any j ∈ N and choose K ∈ N so that ηk(t) ∈ Ω for all t ∈ Ij and
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k ≥ K. From this, we have lk(t) = 0 for a.e. t ∈ Ij and k ≥ K. Moreover, in view
of the weak convergence of {lk}, we find that

∫

Ij

l(t)dt = lim
k→∞

∫

Ij

lk(t)dt = 0,

which yields l(t) = 0 for a.e. t ∈ Ij . Since j is arbitrary, we see that l(t) = 0 a.e.
in A =

⋃
j∈N Ij . ut

Proposition 5.2. There is a constant C > 0, depending only on Ω and γ, such
that for all (η, v, l) ∈ SP,

|.η(s)| ∨ l(s) ≤ C|v(s)| for a.e. s ≥ 0.

An immediate consequence of the above proposition is that for (η, v, l) ∈ SP,

if v ∈ Lp(R+, Rn) (resp., v ∈ Lploc(R+, Rn)), with 1 ≤ p ≤ ∞, then (
.
η, l) ∈

Lp(R+, R
n+1) (resp., (

.
η, l) ∈ Lploc(R+, Rn+1)).

Proof. Thanks to hypothesis (A4), there is a constant δ0 > 0 such that ν(x)·γ(x) ≥
δ0 for x ∈ ∂Ω. Let ρ ∈ C1(Rn) be a defining function of Ω.

Let s ∈ R+ be such that η(s) ∈ ∂Ω, η is differentiable at s, l(s) ≥ 0 and.
η(s) + l(s)γ(η(s)) = v(s). Observe that the function ρ ◦ η attains a maximum at s.
Hence,

0 =
d

ds
ρ(η(s)) = Dρ(η(s)) · .η(s) = |Dρ(η(s))|ν(η(s)) · .η(s)

= |Dρ(η(s))|ν(η(s)) · (v(s)− l(s)γ(η(s))
)

≤ |Dρ(η(s))|(ν(η(s)) · v(s)− l(s)δ0
)
.

Thus, we get
l(s) ≤ δ−1

0 ν(η(s)) · v(s) ≤ δ−1
0 |v(s)|

and
|.η(s)| = |v(s)− l(s)γ(η(s))| ≤ |v(s)|+ l(s)|‖γ‖∞,∂Ω

≤ (1 + δ−1
0 ‖γ‖∞,∂Ω)|v(s)|,

which completes the proof. ut

5.2 Value function I

We define the function L ∈ LSC(Ω × Rn, (−∞,∞]), called the Lagrangian of H,
by

L(x, ξ) = sup
p∈Rn

(
ξ · p−H(x, p)

)
.

For each x the function ξ 7→ L(x, ξ) is the convex conjugate of the function p 7→
H(x, p). See Appendix A.2 for properties of conjugate convex functions.
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We consider the optimal control with the dynamics given by (80), the running

cost (L, g) and the pay-off u0, and its value function V on Q, where Q = Ω×R+,
is given by

V (x, t) = inf
{∫ t

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds

+ u0(η(t)) : (η, v, l) ∈ SP(x)
}

for (x, t) ∈ Q,
(85)

and V (x, 0) = u0(x) for all x ∈ Ω.
For t > 0 and (η, v, l) ∈ SP =

⋃
x∈Ω SP(x), we write

L(t, η, v, l) =

∫ t

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds

for notational simplicity, and then formula (85) reads

V (x, t) = inf
{L(t, η, v, l) + u0(η(t)) : (η, v, l) ∈ SP(x)

}
.

Under our hypotheses, the Lagrangian L may take the value ∞ and, on the
other hand, if we set C = min

x∈Ω(−H(x, 0)), then we have

L(x, ξ) ≥ C for all (x, ξ) ∈ Ω × Rn.

Thus, it is reasonable to interpret

∫ t

0

L(η(s),−v(s))ds =∞

if the function: s 7→ L(η(s),−v(s)) is not integrable, which we adopt here.
It is easily checked as in the proof of Proposition 1.3 that the value function

V satisfies the dynamic programming principle: given a point (x, t) ∈ Q and a
nonanticipating mapping τ : SP(x)→ [0, t], we have

V (x, t) = inf
{L(τ(α), α) + V (η(τ(α)), t− τ(α)) : α = (η, v, l) ∈ SP(x)

}
. (86)

Here a mapping τ : SP(x) → [0, t] is called nonanticipating if τ(α) = τ(β)
whenever α(s) = β(s) a.e. in the interval [0, τ(α)].

We here digress to recall the state-constraint problem, whose Bellman equation
is given by the Hamilton-Jacobi equation

ut(x, t) +H(x,Dxu(x, t)) = 0 in Ω × R+,

and to make a comparison between (ENP) and the state-constraint problem. For

x ∈ Ω let SC(x) denote the collection of all η ∈ ACloc(R+,Rn) such that η(0) = x

and η(s) ∈ Ω for all s ∈ R+. The value function V̂ : Ω × R+ → R of the state-
constraint problem is given by
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V̂ (x, t) = inf
{∫ t

0

L(η(s),−.
η(s))ds+ u0(η(t)) : η ∈ SC(x)

}
.

Observe that if η ∈ SC(x), with x ∈ Ω, then (η,
.
η, 0) ∈ SP(x). Hence, we have

V̂ (x, t) = inf
{L(t, η,

.
η, 0) + u0(η(t)) : η ∈ SC(x)

}

≥V (x, t) for all (x, t) ∈ Ω × R+.

Heuristically it is obvious that if g(x) ≈ ∞, then

V (x, t) ≈ V̂ (x, t).

In terms of PDE the above state-constraint problem is formulated as follows:
the value function V̂ is a unique viscosity solution of

{
ut(x, t) +H(x,Dxu(x, t)) ≤ 0 in Ω × R+,

ut(x, t) +H(x,Dxu(x, t)) ≥ 0 in Ω × R+.

See [50] for a proof of this result in this generality. We refer to [56, 17] for state-
constraint problems. The corresponding additive eigenvalue problem is to find
(a, v) ∈ R× C(Ω) such that v is a viscosity solution of

{
H(x,Dv(x)) ≤ a in Ω,

H(x,Dv(x)) ≥ a in Ω.
(87)

We refer to [40, 50, 17] for this eigenvalue problem.

Example 5.2. We recall (see [50]) that the additive eigenvalue ĉ for (87) is given by

ĉ = inf{a ∈ R : (87) has a viscosity subsolution v},

For a comparison between the Neumann problem and the state-constraint problem,
we go back to the situation of Example 3.1. Then it is easy to see that ĉ = 0. Thus,
we have c# = ĉ = 0 if and only if min{g(−1), g(1)} ≥ 0.

We here continue the above example with some more generality. Let c# and
ĉ denote, as above, the eigenvalues of (EVP) and (87), respectively. It is easily
seen that if ψ ∈ C(Ω̄) is a subsolution of (EVP) with a = c#, then it is also a
subsolution of (87) with a = c#, which ensures that ĉ ≤ c#.

Next, note that the subsolutions of (87) with a = ĉ are equi-Lipschitz contin-
uous on Ω̄. That is, there exists a constant M > 0 such that for any subsolution
ψ of (87) with a = ĉ, |ψ(x)− ψ(y)| ≤M |x− y| for all x, y ∈ Ω̄. Let ψ be any sub-
solution of (87) with a = ĉ, y ∈ ∂Ω and p ∈ D+ψ(y). Choose a φ ∈ C1(Ω̄) so that
Dφ(y) = p and ψ − φ has a maximum at y. If t > 0 is sufficiently small, then we
have y−tν(y) ∈ Ω and, moreover, ψ(y−tν(y))−ψ(y) ≤ φ(y−tν(y))−φ(y). By the
last inequality, we deduce that |p| ≤ M . Accordingly, we have γ(y) · p ≤ M |γ(y)|
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for all p ∈ D+ψ(y). Thus, we see that if g(x) ≥ M |γ(x)| for all x ∈ ∂Ω, then
any subsolution ψ of (87) with a = ĉ is a subsolution of (EVP) with a = ĉ. This
shows that if g(x) ≥M |γ(x)| for all x ∈ ∂Ω, then c# ≤ ĉ. As we have already seen
above, we have ĉ ≤ c#, and, therefore, c# = ĉ, provided that g(x) ≥ M |γ(x)| for
all x ∈ ∂Ω.

Now, assume that c# = ĉ and let a = c# = ĉ. It is easily seen that

{ψ : ψ is a subsolution of (EVP)} ⊂ {ψ : ψ is a subsolution of (87)},

which guarantees that dN ≤ dS on Ω̄2, where dN (·, y) = supFNy , dS(·, y) = supFSy ,
and

FNy (resp.,FSy ) = {ψ − ψ(y) : ψ is a subsolution of (EVP) ( resp., (87) )}.

Let AN and AS denote the Aubry sets associated with (EVP) and (87), respec-
tively. That is,

AN = {y ∈ Ω̄ : dN (·, y) is a solution of (EVP)},
AS = {y ∈ Ω̄ : dS(·, y) is a solution of (87)}.

The above inequality and the fact that dN (y, y) = dS(y, y) = 0 for all y ∈ Ω̄ imply
that D−x dN (x, y)|x=y ⊂ D−x dS(x, y)|x=y. From this inclusion, we easily deduce that
AS ⊂ AN .

Thus the following proposition holds.

Proposition 5.3. With the above notation, we have:

(i) ĉ ≤ c#.
(ii) If M > 0 is a Lipschitz bound of the subsolutions of (87) with a = ĉ and

g(x) ≥M |γ(x)| for all x ∈ ∂Ω, then ĉ = c#.
(iii) If ĉ = c#, then dN ≤ dS on Ω̄2 and AS ⊂ AN .

5.3 Basic lemmas

In this subsection we present a proof of the sequential lower semicontinuity of
the functional (η, v, l) 7→ L(T, η, v, l) (see Theorem 5.3 below). We will prove an
existence result (Theorem 5.6) for the variational problem involving the functional
L in Subsection 5.4. These results are a variation of Tonelli’s theorem in variational
problems. For a detailed description of the theory of one-dimensional variational
problems, with a central focus on Tonelli’s theorem, we refer to [14].

Lemma 5.1. For each A > 0 there exists a constant CA ≥ 0 such that

L(x, ξ) ≥ A|ξ| − CA for all (x, ξ) ∈ Ω × Rn.
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Proof. Fix any A > 0 and observe that

L(x, ξ) ≥ max
p∈BA

(ξ · p−H(x, p))

≥A|ξ|+ min
p∈BA

(−H(x, p)) for all (x, ξ) ∈ Ω × Rn.

Hence, setting CA ≥ max
Ω×BA |H|, we get

L(x, ξ) ≥ A|ξ| − CA for all (x, ξ) ∈ Ω × Rn. ut

Lemma 5.2. There exist constants δ > 0 and C0 > 0 such that

L(x, ξ) ≤ C0 for all (x, ξ) ∈ Ω ×Bδ.

Proof. By the continuity of H, there exists a constant M > 0 such that H(x, 0) ≤
M for all x ∈ Ω. Also, by the coercivity of H, there exists a constant R > 0 such
that H(x, p) > M+1 for all (x, p) ∈ Ω×∂BR. We set δ = R−1. Let (x, ξ) ∈ Ω×Bδ.
Let q ∈ BR be the minimum point of the function f(p) := H(x, p) − ξ · p on BR.
Noting that f(0) = H(x, 0) ≤ M and f(p) > −δR +M + 1 = M for all p ∈ ∂BR,
we see that q ∈ BR and hence ξ ∈ D−p H(x, q), where D−p H(x, q) denotes the
subdifferential at q of the function p 7→ H(x, p). Thanks to the convexity of H,
this implies (see Theorem A.7) that L(x, ξ) = ξ · q−H(x, q). Consequently, we get

L(x, ξ) ≤ δR+ max
Ω×BR

|H|.

Thus we have the desired inequality with C0 = δR+ max
Ω×BR |H|. ut

For later convenience, we formulate the following lemma, whose proof is left to
the reader.

Lemma 5.3. For each i ∈ N define the function Li on Ω × Rn by

Li(x, ξ) = max
p∈Bi

(ξ · p−H(x, p)).

Then Li ∈ UC(Ω × Rn),

Li(x, ξ) ≤ Li+1(x, ξ) ≤ L(x, ξ) for all (x, ξ) ∈ Ω × Rn and i ∈ N,

and for all (x, ξ) ∈ Ω × Rn,

Li(x, ξ)→ L(x, ξ) as i→∞.

The following lemma is a consequence of the Dunford-Pettis theorem.
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Lemma 5.4. Let J = [a, b], with −∞ < a < b < ∞. Let {fj}j∈N ⊂ L1(J,Rm) be
uniformly integrable in J . That is, for each ε > 0, there exists δ > 0 such that for
any measurable E ⊂ J and j ∈ N, we have

∫

E

|fj(t)|dt < ε if |E| < δ,

where |E| denotes the Lebesgue measure of E. Then {fj} has a subsequence which
converges weakly in L1(J,Rm).

See Appendix A.5 for a proof of the above lemma.

Lemma 5.5. Let J = [0, T ] with T ∈ R+, (η, v) ∈ L∞(J,Rn) × L1(J,Rn), i ∈ N
and ε > 0. Let Li ∈ UC(Ω) be the function defined in Lemma 5.3. Assume that

η(s) ∈ Ω for all s ∈ J . Then there exists a function q ∈ L∞(J,Rn) such that for
a.e. s ∈ J ,

q(s) ∈ Bi and H(η(s), q(s)) + Li(η(s),−v(s)) ≤ −v(s) · q(s) + ε.

Proof. Note that for each (x, ξ) ∈ Ω × Rn there is a point q = q(x, ξ) ∈ Bi such
that Li(x, ξ) = ξ · q −H(x, q). By the continuity of the functions H and Li, there
exists a constant r = r(x, ξ) > 0 such that

Li(y, z) +H(y, q) ≤ z · q + ε for all (y, z) ∈ (Ω ∩Br(x))×Br(ξ).
Hence, as Ω × Rn is σ-compact, we may choose a sequence {(xk, ξk, qk, rk)}k∈N ⊂
Ω × Rn ×Bi × R+ such that

Ω × Rn ⊂
⋃

k∈N
Brk (xk)×Brk (ξk)

and for all k ∈ N,

Li(y, z) +H(y, qk) ≤ z · qk + ε for all (y, z) ∈ Brk (xk)×Brk (ξk).

Now we set Uk = (Ω ∩ Brk (xk)) × Brk (ξk) for k ∈ N and define the function

P : Ω × Rn → Rn by

P (x, ξ) = qk for all (x, ξ) ∈ Uk \
⋃

j<k

Uj and all k ∈ N.

It is clear that P is Borel measurable in Ω × Rn. Moreover we have P (x, ξ) ∈ Bi
for all (x, ξ) ∈ Ω × Rn and

Li(x, ξ) +H(x, P (x, ξ)) ≤ ξ · P (x, ξ) + ε for all (x, ξ) ∈ Ω × Rn. (88)

We define the function q ∈ L∞(J, Rn) by setting q(s) = P (η(s), −v(s)). From

(88), we see that q(s) ∈ Bi and

Li(η(s),−v(s)) +H(η(s), q(s)) ≤ −v(s) · q(s) + ε for a.e. s ∈ J. ut
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Lemma 5.6. Let J = [0, T ] with T ∈ R+, ε > 0, i ∈ N, q ∈ L∞(J,Rn) and

η ∈ C(J,Rn) such that η(s) ∈ Ω for all s ∈ J . Assume that ‖q‖L∞(J) < i. Let Li be
the function defined in Lemma 5.3. Then there exists a function v ∈ L∞([0, T ],Rn)
such that

H(η(s), q(s)) + Li(η(s),−v(s)) < −v(s) · q(s) + ε for a.e. s ∈ [0, T ]. (89)

Before going into the proof we remark that for any x ∈ Ω the function Li(x, ·)
is the convex conjugate of the function H̃(x, ·) given by H̃(x, p) = H(x, p) if p ∈ Bi
and H̃(x, p) =∞ otherwise.

Proof. The same construction as in the proof of Lemma 5.5, with the roles of H
and Li beging exchanged, yields a measurable function v : [0, T ]→ Rn for which
(89) holds. Set C = max

Ω×Bi |H| and observe that

Li(x, ξ) ≥ i|ξ| − C for all (x, ξ) ∈ Ω × Rn.

We combine this with (89), to get

ε+ ‖q‖L∞(J)|v(s)| > i|v(s)| − 2C for a.e. s ∈ J.

Hence,

‖v‖L∞(J) ≤ ε+ 2C

i− ‖q‖L∞(J)

. ut

The following proposition concerns the lower semicontinuity of the functional

(η, v) 7→
∫ T

0

L(η(s),−v(s))ds.

Theorem 5.3. Let J = [0, T ] with T ∈ R+, {(ηk, vk)}k∈N ⊂ L∞(J,Rn) ×
L1(J,Rn) and (η, v) ∈ L∞(J,Rn) × L1(J,Rn). Assume that ηk(s) ∈ Ω for all
(s, k) ∈ J × N and that as k →∞,

ηk(s)→ η(s) uniformly for s ∈ J,
vk → v weakly in L1(J,Rn).

Let ψ be a function in L∞(J,R) such that ψ(s) ≥ 0 for a.e. s ∈ J . Then

∫

J

ψ(s)L(η(s),−v(s))ds ≤ lim inf
k→∞

∫

J

ψ(s)L(ηk(s),−vk(s))ds. (90)

Proof. Fix any i ∈ N. Due to Lemma 5.5, there is a function q ∈ L∞(J,Rn) such

that q(s) ∈ Bi and

H(η(s), q(s)) + Li(η(s),−v(s)) < −v(s) · q(s) +
1

i
for a.e. s ∈ J. (91)
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Note that for all k ∈ N,
∫

J

ψ(s)L(ηk(s),−vk(s))ds ≥
∫

J

ψ(s)Li(ηk(s),−vk(s))ds

≥
∫

J

ψ(s)[−vk(s) · q(s)−H(ηk(s), q(s))]ds,

and

lim
k→∞

∫

J

ψ(s)[−vk(s) · q(s)−H(ηk(s), q(s))]ds

=

∫

J

ψ(s)[−v(s) · q(s)−H(η(s), q(s))]ds.

Hence, using (91), we get

lim inf
k→∞

∫

J

ψ(s)L(ηk(s),−vk(s))ds ≥
∫

J

ψ(s)[−vk(s) · q(s)−H(ηk(s), q(s))]ds

≥
∫

J

ψ(s)[Li(η(s),−v(s))− 1/i]ds.

By the monotone convergence theorem, we conclude that (90) holds. ut
Corollary 5.1. Under the hypotheses of the above theorem, let {fk} ⊂ L1(J,R) be
a sequence of functions converging weakly in L1(J,R) to f . Assume furthermore
that for all k ∈ N,

L(ηk(s),−vk(s)) ≤ fk(s) for a.e. s ∈ J.
Then

L(η(s),−v(s)) ≤ f(s) for a.e. s ∈ J.
Proof. Set E = {s ∈ J : L(η(s),−v(s)) > f(s)}. By Theorem 5.3, we deduce that

0 ≥ lim inf

∫

J

1E(s)[L(ηk(s),−vk(s))− fk(s)]ds

≥
∫

J

1E(s)[L(η(s),−v(s))− f(s)]ds

=

∫

J

[L(η(s),−v(s))− f(s)]+ds,

where [· · · ]+ denotes the positive part of [· · · ]. Thus we see that L(η(s),−v(s)) ≤
f(s) for a.e. s ∈ J . ut

Lemma 5.7. Let J = [0, T ], with T ∈ R+, and q ∈ C(Ω × J). Let x ∈ Ω. Then
there exists a triple (η, v, l) ∈ SP(x) such that

H(η(s), q(η(s), s)) + L(η(s), −v(s)) = −v(s) · q(η(s), s) for a.e. s ∈ J.
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Proof. Fix k ∈ N. Set δ = T/k and sj = (j − 1)δ for j = 1, 2, ..., k + 1. We define
inductively a sequence {(xj , ηj , vj , lj)}kj=1 ⊂ Ω × SP. We set x1 = x and choose a
ξ1 ∈ Rn so that

H(x1, q(x1, 0)) + L(x1,−ξ1) ≤ −ξ1 · q(x1, 0) + 1/k.

Set v1(s) = ξ1 for s ≥ 0 and choose a pair (η1, l1) ∈ Lip(R+, Ω) × L∞(R+, R) so
that (η1, v1, l1) ∈ SP(x1). In fact, Theorem 5.2 guarantees the existence of such a
pair.

We argue by induction and now suppose that k ≥ 2 and we are given
(xi, ηi, vi, li) for all i = 1, ..., j − 1 and some 2 ≤ j ≤ k. Then set xj = ηj−1(δ),
choose a ξj ∈ Rn so that

H(xj , q(xj , sj)) + L(xj ,−ξj) ≤ −ξj · q(xj , sj) + 1/k, (92)

set vj(s) = ξj for s ≥ 0, and select a pair (ηj , lj) ∈ Lip(R+, Ω) × L∞(R+,R)
so that (ηj , vj , lj) ∈ SP(xj). Thus, by induction, we can select a sequence

{(xj , ηj , vj , lj)}kj=1 ⊂ Ω × SP such that x1 = η1(0), xj = ηj−1(δ) = ηj(0) for
j = 2, ..., k and for each j = 1, 2, ..., k, (92) holds with ξj = vj(s) for all s ≥ 0. We
set αj = (ηj , vj , lj) for j = 1, ..., k.

Note that the choice of xj , ηj , vj , lj , with j = 1, ..., k, depends on k, which is
not explicit in our notation. We define ᾱk = (η̄k, v̄k, l̄k) ∈ SP(x) by setting

ᾱk(s) = αj(s− sj) for s ∈ [sj , sj+1) and j = 1, ..., k.

and
ᾱk(s) = (ηk(δ), 0, 0) for s ≥ sk+1 = a.

Also, we define x̄k, q̄k ∈ L∞(J,Rn) by

x̄k(s) = xj and q̄k(s) = q(xj , sj) for s ∈ [sj , sj+1) and j = 1, ..., k.

Now we observe by (92) that for all j = 1, ..., k,

L(xj ,−ξj) ≤ |ξj |R+ max
Ω×BR

|H|+ 1,

where R > 0 is such a constant that R ≥ max
Ω×J |q|. Combining this estimate

with Lemma 5.1, we see that there is a a constant C1 > 0, independent of k, such
that

max
s≥0
|v̄k(s)| = max

1≤j≤k
|ξj | ≤ C1.

By Proposition 5.2, we find a constant C2 > 0, independent of k, such that

‖
.
η̄k‖L∞(R+) ∨ ‖l̄k‖L∞(R+) ≤ C2.

We may invoke standard compactness theorems, to find a triple (η, v, l) ∈
Lip(J,Rn) × L∞(J,Rn+1) and a subsequence of {(η̄k, v̄k, l̄k)}k∈N, which will be
denoted again by the same symbol, so that for every 0 < S <∞, as k →∞,
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η̄k → η uniformly on [0, S],

(
.̄
ηk, v̄k, l̄k)→ (

.
η, v, l) weakly-star in L∞([0, S],R2n+1).

By Proposition 5.1, we see that (η, v, l) ∈ SP(x). It follows as well that x̄k(s)→ η(s)
and q̄k(s)→ q(η(s), s) uniformly for s ∈ J as k →∞.

Now, the inequalities (92), 1 ≤ j ≤ k, can be rewritten as

L(x̄k(s),−v̄k(s))

≤ −v̄k(s) · qk(s)−H(x̄k(s), q̄k(s)) + 1/k for all s ∈ [0, T ).

It is obvious to see that the sequence of functions

−v̄k(s) · qk(s) + 1/k −H(x̄k(s), q̄k(s))

on J converges weakly-star in L∞(J,R) to the function

−v(s) · q(η(s), s)−H(η(s), q(η(s), s)).

Hence, by Corollary 5.1, we conclude that

H(η(s), q(η(s), s)) + L(η(s),−v(s)) ≤ −v(s) · q(η(s), s) for a.e. s ∈ J,

which implies the desired equality. ut

Theorem 5.4. Let J = [0, T ], with T ∈ R+, and {(ηk, vk, lk)}k∈N ⊂ SP. Assume
that there is a constant C > 0, independent of k ∈ N, such that

L(T, ηk, vk, lk) ≤ C for all k ∈ N.

Then there exists a triple (η, v, l) ∈ SP such that

L(T, η, v, l) ≤ lim inf
k→∞

L(T, ηk, vk, lk).

Moreover, there is a subsequence {(ηkj , vkj , lkj )}j∈N of {(ηk, vk, lk)} such that as
j →∞,

ηkj (s)→ η(s) uniformly on J,

(
.
ηkj , vkj , lkj )→ (

.
η, v, l) weakly in L1(J,R2n+1).

Proof. We may assume without loss of generality that ηk(t) = ηk(T ), vk(t) = 0
and lk(t) = 0 for all t ≥ T and all k ∈ N.

According to Proposition 5.2, there is a constant C0 > 0 such that for any
(η, v, l) ∈ SP, |.η(t)| ∨ |l(t)| ≤ C0|v(t)| for a.e. t ≥ 0. Note by Lemma 5.1 that
for each A > 0 there is a constant CA > 0 such that L(x, ξ) ≥ A|ξ| − CA for all

(x, ξ) ∈ Ω × Rn. From this lower bound of L, it is obvious that for all (x, ξ, r) ∈
Ω × Rn × R+, if r ≤ C0|ξ|, then
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L(x, ξ) + g(x)r ≥
(
A− C0 max

∂Ω
|g|
)
|ξ| − CA, (93)

which ensures that there is a constant C1 > 0 such that for (η, v, l) ∈ SP,

L(η(s),−v(s)) + g(η(s))l(s) + C1 ≥ 0 for a.e. s ≥ 0. (94)

Set
Λ = lim inf

k→∞
L(T, ηk, vk, lk),

and note by (94) that−C1T ≤ Λ ≤ C. We may choose a subsequence {(ηkj , vkj , lkj )}j∈N
of {(ηk, vk, lk)} so that

Λ = lim
j→∞

L(ηkj , vkj , lkj ).

Using (94), we obtain for any measurable E ⊂ [0, T ],
∫

E

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s) + C1

)
ds

≤
∫ T

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s) + C1

)
ds ≤ C + C1T.

This together with (93) yields

(
A− C0 max

∂Ω
|g|
)∫

E

|vk(s)| ds ≤ CA|E|+ C + C1T for all A > 0.

This shows that the sequence {vk} is uniformly integrable on [0, T ]. Since |.ηk(s)|∨
|lk(s)| ≤ C0|vk(s)| for a.e. s ≥ 0 and vk(s) = 0 for all s > T , we see easily that the

sequence {(.ηk, vk, lk)} is uniformly integrable on R+.
Due to Lemma 5.4, we may assume by reselecting the subsequence {(ηkj , vkj , lkj )}

if necessary that as j →∞,

(
.
ηkj , vkj , lkj )→ (w, v, l) weakly in L1([0, S],R2n+1)

for every S > 0 and some (w, v, l) ∈ L1
loc(R+, R2n+1). We may also assume that

ηkj (0) → x as j → ∞ for some x ∈ Ω. By Proposition 5.1, if we set η(s) =
x+

∫ s
0
w(r)dr for s ≥ 0, then (η, v, l) ∈ SP(x) and, as j →∞,

ηkj (s)→ η(s) locally uniformly on R+.

We apply Theorem 5.3, with the function ψ(s) ≡ 1, to find that
∫

J

L(η(s),−v(s))ds ≤ lim inf
j→∞

∫

J

L(ηkj (s),−vkj (s))ds.

Consequently, we have

L(η, v, l) ≤ lim inf
j→∞

L(ηkj , vkj , lkj ) = Λ,

which completes the proof. ut
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5.4 Value function II

Theorem 5.5. Let u ∈ UC(Ω×R+) be the viscosity solution of (ENP)–(ID). Then

V = u in Ω × R+.

This is a version of classical observations on the value functions in optimal
control, and, in this regard, we refer for instance to [43, 46]. The above theorem
has been established in [39]. The above theorem gives a variational formula for the
unique solution of (ENP)–(ID). This variational formula is sometimes called the
Lax-Oleinik formula.

For the proof of Theorem 5.5, we need the following three lemmas.

Lemma 5.8. Let U ⊂ Rn be an open set and J = [a, b] a finite subinterval of R+.

Let ψ ∈ C1((U ∩Ω)× J) and assume that

ψt(x, t) +H(x,Dψ(x, t)) ≤ 0 for all (x, t) ∈ (U ∩Ω)× J, (95)

∂ψ

∂γ
(x, t) ≤ g(x) for all (x, t) ∈ (U ∩ ∂Ω)× J, (96)

ψ(x, t) ≤ V (x, t) for all (x, t) ∈ (∂U ∩Ω)× J, (97)

ψ(x, a) ≤ V (x, a) for all x ∈ U ∩Ω. (98)

Then ψ ≤ V in (U ∩Ω)× J .

We note that the following inclusion holds: ∂(U ∩Ω) ⊂ [∂U ∩Ω] ∪ (U ∩ ∂Ω).

Proof. Let (x, t) ∈ (U ∩Ω)× J . Define the mapping τ : SP(x)→ [0, t− a] by

τ(η, v, l) = inf{s ≥ 0 : η(s) 6∈ U} ∧ (t− a).

It is clear that τ is nonanticipating. Let α = (η, v, l) ∈ SP(x), and observe that
η(s) ∈ U for all s ∈ [0, τ(α)) and that η(τ(α)) ∈ ∂U if τ(α) < t− a. In particular,
we find from (97) and (98) that

ψ(η(τ(α)), t− τ(α)) ≤ V (η(τ(α)), t− τ(α)). (99)

Fix any α = (η, v, l) ∈ SP(x) Note that

ψ(η(τ(α)), t− τ(α))− ψ(x, t) =

∫ τ(α)

0

d

ds
ψ(η(s), t− s)ds

=

∫ τ(α)

0

(
Dψ(η(s), t− s) · .η(s)− ψt(η(s), t− s))ds

=

∫ τ(α)

0

(
Dψ(η(s), t− s) · (v(s)− l(s)γ(η(s)))− ψt(η(s), t− s))ds.

Now, using (95), (96) and (99), we get
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ψ(x, t)− V (η(τ(α)), t− τ(α))

≤
∫ τ(α)

0

(−Dψ(η(s), t− s) · v(s) + l(s)Dψ(η(s)) · γ(η(s))

+ ψt(η(s), t− s))ds

≤
∫ τ(α)

0

(
H(η(s), Dψ(η(s), t− s)) + L(η(s),−v(s)) + l(s)g(η(s))

+ ψt(η(s), t− s))ds
≤ L(τ(α), η, v, l)

)
ds,

which immediately shows that

ψ(x, t) ≤ inf (L(τ(α), η, v, l) + V (η(τ(α)), t− τ(α))) ,

where the infimum is taken over all α = (η, v, l) ∈ SP(x). Thus, by (86), we get
ψ(x, t) ≤ V (x, t). ut
Lemma 5.9. For any ε > 0 there is a constant Cε > 0 such that V (x, t) ≥ u0(x)−
ε− Cεt for (x, t) ∈ Q.

Proof. Fix any ε > 0. According to the proof of Theorem 3.2, there are a function
f ∈ C1(Ω) and a constant C > 0 such that if we set ψ(x, t) = f(x) − Ct for

(x, t) ∈ Q, then ψ is a classical subsolution of (ENP) and u0(x) ≥ f(x) ≥ u0(x)−ε
for all x ∈ Ω.

We apply Lemma 5.8, with U = Rn, a = 0, arbitrary b > 0, to obtain

V (x, t) ≥ ψ(x, t) ≥ −ε+ u0(x)− Ct for all (x, t) ∈ Q,
which completes the proof. ut
Lemma 5.10. There is a constant C > 0 such that V (x, t) ≤ u0(x) + Ct for
(x, t) ∈ Q.

Proof. Let (x, t) ∈ Q. Set η(s) = x, v(s) = 0 and l(s) = 0 for s ≥ 0. Then
(η, v, l) ∈ SP(x). Hence, we have

V (x, t) ≤ u0(x) +

∫ t

0

L(x, 0)ds = u0(x) + tL(x, 0) ≤ u0(x)− t min
p∈Rn

H(x, p).

Setting C = −min
Ω×Rn H, we get V (x, t) ≤ u0(x) + Ct. ut

Proof (Theorem 5.5). By Lemmas 5.9 and 5.10, there is a constant C > 0 and for
each ε > 0 a constant Cε > 0 such that

−ε− Cεt ≤ V (x, t)− u0(x) ≤ Ct for all (x, t) ∈ Q.

This shows that V is locally bounded on Q and that
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lim
t→0+

V (x, t) = u0(x) uniformly for x ∈ Ω.

In particular, we have V∗(x, 0) = V ∗(x, 0) = u0(x) for all x ∈ Ω.

We next prove that V is a subsolution of (ENP). Let (x̂, t̂) ∈ Q and φ ∈ C1(Q).
Assume that V ∗ − φ attains a strict maximum at (x̂, t̂). We want to show that if
x̂ ∈ Ω, then

φt(x̂, t̂) +H(x̂, Dφ(x̂, t̂)) ≤ 0,

and if x̂ ∈ ∂Ω, then either

φt(x̂, t̂) +H(x̂, Dφ(x̂, t̂)) ≤ 0 or γ(x̂) ·Dφ(x̂, t̂) ≤ g(x̂).

We argue by contradiction and thus suppose that

φt(x̂, t̂) +H(x̂, Dφ(x̂, t̂)) > 0

and furthermore
γ(x̂) ·Dφ(x̂, t̂) > g(x̂) if x̂ ∈ ∂Ω.

By continuity, we may choose a constant r ∈ (0, t̂ ) so that

φt(x, t) +H(x,Dφ(x, t)) > 0 for all (x, t) ∈ (Br(x̂) ∩Ω)× Ĵ, (100)

where Ĵ = [t̂− r, t̂+ r], and

γ(x) ·Dφ(x, t) > g(x) for all (x, t) ∈ (Br(x̂) ∩ ∂Ω)× Ĵ.

(Of course, if x̂ ∈ Ω, we can choose r so that Br(x̂) ∩ ∂Ω = ∅.)
We may assume that (V ∗ − φ)(x̂, t̂) = 0. Set

B =
((
∂Br(x̂) ∩Ω)× J

)
∪
((
Br(x̂) ∩Ω)× {t̂− r}

)
,

and m = −maxB(V ∗−φ). Note that m > 0 and V (x, t) ≤ φ(x, t)−m for (x, t) ∈ B.
We set ε = r/2. In view of the definition of V ∗, we may choose a point (x̄, t̄) ∈

Ω ∩Bε(x̂)× (t̂− ε, t̂+ ε) so that (V − φ)(x̄, t̄) > −m. Set a = t̄− t̂+ r, and note
that a > ε and dist(x̄, ∂Br(x̂)) > ε. For each α = (η, v, l) ∈ SP(x̄) we set

S(α) = {s ≥ 0 : η(s) ∈ ∂Br(x̂)} and τ = a ∧ inf S(α).

Clearly, the mapping τ : SP(x̄) → [0, a] is nonanticipating. Observe also that if
τ(α) < a, then η(τ(α)) ∈ ∂Br(x̂) or, otherwise, t̄− τ(α) = t̄− a = t̂− r. That is,
we have

(η(τ(α)), t̄− τ(α)) ∈ B for all α = (η, v, l) ∈ SP(x̄). (101)

Note as well that (η(s), t̄− s) ∈ Br(x̂)× Ĵ for all s ∈ [0, τ(α)].
We apply Lemma 5.7, with J = [0, a] and and the function q(x, s) = Dφ(x, t̄−

s), to find a triple α = (η, v, l) ∈ SP(x̄) such that for a.e. s ∈ [0, a],
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H(η(s), Dφ(η(s), t̄− s)) + L(η(s),−v(s)) ≤ −v(s) ·Dφ(η(s), t̄− s) (102)

For this α, we write τ = τ(α) for simplicity of notation. Using (101), by the
dynamic programming principle, we have

φ(x̄, t̄) <V (x̄, t̄) +m

≤L(τ, η, v, l) + V (τ, t̄− τ) +m

≤L(τ, η, v, l) + φ(η(τ), t̄− τ).

Hence, we obtain

0 <

∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s) +

d

ds
φ(η(s), t̄− s))ds

≤
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

+Dφ(η(s), t̄− s) · .η(s)− φt(η(s), t̄− s))ds

≤
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

+Dφ(η(s), t̄− s) · (v(s)− l(s)γ(η(s))− φt(η(s), t̄− s))ds.

Now, using (102), (100) and (5.4), we get

0 <

∫ τ

0

(−H(η(s), Dφ(η(s), t̄− s)) + g(η(s))l(s)

− l(s)Dφ(η(s), t̄− s) · γ(η(s))− φt(η(s), t̄− s))ds

<

∫ τ

0

l(s)
(
g(η(s))− γ(η(s)) ·Dφ(η(s), t̄− s))ds ≤ 0,

which is a contradiction. We thus conclude that V is a viscosity subsolution of
(ENP).

Now, we turn to the proof of the supersolution property of V . Let φ ∈ C1(Q)

and (x̂, t̂) ∈ Ω × R+. Assume that V∗ − φ attains a strict minimum at (x̂, t̂). As
usual, we assume furthermore that min

Q
(V∗ − φ) = 0.

We need to show that if x̂ ∈ Ω, then

φt(x̂, t̂) +H(x̂, Dφ(x̂, t̂)) ≥ 0,

and if x̂ ∈ ∂Ω, then

φt(x̂, t̂) +H(x̂, Dφ(x̂, t̂)) ≥ 0 or γ(x̂) ·Dφ(x̂, t̂) ≥ g(x̂).

We argue by contradiction and hence suppose that this were not the case. That is,
we suppose that

φt(x̂, t̂) +H(x̂, Dφ(x̂, t̂)) < 0,
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and moreover
γ(x̂) ·Dφ(x̂, t̂) < g(x̂) if x̂ ∈ ∂Ω.

We may choose a constant r ∈ (0, t̂) so that

φt(x, t) +H(x,Dφ(x, t)) < 0 for all (x, t) ∈ (Br(x̂) ∩Ω)× Ĵ, (103)

where Ĵ = [t̂− r, t̂+ r], and

γ(x) ·Dφ(x, t) < g(x) for all (x, t) ∈ (Br(x̂) ∩ ∂Ω)× Ĵ. (104)

We set

R =
(

(∂Br(x̂) ∩Ω)× Ĵ
)
∪
(

(Br(x̂) ∩Ω)× {t̂− r}
)

and m = min
R

(V∗ − φ),

and define the function ψ ∈ C1((Br(x̂) ∩ Ω) × Ĵ) by ψ(x, t) = φ(x, t) + m. Note
that m > 0, inf

(Br(x̂)∩Ω)×Ĵ(V∗ − ψ) = −m < 0 and V (x, t) ≥ ψ(x, t) for all

(x, t) ∈ R. Observe moreover that

ψt(x, t) +H(x,Dψ(x, t)) < 0 for all (x, t) ∈ U × Ĵ,
∂ψ∂γ(x, t) < g(x) for all (x, t) ∈ (U ∩ ∂Ω)× Ĵ.

We invoke Lemma 5.8, to find that ψ ≤ V in (Br(x̂) ∩ Ω) × Ĵ . This means that
inf

(Br(x̂)∩Ω)×Ĵ(V∗ − ψ) ≥ 0. This contradiction shows that V is a viscosity super-

solution of (ENP).

We apply Theorem 3.1 to V∗, u and V ∗, to obtain V ∗ ≤ u ≤ V∗ in Q, from
which we conclude that u = V in Q. ut

Our control problem always has an optimal “control” in SP:

Theorem 5.6. Let (x, t) ∈ Ω × R+. Then there exists a triple (η, v, l) ∈ SP(x)
such that

V (x, t) = L(t, η, v, l) + u0(η(t)).

If, in addition, V ∈ Lip(Ω×J,R), with J being an interval of [0, t], then the triple
(η, v, l), restricted to J̃t := {s ∈ [0, t] : t − s ∈ J}, belongs to Lip(J̃t,Rn) ×
L∞(J̃t,Rn+1).

Proof. We may choose a sequence {(ηk, vk, lk)} ⊂ SP(x) such that

V (x, t) = lim
k→∞

L(t, ηk, vk, lk) + u0(ηk(t)).

In view of Theorem 5.4, we may assume by replacing the sequence {(ηk, vk, lk)}
by a subsequence if needed that for some (η, v, l) ∈ SP(x), ηk(s)→ η(s) uniformly
on [0, t] as k →∞ and

L(t, η, v, l) ≤ lim inf
k→∞

L(t, ηk, vk, lk).
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It is then easy to see that

V (x, t) = L(r, η, v, l) + u0(η(t)). (105)

Note by (105) that for all r ∈ (0, t),

V (x, t) ≥ L(r, η, v, l) + V (η(r), t− r),
which yields together with the dynamic programming principle

V (x, t) = L(t, η, v, l) + V (η(r), t− r) (106)

for all r ∈ (0, t).

Now, we assume that V ∈ Lip(Ω × J), where J ⊂ [0, t] is an interval. Observe
by (106) that for a.e. r ∈ J̃t,

L(η(r),−v(r)) + l(r)g(η(r)) = lim sup
ε→0+

V (η(r), t− r)− V (η(r + ε), t− r − ε)
ε

≤M(|.η(r)|2 + 1)1/2 ≤M(|.η(r)|+ 1),

where M > 0 is a Lipschitz bound of the function V on Ω × J . Let C > 0 be the
constant from Proposition 5.2, so that |.η(s)| ∨ l(s) ≤ C|v(s)| for a.e. s ≥ 0. By
Lemma 5.1, for each A > 0, we may choose a constant CA > 0 so that L(y, ξ) ≥
A|ξ| − CA for (y, ξ) ∈ Ω × Rn. Accordingly, for any A > 0, we get

A|v(r)| ≤L(η(r),−v(r)) + CA ≤ −l(r)g(η(r)) +M(|.η(r)|+ 1) + CA

≤C(‖g‖∞,∂Ω +M)|v(r)|+M + CA for a.e. r ∈ J̃t.

This implies that v ∈ L∞(J̃t,Rn) and moreover that η ∈ Lip(J̃t,Rn) and l ∈
L∞(J̃t,R). The proof is complete. ut

Corollary 5.2. Let u ∈ Lip(Ω) be a viscosity solution of (SNP) and x ∈ Ω. Then
there exists a (η, v, l) ∈ SP(x) such that for all t > 0,

u(x)− u(η(t)) = L(t, η, v, l). (107)

Proof. Note that the function u(x), as a function of (x, t), is a viscosity solution
of (ENP). In view of Theorem 5.6, we may choose a sequence {(ηj , vj , lj)}j∈N so
that η1(0) = x, ηj+1(0) = ηj(1) for all j ∈ N and

u(ηj(0))− u(ηj(1)) = L(1, ηj , vj , lj) for all j ∈ N.
We define (η, v, l) ∈ SP(x) by

(η(s), v(s), l(s)) = (ηj(s− j + 1), vj(s− j + 1), lj(s− j + 1))

for all s ∈ [j − 1, j) and j ∈ N. By using the dynamic programming principle, we
see that (107) holds for all t > 0. ut
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5.5 Distance-like function d

We assume throughout this subsection that (A8) holds, and discuss a few aspects
of weak KAM theory related to (SNP).

Proposition 5.4. We have the variational formula for d: for all x, y ∈ Ω,

d(x, y) = inf
{L(t, η, v, l) : t > 0, (η, v, l) ∈ SP(x) such that η(t) = y

}
. (108)

We use the following lemma for the proof of the above proposition.

Lemma 5.11. Let u0 ∈ C(Ω) and u ∈ UC(Q) be the viscosity solution of (ENP)–
(ID). Set

v(x, t) = inf
r>0

u(x, t+ r) for x ∈ Q.

Then v ∈ UC(Q) and it is a viscosity solution of (ENP). Moreover, for each t > 0,
the function v(·, t) is a viscosity subsolution of (SNP).

Proof. By assumption (A8), there is a viscosity subsolution ψ of (SNP). Note that
the function (x, t) 7→ ψ(x) is a viscosity subsolution of (ENP) as well.

We may assume by adding a constant to ψ if needed that ψ ≤ u0 in Ω. By
Theorem 3.1, we have u(x, t) ≥ ψ(x) > −∞ for all (x, t) ∈ Q. Since u ∈ UC(Q),

we see immediately that v ∈ UC(Q). Applying a version for (ENP) of Theorem
4.4, which can be proved based on Theorem A.10, to the collection of viscosity
solutions (x, t) 7→ u(x, t + r), with r > 0, of (ENP), we find that v is a viscosity
subsolution of (ENP). Also, by Proposition 1.10 (its version for supersolutions), we
see that v is a viscosity supersolution of (ENP). Thus, the function v is a viscosity
solution of (ENP).

Next, note that for each x ∈ Ω, the function v(x, ·) is nondecreasing in R+.

Let (x̂, t̂) ∈ Q and φ ∈ C1(Ω). Assume that the function Ω 3 x 7→ v(x, t̂) − φ(x)
attains a strict maximum at x̂. Let α > 0 and consider the function

v(x, t)− φ(x)− α(t− t̂)2 on Ω × [0, t̂+ 1].

Let (xα, tα) be a maximum point of this function. It is easily seen that (xα, tα)→
(x̂, t̂) as α→∞. For sufficiently large α, we have tα > 0 and either

xα ∈ ∂Ω and γ(xα) ·Dφ(xα) ≤ g(xα),

or
2α(tα − t̂) +H(xα, Dφ(xα)) ≤ 0.

By the monotonicity of v(x, t) in t, we see easily that 2α(tα− t̂) ≥ 0. Hence, sending
α → ∞, we conclude that the function v(·, t̂) is a viscosity subsolution of (SNP).
ut
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Proof (Proposition 5.4). We write W (x, y) for the right hand side of (108).

Fix any y ∈ Ω. For each k ∈ N let uk ∈ Lip(Q) be the unique viscosity solution
of (ENP)–(ID), with u0 defined by u0(x) = k|x− y|. By Theorem 5.5, we have the
formula:

uk(x, t) = inf
{L(t, η, v, l) + k|η(t)− y| : (η, v, l) ∈ SP(x)

}
.

It is then easy to see that

inf
t>0

uk(x, t) ≤W (x, y) for all (x, k) ∈ Ω × N. (109)

Since d(·, y) ∈ Lip(Ω), if k is sufficiently large, say k ≥ K, we have d(·, y) ≤
k|x − y| for all x ∈ Ω. Noting that the function (x, t) 7→ d(x, y) is a viscosity
subsolution of (ENP) and applying Theorem 3.1, we get d(x, y) ≤ uk(x, t) for all
(x, t) ∈ Q if k ≥ K. Combining this and (109), we find that d(x, y) ≤ W (x, y) for

all x ∈ Ω.
Next, we give an upper bound on W . According to Lemma 2.1, there exist

a constant C1 > 0 and a function τ : Ω → R+ such that τ(x) ≤ C1|x − y| for

all x ∈ Ω and, for each x ∈ Ω, there is a curve ηx ∈ Lip([0, τ(x)]) having the

properties: ηx(0) = x, ηx(τ(x)) = y, ηx(s) ∈ Ω for all s ∈ [0, τ(x)] and |.ηx(s)| ≤ 1
for a.e. s ∈ [0, τ(x)]. We fix such a function τ and a collection {ηx} of curves.
Thanks to Lemma 5.2, we may choose constants δ > 0 and C0 > 0 such that

L(x, ξ) ≤ C0 for all (x, ξ) ∈ Ω ×Bδ.

Fix any x ∈ Ω \ {y} and define (η, v, l) ∈ SP(x) by setting η(s) = ηx(δs) for

s ∈ [0, τ(x)/δ], η(s) = y for s > τ(x)/δ, (v(s), l(s)) = (
.
η(s), 0) for R+. Observe

that

L(τ(x)/δ, η, v, l) =

∫ τ(x)/δ

0

L(ηx(δs), δ
.
ηx(δs))ds

= δ−1

∫ τ(x)

0

L(ηx(s),−δ.ηx(s))ds

≤ δ−1C0τ(x) ≤ δ−1C0C1|x− y|,

which yields
W (x, y) ≤ δ−1C0C1|x− y|. (110)

We define the function w : Q→ R by

w(x, t) = inf
{L(r, η, v, l) : r > t, (η, v, l) ∈ SP(x) such that η(r) = y

}
.

It is clear by the above definition that

W (x, y) = inf
t>0

w(x, t) for all x ∈ Ω. (111)
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Also, the dynamic programming principle yields

w(x, t) = inf
{L(t, η, v, l) +W (η(t), y) : η, v, l) ∈ SP(x)

}
.

(We leave it to the reader to prove this identity.) In view of (110), we fix a k ∈ N
so that δ−1C0C1 ≤ k and note that for all (x, t) ∈ Q,

w(x, t) ≤ inf
{L(t, η, v, l) + k|η(t)− y| : (η, v, l) ∈ SP(x)

}
= uk(x, t).

Consequently, we have

inf
t>0

w(x, t) ≤ inf
t>0

uk(x, t) for all x ∈ Ω,

which together with (111) yields

W (x, y) ≤ inf
t>0

uk(x, t) for all x ∈ Ω.

By Lemma 5.11, if we set v(x) = inft>0 uk(x, t) for x ∈ Ω, then v ∈ C(Ω) is a
viscosity subsolution of (SNP). Moreover, since v(x) ≤ uk(x, 0) = k|x − y| for all

x ∈ Ω, we have v(y) ≤ 0. Thus, we find that v(x) ≤ v(y) + d(x, y) ≤ d(x, y) for all

x ∈ Ω. We now conclude that W (x, y) ≤ v(x) ≤ d(x, y) for all x ∈ Ω. The proof is
complete. ut

Proposition 5.5. Let y ∈ Ω and δ > 0. Then we have y ∈ A if and only if

inf
{L(t, η, v, l) : t > δ, (η, v, l) ∈ SP(y) such that η(t) = y

}
= 0. (112)

Proof. First of all, we define the fucntion u ∈ UC(Q) as the viscosity solution of
(ENP)–(ID), with u0 = d(·, y). By Theorem 5.5, we have

u(x, t) = inf
{L(t, η, v, l) + d(η(t), y) : (η, v, l) ∈ SP(x)

}
for all (x, t) ∈ Q.

In view of the dynamic programming principle, we combine this formula and Propo-
sition 5.4, to get

u(x, t) = inf
{
L(r, η, v, l) : r > t, (η, v, l) ∈ SP(x) such that η(r) = y

}

for all (x, t) ∈ Q.
(113)

Now, we assume that y ∈ A. The function d(·, y) is then a viscosity solution
of (SNP) and u is a viscosity solution of (ENP)–(ID), with u0 = d(·, y). Hence, by

Theorem 3.1, we have d(x, y) = u(x, t) for all (x, t) ∈ Q. Thus,

0 = d(y, y) = inf
{L(r, η, v, l) : r > t, (η, v, l) ∈ SP(y) such that η(r) = y

}

for all t > 0.

This shows that (112) is valid.
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Now, we assume that (112) holds. This assumption and (113) show that

u(y, δ) = 0. Formula (113) shows as well that for each x ∈ Ω, the function u(x, ·)
is nondecreasing in R+. In particular, we have d(x, y) ≤ u(x, t) for all (x, t) ∈ Q.
Let p ∈ D−x d(x, y)|x=y. Then we have (p, 0) ∈ D−u(y, δ) and

{
H(y, p) ≥ 0 if y ∈ Ω,
max{H(y, p), γ(y) · p− g(y)} ≥ 0 if y ∈ ∂Ω.

This shows that d(·, y) is a viscosity solution of (SNP). Hence, we have y ∈ A. ut

6 Large-time asymptotic solutions

We discuss the large-time behavior of solutions of (ENP)–(ID) following [38, 39, 8].
There have been much interest in the large time behavior of solutions of

Hamilton-Jacobi equation since G. Namah and J.-M. Roquejoffre in [54] have first
established a general convergence result for solutions of

ut(x, t) +H(x,Dxu(x, t)) = 0 in (x, t) ∈ Ω × R+ (1.2)

under (A5), (A6) and the assumptions

H(x, p) ≥ H(x, 0) for all (x, p) ∈ Ω × Rn,
max
Ω

H(x, 0) = 0,
(114)

where Ω is a smooth compact n-dimensional manifold without boundary. A. Fathi
in [27] has then established a similar convergence result but under different type
hypotheses, where (114) replaced by a strict convexity of the Hamiltonian H(x, p)
in p, by the dynamical approach based on weak KAM theory [26]. G. Barles and
P. E. Souganidis have obtained in [3] more general results in the periodic setting
(i.e., in the case where Ω is n-dimensional torus), for possibly non-convex Hamil-
tonians, by using a PDE-viscosity solutions approach, which does not depend on
the variational formula for the solutions like the one in Theorem 5.5. We refer to
[7] for a recent view on this approach.

The approach of Fathi has been later modified and refined by J.-M. Roquejoffre
[55], A. Davini and A. Siconolfi in [21], and others. The same asymptotic problem
in the whole domain Rn has been investigated by G. Barles and J.-M. Roquejoffre
in [10], Y. Fujita, N. Ichihara, P. Loreti and the author in [30, 37, 34, 35, 36] in
various situations.

There have been as well a considerable interest in the large time asymptotic
behavior of solutions of Hamilton-Jacobi equation with boundary conditions. The
investigations in this direction are papers: H. Mitake [49] (the state-constraint
boundary condition), J.-M. Roquejoffre [55] (the Dirichlet boundary condition in



Introduction to viscosity solutions and the large time ... 95

the classical sense), H. Mitake [51] (the Dirichlet boundary condition in the vis-
cosity framework). More recent studies are due to G. Barles, H. Mitake and the
author in [9, 38, 8], where the Neumann boundary conditions including the dy-
namical boundary conditions are treated. In [9, 8], the PDE-viscosity solutions
approach of Barles-Souganidis is adapted to problems with boundary conditions.

E. Yokoyama, Y. Giga and P. Rybka in [59] and Y. Giga, Q. Liu and H. Mitake
in [33, 32] have obtained some results on the large time behavior of solutions of
Hamilton-Jacobi equations with noncoercive Hamiltonian which is motivated by a
crystal growth model.

We also refer to the articles [55, 13] and to [16, 53, 52] for the large time
behavior of solutions, respectively, of time-dependent Hamilton-Jacobi equations
and of weakly coupled systems of Hamilton-Jacobi equations.

As before, we assume throughout this section that hypotheses (A1)–(A7) hold

and that u0 ∈ C(Ω). Moreover, we assume that c# = 0. Throughout this section
u = u(x, t) denotes the viscosity solution of (ENP)–(ID).

We set
Z = {(x, p) ∈ Ω × Rn : H(x, p) = 0}.

(A9)± There exists a function ω0 ∈ C([0,∞)) satisfying ω0(r) > 0 for all r > 0 such
that if (x, p) ∈ Z, ξ ∈ D−p H(x, p) and q ∈ Rn, then

H(x, p+ q) ≥ ξ · q + ω0((ξ · q)±).

The following proposition describes the long time behavior of solutions of
(ENP)–(ID).

Theorem 6.1. Assume that either (A9)+ or (A9)− holds. Then there exists a

viscosity solution w ∈ Lip(Ω) of (SNP) for which

lim
t→∞

u(x, t) = w(x) uniformly on Ω. (115)

The following example is an adaptation of the one from Barles-Souganidis to
the Neumann problem, which shows the necessity of a stronger condition like (A9)±
beyond the convexity assumption (A7) in order to have the asymptotic behavior
described in the above theorem.

Example 6.1. Let n = 2 and Ω = B4. Let η, ζ ∈ C1(R+) be functions such that

0 ≤ η(r) ≤ 1 for all r ∈ R+, η(r) = 1 for all r ∈ [0, 1], η(r) = 0 for all r ∈ [2,∞),

ζ(r) ≥ 0 for all r ∈ R+, ζ(r) = 0 for all r ∈ [0, 2] ∪ [3,∞) and ζ(r) > 0 for
all r ∈ (2, 3). Fix a constant M > 0 so that M ≥ ‖ζ′‖∞,R+ . We consider the

Hamiltonian H : Ω × R2 given by

H(x, y,p, q) = | − yp+ xq + ζ(r)| − ζ(r)
+ η(r)

√
p2 + q2 + (1− η(r))

(∣∣∣x
r
p+

y

r
q
∣∣∣−M

)
+
,
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where r = r(x, y) :=
√
x2 + y2. Let u ∈ C1(Ω × R+) be the function given by

u(x, y, t) = ζ(r)
(y
r

cos t− x

r
sin t

)
,

where, as above, r =
√
x2 + y2. It is easily checked that u is a classical solution of

{
ut(x, y, t) +H(x, y, ux(x, y, t), uy(x, y, t)) = 0 in B4 × R+,

ν(x, y) · (ux(x, y, t), uy(x, y, t)) = 0 on ∂B4 × R+,

where ν(x, y) denotes the outer unit normal at (x, y) ∈ ∂B4. Note here that if we
introduce the polar coordinate system

x = r cos θ, y = r sin θ

and the new function

v(r, θ, t) = u(r cos θ, r sin θ, t) for (r, θ, t) ∈ R+ × R× R+,

then the above Hamilton-Jacobi equation reads

vt + H̃(r, θ, vr, vθ) = 0,

where

H̃(r, θ, pr, pθ) =|pθ + ζ(r)| − ζ(r)

+ η(r)

√
p2
r +

(pθ
r

)2

+ (1− η(r)) (|pr| −M)+ ,

while the definition of u reads

v(r, θ, t) = ζ(r) sin(θ − t).

Note also that any constant function w on B4 is a classical solution of

{
H(x, y, wx(x, y, t), wy(x, y)) = 0 in B4,

ν(x, y) · (wx(x, y, t), wy(x, y) = 0 on ∂B4,

which implies that the eigenvalue c# is zero.
It is clear that u does not have the asymptotic behavior (115). As is easily

seen, the Hamiltonian H satisfies (A5)–(A7), but neither of (A9)±.
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6.1 Preliminaries to asymptotic solutions

According to Theorem 3.3 and Corollary 3.1, we know that u ∈ BUC(Q). We set

u∞(x) = lim inf
t→∞

u(x, t) for all x ∈ Ω.

Lemma 6.1. The function u∞ is a viscosity solution of (SNP) and u∞ ∈ Lip(Ω).

Proof. Note that

u∞(x) = lim
t→∞

inf{u(x, t+ r) : r > 0} for all x ∈ Ω. (116)

By Lemma 5.11, if we set

v(x, t) = inf{u(x, t+ r) : r > 0} for (x, t) ∈ Q,

then v ∈ BUC(Q) and it is a viscosity solution of (ENP). For each x ∈ Ω, the

function v(x, ·) is nondecreasing in R+. Hence, by the Ascoli-Arzela theorem or

Dini’s lemma, we see that the convergence in (116) is uniform in Ω. By Proposition
1.9, we see that the function u∞(x), as a function of (x, t), is a viscosity solution of
(ENP), which means that u∞ is a viscosity solution of (SNP). Finally, Proposition

1.14 guarantees that u∞ ∈ Lip(Ω). ut
We introduce the following notation:

S = {(x, ξ) ∈ Ω × Rn : ξ ∈ D−p H(x, p) for some (x, p) ∈ Z},
P (x, ξ) = {p ∈ Rn : ξ ∈ D−p H(x, p)} for (x, ξ) ∈ Ω × Rn.

Lemma 6.2. (i) Z, S ⊂ Ω̄ ×BR0 for some R0 > 0.
(ii) Assume that (A9)+ holds. Then there exist constants δ > 0 and R1 > 0 such

that for any (x, ξ) ∈ S and any ε ∈ (0, δ), we have P (x, (1 + ε)ξ) 6= ∅ and
P (x, (1 + ε)ξ) ⊂ BR1 .

(iii) Assume that (A9)− holds. Then there exist constants δ > 0 and R1 > 0 such
that for any (x, ξ) ∈ S and any ε ∈ (0, δ), we have P (x, (1 − ε)ξ) 6= ∅ and
P (x, (1− ε)ξ) ⊂ BR1 .

Proof. (i) It follows from coercivity (A6) that there exists a constant R1 > 0 such
that Z ⊂ Rn×BR1 . Next, fix any (x, ξ) ∈ S. Then, by the definition of S, we may
choose a point p ∈ P (x, ξ) such that (x, p) ∈ Z. Note that |p| < R1. By convexity
(A7), we have

H(x, p′) ≥ H(x, p) + ξ · (p′ − p) for all p′ ∈ Rn.
Assuming that ξ 6= 0 and setting p′ = p+ ξ/|ξ| in the above, we get

|ξ| = ξ · (p′ − p) ≤ H(x, p′)−H(x, p) < sup
Ω×BR1+1

H − inf
Ω×BR1

H.
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We may choose a constant R2 > 0 so that the right-hand side is less than R2, and
therefore ξ ∈ BR2 . Setting R0 = max{R1, R2}, we conclude that Z, S ⊂ Rn×BR0 .

(ii) By (i), there is a constant R0 > 0 such that Z, S ⊂ Ω × BR0 . We set
δ = ω0(1), where ω0 is from (A9)+ . In view of coercivity (A6), replacing R0 > 0
by a larger constant if necessary, we may assume that H(x, p) ≥ 1 + ω0(1) for all

(x, p) ∈ Ω × (Rn \BR0).
Fix any (x, ξ) ∈ S, p ∈ P (x, ξ) and ε ∈ (0, δ). Note that ξ, p ∈ BR0 . By (A9)+,

for all x ∈ Rn we have

H(x, q) ≥ ξ · (q − p) + ω0 ((ξ · (q − p))+) .

We set V := {q ∈ B2R0(p) : |ξ · (q − p)| ≤ 1}. Let q ∈ V and observe the
following: if q ∈ ∂B2R0(p), which implies that |q| ≥ R0, then H(x, q) ≥ 1+ω0(1) >
1 + ε ≥ (1 + ε)ξ · (q − p). If ξ · (q − p) = 1, then H(x, q) ≥ 1 + ω0(1) > 1 + ε =
(1+ε)ξ ·(q−p). Also, if ξ ·(q−p) = −1, then H(x, q) ≥ ξ ·(q−p) > (1+ε)ξ ·(q−p).
Accordingly, the function G(q) := H(x, q)− (1 + ε)ξ · (q − p) on Rn is positive on
∂V while it vanishes at q = p ∈ V , and hence it attains a minimum over the set V
at an interior point of V . Thus, P (x, (1 + ε)ξ) 6= ∅. By the convexity of G, we see
easily that G(q) > 0 for all q ∈ Rn \ V and conclude that P (x, (1 + ε)ξ) ⊂ B2R0 .

(iii) Let ω0 be the function from (A9)− . As before, we choose R0 > 0 so that

Z, S ⊂ Ω × BR0 and H(x, p) ≥ 1 + ω0(1) for all (x, p) ∈ Ω × (Rn \BR0), and set
δ = ω0(1). Note that for all x ∈ Rn,

H(x, q) ≥ ξ · (q − p) + ω0

(
(ξ · (q − p))−

)
.

Fix any (x, ξ) ∈ S, p ∈ P (x, ξ) and ε ∈ (0, δ). Set V := {q ∈ B2R0(p) :
|ξ · (q − p)| ≤ 1}. Let q ∈ V and observe the following: if q ∈ ∂B2R0(p), then
H(x, q) ≥ 1 + ω0(1) > 1 + ε ≥ (1− ε)ξ · (q− p). If ξ · (q− p) = −1, then H(x, q) ≥
−1+ω0(1) > −1+ε = (1−ε)ξ ·(q−p). If ξ ·(q−p) = 1, then H(x, q) ≥ ξ ·(q−p) >
(1− ε)ξ · (q− p). As before, the function G(q) := H(x, q)− (1− ε)ξ · (q− p) attains
a minimum over V at an interior point of V . Consequently, P (x, (1 − ε)ξ) 6= ∅.
Moreover, we get P (x, (1− ε)ξ) ⊂ B2R0 . ut

Lemma 6.3. Assume that (A9)+ (resp., (A9)−) holds. Then there exist a constant
δ1 > 0 and a modulus ω1 such that for any ε ∈ [0, δ1] and (x, ξ) ∈ S,

L(x, (1 + ε) ξ) ≤ (1 + ε)L(x, ξ) + ε ω1(ε) (117)

(resp.,
L(x, (1− ε) ξ) ≤ (1− ε)L(x, ξ) + ε ω1(ε) ). (118)

Before going into the proof, we make the following observation: under the
assumption that H, L are smooth, for any (x, ξ) ∈ S, if we set p := DξL(x, ξ),
then
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H(x, p) = 0,

p · ξ = H(x, p) + L(x, ξ) = L(x, ξ),

and, as ε→ 0,

L(x, (1 + ε)ξ) = L(x, ξ) + εp · ξ + o(ε)

= L(x, ξ) + εL(x, ξ) + o(ε) = (1 + ε)L(x, ξ) + o(ε).

Proof. Assume that (A9)+ holds. Let R0 > 0, R1 > 0 and δ > 0 be the constants
from Lemma 6.2. Fix any (x, ξ) ∈ S and ε ∈ [0, δ). In view of Lemma 6.2, we
may choose a pε ∈ P (x, (1 + ε)ξ). Then we have |pε − p0| < 2R1, |ξ| < R0 and
|ξ · (pε − p0)| < 2R0R1.

Note by (A9)+ that

H(x, pε) ≥ ξ · (pε − p0) + ω0 ((ξ · (pε − p0))+) .

Hence, we obtain

L(x, (1 + ε) ξ) = (1 + ε) ξ · pε −H(x, pε) ≤ (1 + ε) ξ · pε
− ξ · (pε − p0)− ω0 ((ξ · (pε − p0))+)

≤ (1 + ε)[ξ · p0 −H(x, p0)]

+ ε ξ · (pε − p0)− ω0 ((ξ · (pε − p0))+)

≤ (1 + ε)L(x, ξ) + ε max
0≤r≤2R0R1

(
r − 1

ε
ω0(r)

)
.

We define the function ω1 on [0,∞) by setting ω1(s) = max0≤r≤2R0R1(r−ω0(r)/s)
for s > 0 and ω1(0) = 0 and observe that ω1 ∈ C([0,∞)). We have also L(x, (1 +
ε)ξ) ≤ (1 + ε)L(x, ξ) + εω1(ε) for all ε ∈ (0, δ). Thus (117) holds with δ1 := δ/2.

Next, assume that (A9)− holds. Let R0 > 0, R1 > 0 and δ > 0 be the constants
from Lemma 6.2. Fix any (x, ξ) ∈ S and ε ∈ [0, δ).

As before, we may choose a pε ∈ P (x, (1−ε)ξ), and observe that |pε−p0| < 2R1,
|ξ| < R0 and |ξ · (pε − p0)| < 2R0R1. Noting that

H(x, pε) ≥ ξ · (pε − p0) + ω0

(
(ξ · (pε − p0))−

)
,

we obtain

L(x, (1− ε) ξ) = (1− ε) ξ · pε −H(x, pε) ≤ (1− ε) ξ · pε
− ξ · (pε − p0)− ω0

(
(ξ · (pε − p0))−

)

≤ (1− ε)[ξ · p0 −H(x, p0)]

− ε ξ · (pε − p0)− ω0

(
(ξ · (pε − p0))−

)

≤ (1 + ε)L(x, ξ) + ε max
0≤r≤2R0R1

(
r − 1

ε
ω0(r)

)
.

Setting ω1(s) = max0≤r≤2R0R1(r − ω0(r)/s) for s > 0 and ω1(0) = 0, we
find a function ω1 ∈ C([0,∞)) vanishing at the origin for which L(x, (1 − ε)ξ) ≤
(1− ε)L(x, ξ) + εω1(ε) for all ε ∈ (0, δ). Thus (118) holds with δ1 := δ/2. ut
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Theorem 6.2. Let u ∈ Lip(Ω) be a subsolution of (SNP). Let η ∈ AC(R+, Rn) be

such that η(t) ∈ Ω for all t ∈ R+. Set R+,b = {t ∈ R+ : η(t) ∈ ∂Ω}. Then there
exists a function p ∈ L∞(R+, Rn) such that





d

dt
u ◦ η(t) = p(t) · .η(t) for a.e. t ∈ R+,

H(η(t), p(t)) ≤ 0 for a.e. t ∈ R+,

γ(η(t)) · p(t) ≤ g(η(t)) for a.e. t ∈ R+,b.

Proof. According to Theorem 4.2, there is a collection {uε}ε∈(0, 1) ⊂ C1(Ω) such
that 




H(x,Duε(x)) ≤ ε for all x ∈ Ω,
∂uε
∂γ

(x) ≤ g(x) for all x ∈ ∂Ω,

‖uε − u‖∞,Ω < ε,

sup
0<ε<1

‖Duε‖L∞(Ω) <∞.

If we set pε(t) = Duε ◦ η(t) for all t ∈ R+, then we have




uε ◦ η(t)− uε ◦ η(0) =

∫ t

0

pε(s) · .η(s)ds for a.e. t ∈ R+,

H(η(t), pε(t)) ≤ ε for a.e. t ∈ R+,

γ(η(t)) · pε(t) ≤ g(η(t)) for a.e. t ∈ R+,b.

(119)

Since {pε}ε∈(0,1) is bounded in L∞(R+), there is a sequence {εj}j∈N converging to
zero such that, as j →∞, the sequence {pεj} converges weakly-star in L∞(R+) to
some function p ∈ L∞(R+). It is clear from (119) that




u ◦ η(t)− u ◦ η(0) =

∫ t

0

p(s) · .η(s)ds for a.e. t ∈ R+,

γ(η(t)) · p(t) ≤ g(η(t)) for a.e. t ∈ R+,b.

Now, we fix an i ∈ N so that i > ‖p‖L∞(R+) and any < T < ∞, and set
J = [0, T ]. Using Lemma 5.6, for each m ∈ N, we find a function vm ∈ L∞(J,Rn)
so that

H(η(s), p(s)) + Li(η(s),−vm(s)) < −vm(s) · p(s) + 1/m for a.e. s ∈ J. (120)

By the convex duality, we have

H(x, q) = sup
ξ∈Rn

(ξ · q − Li(x, ξ)) for all (x, q) ∈ Ω ×Bi.

(Note that Li(x, ·) is the convex conjugate of the function H(x, ·) + δ
Bi

, where

δ
Bi

(p) = 0 if p ∈ Bi and = ∞ otherwise.) Hence, for any nonnegative function

ψ ∈ L∞(J,R) and any (j,m) ∈ N2, by (119) we get
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εj

∫

J

ψ(s)ds ≥
∫

J

ψ(s)H(η(s), pεj (s))ds

≥
∫

J

ψ(s)[−vm(s) · pεj (s)− Li(η(s),−vm(s))]ds.

Combining this observation with (120), after sending j →∞, we obtain

0 ≥
∫

J

ψ(s)(H(η(s), p(s))− 1/m)ds,

which implies that H(η(s), p(s)) ≤ 0 for a.e. s ∈ [0, T ]. Since T > 0 is arbitrary,
we see that

H(η(s), p(s)) ≤ 0 for a.e. s ∈ R+.

The proof is complete. ut

6.2 Proof of convergence

This subsection is devoted to the proof of Theorem 6.1.

Proof (Theorem 6.1). It is enough to show that

lim sup
t→∞

u(x, t) ≤ u∞(x) for all x ∈ Ω. (121)

Indeed, once this is proved, it is obvious that limt→∞ u(x, t) = u∞(x) for all x ∈ Ω,
and moreover, since u ∈ BUC(Q), by the Ascoli-Arzela theorem, it follows that

the convergence, limt→∞ u(x, t) = u∞(x), is uniform in Ω.
Fix any z ∈ Ω. According to Lemma 6.1 and Corollary 5.2, we may choose a

(η, v, l) ∈ SP(z) be such that for all t > 0,

u∞(z)− u∞(η(t)) = L(t, η, v, l). (122)

Due to Theorem 6.2, there exists a function q ∈ L∞(R+, Rn) such that





d

ds
u∞(η(s)) = q(s) · .η(s) for a.e. s ∈ R+,

H(η(s), q(s)) ≤ 0 for a.e. s ∈ R+,

γ(η) · q(s) ≤ g(η(s)) for a.e. s ∈ R+,b,

(123)

where R+,b := {s ∈ R+ : η(s) ∈ ∂Ω}.
We now show that




H(η(s), q(s)) = 0 for a.e. s ∈ R+,

l(s)γ(η(s)) · q(s) = l(s)g(η(s)) for a.e. s ∈ R+,b,

− q(s) · v(s) = H(η(s), q(s)) + L(η(s), −v(s)) for a.e. s ∈ R+.

(124)
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We remark here that the last equality in (124) is equivalent to saying that

−v(s) ∈ D−p H(η(s), q(s)) for a.e. s ∈ R+,

(or
q(s) ∈ D−ξ L(η(s), −v(s)) for a.e. s ∈ R+.)

By differentiating (122), we get

− d

ds
u∞(η(s)) = L(η(s),−v(s)) + l(s)g(η(s)) for a.e. s ∈ R+.

Combining this with (123), we calculate

0 = q(s) · .η(s) + L(η(s),−v(s)) + l(s)g(η(s))

= q(s) · (v(s)− l(s)γ(η(s))) + L(η(s),−v(s)) + l(s)g(η(s))

≥ −H(η(s), q(s))− l(s)(q(s) · γ(η(s))− g(η(s))) ≥ 0

for a.e. s ∈ R+, which guarantees that (124) holds.

Fix any ε > 0. We prove that there is a constant τ > 0 and for each x ∈ Ω a
number σ(x) ∈ [0, τ ] for which

u∞(x) + ε > u(x, σ(x)). (125)

In view of the definition of u∞, for each x ∈ Ω there is a constant t(x) > 0
such that

u∞(x) + ε > u(x, t(x)).

By continuity, for each fixed x ∈ Ω, we can choose a constant r(x) > 0 so that

u∞(y) + ε > u(y, t(x)) for y ∈ Ω ∩Br(x)(x),

where Bρ(x) := {y ∈ Rn : |y − x| < ρ}. By the compactness of Ω, there is a finite
sequence xi, i = 1, 2, ..., N , such that

Ω ⊂
⋃

1≤i≤N
Br(xi)(xi),

That is, for any y ∈ Ω there exists xi, with 1 ≤ i ≤ N , such that y ∈ Br(xi)(xi),
which implies

u∞(y) + ε > u(y, t(xi)).

Thus, setting
τ = max

1≤i≤N
t(xi),

we find that for each x ∈ Ω there is a constant σ(x) ∈ [0, τ ] such that (125) holds.
In what follows we fix τ > 0 and σ(x) ∈ [0, τ ] as above. Also, we choose a

constant δ1 > 0 and a modulus ω1 as in Lemma 6.3.
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We divide our argument into two cases according to which hypothesis is valid,
(A9)+ or (A9)−. We first argue under hypothesis (A9)+. Choose a constant T > τ
so that τ/(T − τ) ≤ δ1. Fix any t ≥ T , and set θ = σ(η(t)) ∈ [0, τ ]. We set
δ = θ/(t − θ) and note that δ ≤ τ/(t − τ) ≤ δ1. We define functions ηδ, vδ, lδ on
R+ by

ηδ(s) = η((1 + δ)s),

vδ(s) = (1 + δ)v((1 + δ)s),

lδ(s) = (1 + δ)l((1 + δ)s),

and note that (ηδ, vδ, lδ) ∈ SP(z).
By (124) together with the remark after (124), we know that H(η(s), q(s)) = 0

and −v(s) ∈ D−p H(η(s), q(s)) for a.e. s ∈ R+. That is, (η(s), −v(s)) ∈ S for a.e.
s ∈ R+. Therefore, by (117), we get for a.e. s ∈ R+,

L(ηδ(s), −vδ(s)) ≤ (1 + δ)L
(
η((1 + δ)s), −v((1 + δ)s)

)
+ δω1(δ).

Integrating this over (0, t − θ), making a change of variables in the integral and
noting that (1 + δ)(t− θ) = t, we get

∫ t−θ

0

L(ηδ(s), −vδ(s))ds ≤
∫ t

0

L(η(s), −v(s))ds+ (t− θ)δω1(δ)

=

∫ t

0

L(η(s), −v(s))ds+ θω1(δ),

as well as ∫ t−θ

0

lδ(s)g(ηδ(s))ds =

∫ t

0

l(s)g(η(s))ds.

Moreover,

u(z, t) ≤L(t− θ, ηδ, vδ, lδ) + u(ηδ(t− θ), θ)

≤
∫ t

0

(
L(η(s), −v(s)) + l(s)g(η(s))

)
ds+ θω1(δ) + u

(
η(t), σ(η(t))

)

<u∞(z)− u∞(η(t)) + τω1(δ) + u∞(η(t)) + ε

=u∞(z) + τω1(δ) + ε.

Thus, recalling that δ ≤ τ/(t− τ), we get

u(z, t) ≤ u∞(z) + τω1

( τ

t− τ
)

+ ε. (126)

Next, we assume that (A9)− holds. We choose T > τ as before, and fix t ≥ T .
Set θ = σ(η(t−τ)) ∈ [0, τ ] and δ = (τ−θ)/(t−θ). Observe that (1−δ)(t−θ) = t−τ
and δ ≤ τ/(t− τ) ≤ δ1.
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We set ηδ(s) = η((1−δ)s), vδ(s) = (1−δ)v((1−δ)s) and lδ(s) = (1−δ)l((1−δ)s)
for s ∈ R+ and observe that (ηδ, vδ, lδ) ∈ SP(z). As before, thanks to (118), we
have

L(ηδ(s), −vδ(s)) ≤ (1− δ)L(η((1− δ)s), −v(1− δ)s)) + δω1(δ) for a.e. s ∈ R+.

Hence, we get

∫ t−θ

0

L(ηδ(s), −vδ(s))ds ≤
∫ t−τ

0

L(η(s), −v(s))ds+ (t− θ)δω1(δ)

=

∫ t−τ

0

L(η(s), −v(s))ds+ (τ − θ)ω1(δ),

and ∫ t−θ

0

lδ(s)g(ηδ(s))ds =

∫ t−τ

0

l(s)g(η(s))ds.

Furthermore, we calculate

u(z, t) ≤L(t− θ, ηδ, vδ, lδ) + u(ηδ(t− θ), θ)
≤L(t− τ, η, v, l) + τω1(δ) + u(η(t− τ), σ(η(t− τ)))

<u∞(z) + τω1(δ) + ε.

Thus, we get

u(z, t) ≤ u∞(z) + τω1

( τ

t− τ
)

+ ε,

From the above inequality and (126) we see that (121) is valid. ut

6.3 Representation of the asymptotic solution u∞

According to Theorem 6.1, if either (A9)+ or (A9)− holds, then the solution u(x, t)

of (ENP)–(ID) converges to the function u∞(x) in C(Ω) as t → ∞, where the
function u∞ is given by

u∞(x) = lim inf
t→∞

u(x, t) for x ∈ Ω.

In this subsection, we do not assume (A9)+ neither (A9)− and give two char-
acterizations of the function u∞.

Let S− and S denote the sets of all viscosity subsolutions of (SNP) and of all
viscosity solutions of (SNP), respectively.

Theorem 6.3. Set
F1 = {v ∈ S− : v ≤ u0 in Ω},
u−0 = supF1,

F2 = {w ∈ S : w ≥ u−0 in Ω}.
Then u∞ = inf F2.
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Proof. By Proposition 1.10, we have u−0 ∈ S−. It is clear that u−0 ≤ u0 in Ω.
Hence, by Theorem 3.1 applied to the functions u−0 and u, we get u−0 (x) ≤ u(x, t)

for all (x, t) ∈ Q, which implies that u−0 ≤ u∞ in Ω. This together with Lemma

6.1 ensures that u∞ ∈ F2, which shows that inf F2 ≤ u∞ in Ω.
Next, we set

u−(x, t) = inf
r>0

u(x, t+ r) for all (x, t) ∈ Q.

By Lemma 5.11, the function u− is a solution of (ENP) and the function u−(·, 0)
is a viscosity subsolution of (SNP). Also, it is clear that u−(x, 0) ≤ u0(x) for all

x ∈ Ω, which implies that u−(·, 0) ≤ u−0 ≤ inf F2 in Ω. We apply Theorem 3.1 to
the functions u− and inf F2, to obtain u−(x, t) ≤ inf F2(x) for all (x, t) ∈ Q, from

which we get u∞ ≤ inf F2 in Ω, and conclude the proof. ut

Let d : Ω
2 → R and A denote the distance-like function and the Aubry set,

respectively, as in Section 4.

Theorem 6.4. We have the formula:

u∞(x) = inf{d(x, y) + d(y, z) + u0(z) : z ∈ Ω, y ∈ A} for all x ∈ Ω.

Proof. We first show that

u−0 (x) = inf{u0(y) + d(x, y) : y ∈ Ω} for all x ∈ Ω,
where u−0 is the function defined in Theorem 6.3.

Let u−d denote the function given by the right hand side of the above formula.
Since u−0 ∈ S−, we have

u−0 (x)− u−0 (y) ≤ d(x, y) for all x, y ∈ Ω,

which ensures that u−0 ≤ u−d in Ω.
By Theorem 4.4, we have u−d ∈ S−. Also, by the definition of u−d , we have

u−d (x) ≤ u0(x) + d(x, x) = u0(x) for all x ∈ Ω. Hence, by the definition of u−0 , we

find that u−0 ≥ u−d in Ω. Thus, we have u−0 = u−d in Ω.
It is now enough to show that

u∞(x) = inf
y∈A

(u−0 (y) + d(x, y)).

Let φ denote the function defined by the right hand side of the above formula.
The version of Proposition 1.10 for supersolutions ensures that φ ∈ S+, while
Theorem 4.4 guarantees that φ ∈ S−. Hence, we have φ ∈ S. Observe also that

u−0 (x) ≤ u−0 (y) + d(x, y) for all x, y ∈ Ω,

which yields u−0 ≤ φ in Ω. Thus, we see by Theorem 6.3 that u∞ ≤ φ in Ω.
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Now, applying Theorem 4.1 to u∞, we observe that for all x ∈ Ω,

u∞(x) = inf{u∞(y) + d(x, y) : y ∈ A}
≥ inf{u−0 (y) + d(x, y) : y ∈ A} = φ(x).

Thus we find that u∞ = φ in Ω. The proof is complete. ut

Combining the above theorem and Proposition 5.4, we obtain another repre-
sentation formula for u∞.

Corollary 6.1. The following formula holds:

u∞(x) = inf
{L(T, η, v, l) + u0(η(T )) : T > 0, (η, v, l) ∈ SP(x)

such that η(t) ∈ A for some t ∈ (0, T )
}
.

Example 6.2. As in Example 3.1, let n = 1, Ω = (−1, 1) and γ = ν on ∂Ω (i.e.,
γ(±1) = ±1). Let H = H(p) = |p|2 and g : ∂Ω → R be the function given
by g(−1) = −1 and g(1) = 0. As in Example 3.1, we see that c# = 1. We set

H̃(p) = H(p)− c# = |p|2 − 1. Note that H̃ satisfies both (A9)±. and consider the
Neumann problem

H̃(v′(x)) = 0 in Ω, γ(x) · v′(x) = g(x) on ∂Ω. (127)

It is easily seen that the distance-like function d : Ω2 → R for this problem is
given by d(x, y) = |x − y|. Let A denote the Aubry set for problem (127). By
examining the function d, we see that A = {−1}. For instance, by observing that

D−x d(x,−1) =





{1} if x ∈ Ω,
(−∞, 1] if x = −1,

[1, ∞) if x = 1,

we find that −1 ∈ A. Let u0(x) = 0. Consider the problem





ut(x, t) +H(ux(x, t)) = 0 for (x, t) ∈ Ω × R+,

γ(x)ux(x, t) = g(x) for (x, t) ∈ ∂Ω × R+,

u(x, 0) = u0(x) for x ∈ Ω.
If u is the viscosity solution of this problem and the function v is given by v(x, t) =
u(x, t) + c#t = u(x, t) + t, then v solves in the viscosity sense





vt(x, t) + H̃(vx(x, t)) = 0 for (x, t) ∈ Ω × R+,

γ(x)vx(x, t) = g(x) for (x, t) ∈ ∂Ω × R+,

v(x, 0) = u0(x) for x ∈ Ω.
Setting
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u∞(x) = min{d(x, y) + d(y, z) + u0(z) : y ∈ A, z ∈ Ω} for x ∈ Ω,

we note that u∞(x) = |x + 1| for all x ∈ Ω. Thanks to Theorems 6.1 and 6.4, we
have

lim
t→∞

v(x, t) = u∞(x) uniformly on Ω,

which reads
lim
t→∞

(u(x, t) + t− |x+ 1|) = 0 uniformly on Ω.

That is, we have u(x, t) ≈ −t + |x + 1| as t → ∞. If we replace u0(x) = 0 by the
function u0(x) = −3x, then

u∞(x) = min
y∈Ω
{|x+ 1|+ |1 + y| − 3y} = |x+ 1| − 1 for all x ∈ Ω,

and u(x, t) ≈ −t+ |x+ 1| − 1 as t→∞.

In some cases the variational formula in Corollary 6.1 is useful to see the
convergence assertion of Theorem 6.1.

Under the hypothesis that c# = 0, which is our case, we call a point y ∈ Ω̄
an equilibrium point if L(y, 0) = 0. This condition, L(y, 0) = 0, is equivalent to
minp∈Rn H(y, p) = 0.

Let y ∈ Ω̄ be an equilibrium point. If we define (η, v, l) ∈ SP(y) by setting
(η, v, l)(s) = (y, 0, 0), then L(t, η, v, l) = 0 for all t ∈ R+, and Propositions 5.4 and
5.5 guarantee that y ∈ A.

We now assume that A consists of only equilibrium points. Fix any ε > 0 and
x ∈ Ω̄. According to Corollary 6.1, we can choose τ, σ ∈ R+ and (η, v, l) ∈ SP(x)
so that η(τ) ∈ A and

L(τ + σ, η, v, l) + u0(η(τ + σ)) < u∞(x) + ε. (128)

Fix any t > τ + σ. We define (η̃, ṽ, l̃) ∈ SP(x) by

(η̃, ṽ, l̃)(s) =





(η, v, l)(s) for s ∈ [0, τ),

(y, 0, 0) for s ∈ [τ, τ + θ),

(η, v, l)(s− θ) for s ∈ [τ + θ,∞),

where θ = t− (τ + σ). Using (128), we get

u∞ + ε > L(t, η̃, ṽ, l̃) + u0(ηt(t)) ≥ u(x, t).

Therefore, recalling that lim inft→∞ u(x, t) = u∞(x), we see that limt→∞ u(x, t) =

u∞(x) for all x ∈ Ω.
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6.4 Localization of conditions (A9)±

In this subsection we explain briefly that the following versions of (A9)± localized
to the Aubry set A may replace the role of (A9)± in Theorem 6.1.

(A10)± Let
ZA = {(x, p) ∈ A× Rn : H(x, p) = 0}.

There exists a function ω0 ∈ C([0,∞)) satisfying ω0(r) > 0 for all r > 0 such
that if (x, p) ∈ ZA, ξ ∈ D−p H(x, p) and q ∈ Rn, then

H(x, p+ q) ≥ ξ · q + ω0((ξ · q)±).

As before, assume that c# = 0 and let u be the solution of (ENP)–(ID) and
u∞(x) := lim inft→∞ u(x, t).

Theorem 6.5. Assume that either (A10)+ or (A10)− holds. Then

lim
t→∞

u(x, t) = u∞(x) uniformly on Ω. (129)

If we set
u+
∞(x) = lim sup

t→∞
u(x, t) for x ∈ Ω,

we see by Theorem 1.3 that the function u+
∞(x) is a subsolution of (ENP), as a

function of (x, t), and hence a subsolution of (SNP). That is, u+
∞ ∈ S−. Since

u∞ ∈ S+, once we have shown that u+
∞ ≤ u∞ on A, then, by Theorem 4.6, we get

u+
∞ ≤ u∞ in Ω,

which shows that the uniform convergence (129) is valid. Thus we only need to
show that u+

∞ ≤ u∞ on A.
Following [21] (see also [39]), one can prove the following lemma.

Lemma 6.4. For any z ∈ A there exists an α = (η, v, l) ∈ SP(z) such that

d(z, η(t)) = L(t, α) = −d(η(t), z) for all t > 0.

Proof. By Proposition 5.5, for each k ∈ N there are an αk = (ηk, vk, lk) ∈ SP(z)
and τk ≥ k such that

L(τk, αk) <
1

k
and ηk(τk) = z.

Observe that for any j, k ∈ N with j < k,

1

k
> L(j, αk) +

∫ τk

j

[L(ηk(s),−vk(s)) + lk(s)g(ηk(s))]ds

≥ L(j, αk) + d(ηk(j), ηk(τk)),

(130)
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and hence
sup
k∈N
L(j, αk) <∞ for all j ∈ N.

We apply Theorem 5.4, with T = j ∈ N, and use the diagonal argument, to
conclude from (130) that there is an α = (η, v, l) ∈ SP(z) such that for all j ∈ N,

L(j, α) ≤ lim inf
k→∞

L(j, αk) ≤ −d(η(j), z).

Let 0 < t <∞, and choose a j ∈ N such that t < j. Using Proposition 5.4 and
Proposition 4.1 (ii) (the triangle inequality for d), we compute that

d(z, η(t)) ≤ L(t, α) = L(j, α)−
∫ j

t

[L(η(s),−v(s)) + l(s)g(η(s))]ds

≤ L(j, α)− d(η(t), η(j)) ≤ −d(η(j), z)− d(η(t), η(j))

≤ −d(η(t), z).

Moreover, by the triangle inequality, we get

−d(η(t), z) ≤ d(z, η(t)).

These together yield

d(z, η(t)) = L(t, α) = −d(η(t), z) for all t > 0,

which completes the proof. ut

The above assertion is somehow related to the idea of the quotient Aubry set
(see [48, 41]). Indeed, if we introduce the equivalence relation ≡ on A by

x ≡ y ⇐⇒ d(x, y) + d(y, x) = 0,

and consider the quotient space Â consisting of the equivalence classes

[x] = {y ∈ A : y ≡ x}, with x ∈ A,

then the space Â is a metric space with its distance given by

d̂([x], [y]) = d(x, y) + d(y, x).

The property of the curve η in the above lemma that d(z, η(t)) = −d(η(t), z) is
now stated as: η(t) ≡ η(0).

Lemma 6.5. Let ψ ∈ S− and x, y ∈ A. If x ≡ y, then

ψ(x)− ψ(y) = d(x, y).
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Proof. By the definition of d, we have

ψ(x)− ψ(y) ≤ d(x, y) and ψ(y)− ψ(x) ≤ d(y, x).

Hence,
ψ(x)− ψ(y) ≤ d(x, y) = −d(y, x) ≤ ψ(x)− ψ(y),

which shows that ψ(x)− ψ(y) = d(x, y) = −d(y, x). ut

Proof (Theorem 6.5). As we have noticed above, we need only to show that

u+
∞(x) ≤ u∞(x) for all x ∈ A.

To this end, we fix any z ∈ A. Let α = (η, v, l) ∈ SP(z) be as in Lemma 6.4.
In view of Lemma 6.5, we have

u∞(z)− u∞(η(t)) = d(z, η(t)) = L(t, α) for all t > 0.

It is obvious that the same assertion as Lemma 6.3 holds if we replace S by

SA := {(x, ξ) ∈ A× Rn : ξ ∈ D−p H(x, p) for some (x, p) ∈ ZA}.

We now just need to follow the arguments in Subsection 6.2, to conclude that

u+
∞(z) ≤ u∞(z).

The details are left to the interested reader. ut

Appendix

A.1 Local maxima to global maxima

We recall a proposition from [57] which is about partition of unity.

Proposition A.1. Let O be a collection of open subsets of Rn. Set W :=
⋃
U∈O U .

Then there is a collection F of C∞ functions in Rn having the following properties:

(i) 0 ≤ f(x) ≤ 1 for all x ∈W and f ∈ F .
(ii) For each x ∈W there is a neighborhood V of x such that all but finitely many

f ∈ F vanish in V .
(iii)

∑
f∈F f(x) = 1 for all x ∈W .

(iv) For each f ∈ F there is a set U ∈ O such that supp f ⊂ U .

Proposition A.2. Let Ω be any subset of Rn, u ∈ USC(Ω,R) and φ ∈ C1(Ω).
Assume that u − φ attains a local maximum at y ∈ Ω. Then there is a function
ψ ∈ C1(Ω) such that u − ψ attains a global maximum at y and ψ = φ in a
neighborhood of y.
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Proof. As usual it is enough to prove the above proposition in the case when
(u− φ)(y) = 0.

By the definition of the space C1(Ω), there is an open neighborhood W0 of Ω
such that φ is defined in W0 and φ ∈ C1(W0).

There is an open subset Uy ⊂ W0 of Rn containing y such that maxUy∩Ω(u−
φ) = (u−φ)(y). Since u ∈ USC(Ω,R), for each x ∈ Ω \{y} we may choose an open
subset Ux of Rn so that x ∈ Ux, y 6∈ Ux and supUx∩Ω u <∞. Set ax = supUx∩Ω u
for every x ∈ Ω \ {y}.

We set O = {Uz : z ∈ Ω} and W =
⋃
U∈O U . Note that W is an open

neighborhood of Ω. By Proposition A.1, there exists a collection F of functions
f ∈ C∞(Rn) satisfying the conditions (i)–(iv) of the proposition. According to the
condition (iv), for each f ∈ F there is a point z ∈ Ω such that supp f ⊂ Uz. For
each f ∈ F we fix such a point z ∈ Ω and define the mapping p : F → Ω by
p(f) = z. We set

ψ(x) =
∑

f∈F, p(f) 6=y
ap(f)f(x) +

∑

f∈F, p(f)=y

φ(x)f(x) for x ∈W.

By the condition (ii), we see that ψ ∈ C1(W ). Fix any x ∈ Ω and f ∈ F ,
and observe that if f(x) > 0 and p(f) 6= y, then we have x ∈ supp f ⊂ Up(f) and,
therefore, ap(f) = supUp(f)∩Ω u ≥ u(x). Observe also that if f(x) > 0 and p(f) = y,

then we have x ∈ Uy and φ(x) ≥ u(x). Thus we see that for all x ∈ Ω,

ψ(x) ≥
∑

f∈F, p(f) 6=y
u(x)f(x) +

∑

f∈F, p(f)=y

u(x)f(x) = u(x)
∑

f∈F
f(x) = u(x).

Thanks to the condition (ii), we may choose a neighborhood V ⊂ W of y and
a finite subset {fj}Nj=1 of F so that

N∑
j=1

fj(x) = 1 for all x ∈ V.

If p(fj) 6= y for some j = 1, ..., N , then Up(fj) ∩ {y} = ∅ and hence y 6∈ supp fj .
Therefore, by replacing V by a smaller one we may assume that p(fj) = y for all
j = 1, ..., N . Since f = 0 in V for all f ∈ F \ {f1, ..., fN}, we see that

ψ(x) =

N∑
j=1

φ(x)fj(x) = φ(x) for all x ∈ V.

It is now easy to see that u− ψ has a global maximum at y. ut

A.2 A quick review of convex analysis

We discuss here basic properties of convex functions on Rn.
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By definition, a subset C of Rn is convex if and only if

(1− t)x+ ty ∈ C for all x, y ∈ C, 0 < t < 1.

For a given function f : U ⊂ Rn → [−∞, ∞], its epigraph epi(f) is defined as

epi(f) = {(x, y) ∈ U × R : y ≥ f(x)}.
A function f : U → [−∞, ∞] is said to be convex if epi(f) is a convex subset of
Rn+1.

We are henceforth concerned with functions defined on Rn. When we are given
a function f on U with U being a proper subset of Rn, we may think of f as a
function defined on Rn having value ∞ on the set Rn \ U .

It is easily checked that a function f : Rn → [−∞, ∞] is convex if and only if
for all x, y ∈ Rn, t, s ∈ R and λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)t+ λs if t ≥ f(x) and s ≥ f(y).

From this, we see that a function f : Rn → (−∞, ∞] is convex if and only if for
all x, y ∈ Rn and λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Here we use the convention for extended real numbers, i.e., for any x ∈ R, −∞ <
x <∞, x±∞ = ±∞, x · (±∞) = ±∞ if x > 0, 0 · (±∞) = 0, etc.

Any affine function f(x) = a · x + b, where a ∈ Rn and b ∈ R, is a convex
function on Rn. Moreover, if A ⊂ Rn and B ⊂ R are nonempty sets, then the
function on Rn given by

f(x) = sup{a · x+ b : (a, b) ∈ A×B}
is a convex function. Note that this function f is lower semicontinuous on Rn. We
restrict our attention to those functions which take values only in (−∞, ∞].

Proposition A.3. Let f : Rn → (−∞, ∞] be a convex function. Assume that
p ∈ D−f(y) for some y, p ∈ Rn. Then

f(x) ≥ f(y) + p · (x− y) for all x ∈ Rn.
Proof. By the definition of D−f(y), we have

f(x) ≥ f(y) + p · (x− y) + o(|x− y|) as x→ y.

Hence, fixing x ∈ Rn, we get

f(y) ≤ f(tx+ (1− t)y)− tp · (x− y) + o(t) as t→ 0 + .

Using the convexity of f , we rearrange the above inequality and divide by t > 0,
to get

f(y) ≤ f(x)− p · (x− y) + o(1) as t→ 0 + .

Sending t→ 0+ yields

f(x) ≥ f(y) + p · (x− y) for all x ∈ Rn. ut
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Proposition A.4. Let F be a nonempty set of convex functions on Rn with values
in (−∞, ∞]. Then supF is a convex function on Rn having values in (−∞, ∞].

Proof. It is clear that (supF)(x) ∈ (−∞, ∞] for all x ∈ Rn. If f ∈ F , x, y ∈ Rn
and t ∈ [0, 1], then we have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) ≤ (1− t)(supF)(x) + t(supF)(y)

and hence

(supF)((1− t)x+ ty) ≤ (1− t)(supF)(x) + t(supF)(y),

which proves the convexity of supF . ut

We call a function f : Rn → (−∞, ∞] proper convex if the following three
conditions hold.

(i) f is convex on Rn.
(ii) f ∈ LSC(Rn).

(iii) f(x) 6≡ ∞.

Let f : Rn → [−∞, ∞]. The conjugate convex function (or the Legendre-
Fenchel transform) of f is the function f? : Rn → [−∞, ∞] given by

f?(x) = sup
y∈Rn

(x · y − f(y)).

Proposition A.5. If f is a proper convex function, then so is f?.

Lemma A.6. If f is a proper convex function on Rn, then D−f(y) 6= ∅ for some
y ∈ Rn.

Proof. We choose a point x0 ∈ Rn so that f(x0) ∈ R. Let k ∈ N, and define
the function gk on B̄1(x0) by the formula gk(x) = f(x) + k|x − x0|2. Since gk ∈
LSC(B̄1(x0) and gk(x0) = g(x0) ∈ R, the function gk has a finite minimum at a
point xk ∈ B̄1(x0). Note that if k is sufficiently large, then

min
∂B1(x0)

gk = min
∂B1(x0)

f + k > f(x0).

Fix such a large k, and observe that xk ∈ B1(x0) and, therefore, −2k(xk − x0) ∈
D−f(xk). ut

Proof (Proposition A.5). The function x 7→ x · y − f(y) is an affine function for
any y ∈ Rn. By Proposition A.4, the function f? is convex on Rn. Also, since
the function x 7→ x · y − f(y) is continuous on Rn for any y ∈ Rn, as stated in
Proposition 1.5, the function f? is lower semicontinuous on Rn.

Since f is proper convex on Rn, there is a point x0 ∈ Rn such that f(x0) ∈ R.
Hence, we have
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f?(y) ≥ y · x0 − f(x0) > −∞ for all y ∈ Rn.

By Lemma A.6, there exist points y, p ∈ Rn such that p ∈ D−f(y). By Propo-
sition A.3, we have

f(x) ≥ f(y) + p · (x− y) for all x ∈ Rn.

That is,
p · y − f(y) ≥ p · x− f(x) for all x ∈ Rn,

which implies that f?(p) = p · y − f(y) ∈ R. Thus, we conclude that f? : Rn →
(−∞, ∞], f? is convex on Rn, f? ∈ LSC(Rn) and f?(x) 6≡ ∞. ut

The following duality (called convex duality or Legendre-Fenchel duality) holds.

Theorem A.6. Let f : Rn → (−∞, ∞] be a proper convex function. Then

f?? = f.

Proof. By the definition of f?, we have

f?(x) ≥ x · y − f(y) for all x, y ∈ Rn,

which reads
f(y) ≥ y · x− f?(x) for all x, y ∈ Rn.

Hence,
f(y) ≥ f??(y) for all y ∈ Rn.

Next, we show that

f??(x) ≥ f(x) for all x ∈ Rn.

We fix any a ∈ Rn and choose a point y ∈ Rn so that f(y) ∈ R. We fix a number
R > 0 so that |y − a| < R. Let k ∈ N, and consider the function gk ∈ LSC(B̄R(a))
defined by gk(x) = f(x) + k|x − a|2. Let xk ∈ B̄R(a) be a minimum point of the
function gk. Noting that if k is sufficiently large, then

gk(xk) ≤ f(y) + k|y − a|2 < min
∂BR(a)

f + kR2 = min
∂BR(a)

gk,

we see that xk ∈ BR(a) for k sufficiently large. We henceforth assume that k is
large enough so that xk ∈ BR(a). We have

D−gk(xk) = D−f(xk) + 2k(xk − a) 3 0.

Accordingly, if we set ξk = −2k(xk − a), then we have ξk ∈ D−f(xk). By Propo-
sition A.3, we get

f(x) ≥ f(xk) + ξk · (x− xk) for all x ∈ Rn,
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or, equivalently,

ξk · xk − f(xk) ≥ ξk · x− f(x) for all x ∈ Rn.
Hence,

ξk · xk − f(xk) = f?(ξk).

Using this, we compute that

f??(a) ≥ a · ξk − f?(ξk) = ξk · a− ξk · xk + f(xk)

= 2k|xk − a|2 + f(xk).

We divide our argument into the following cases, (a) and (b).
Case (a): limk→∞ k|xk − a|2 =∞. In this case, if we set m = minB̄R(a) f , then

we have
f??(a) ≥ lim inf

k→∞
2k|xk − a|2 +m =∞,

and, therefore, f??(a) ≥ f(a).
Case (b): lim infk→∞ k|xk − a|2 <∞. We may choose a subsequence {xkj}j∈N

of {xk} so that limj→∞ xkj = a. Then we have

f??(a) ≥ lim inf
j→∞

(
2kj |xkj − a|2 + f(xkj )

) ≥ lim inf
j→∞

f(xkj ) ≥ f(a).

Thus, in both cases we have f??(a) ≥ f(a), which completes the proof. ut
Theorem A.7. Let f : Rn → (−∞, ∞] be proper convex and x, ξ ∈ Rn. Then the
following three conditions are equivalent each other.

(i) ξ ∈ D−f(x).
(ii) x ∈ D−f?(ξ).

(iii) x · ξ = f(x) + f?(ξ).

Proof. Assume first that (i) holds. By Proposition A.3, we have

f(y) ≥ f(x) + ξ · (y − x) for all y ∈ Rn,
which reads

ξ · x− f(x) ≥ ξ · y − f(y) for all y ∈ Rn.
Hence,

ξ · x− f(x) = max
y∈Rn

(ξ · y − f(y)) = f?(ξ).

Thus, (iii) is valid.
Next, we assume that (iii) holds. Then the function y 7→ ξ · y − f(y) attains a

maximum at x. Therefore, ξ ∈ D−f(x). That is, (i) is valid.
Now, by the convex duality (Theorem A.6), (iii) reads

x · ξ = f??(x) + f?(ξ).

The equivalence between (i) and (iii), with f replaced by f?, is exactly the equiv-
alence between (ii) and (iii). The proof is complete. ut
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Finally, we give a Lipschitz regularity estimate for convex functions.

Theorem A.8. Let f : Rn → (−∞, ∞] be a convex function. Assume that there
are constants M > 0 and R > 0 such that

|f(x)| ≤M for all x ∈ B3R.

Then

|f(x)− f(y)| ≤ M

R
|x− y| for all x, y ∈ BR.

Proof. Let x, y ∈ BR and note that |x − y| < 2R. We may assume that x 6= y.
Setting ξ = (x− y)/|x− y| and z = y + 2Rξ and noting that z ∈ B3R,

x− y =
|x− y|

2R
(z − y),

and

x = y +
|x− y|

2R
(z − y) =

|x− y|
2R

z +

(
1− |x− y|

2R

)
y,

we obtain

f(x) ≤ |x− y|
2R

f(z) +

(
1− |x− y|

2R

)
f(y),

and

f(x)− f(y) ≤ |x− y|
2R

(f(z)− f(y)) ≤ |x− y|
2R

(|f(z)|+ |f(y)|) ≤ M |x− y|
R

.

In view of the symmetry in x and y, we see that

|f(x)− f(y)| ≤ M

R
|x− y| for all x, y ∈ BR. ut

A.3 Global Lipschitz regularity

We give here a proof of Lemmas 2.1 and 2.2.

Proof (Lemma 2.1). We first show that there is a constant C > 0, for each z ∈ Ω a

ball Br(z) centered at z, and for each x, y ∈ Br(z)∩Ω, a curve η ∈ AC([0, T ],Rn),
with T ∈ R+, such that η(s) ∈ Ω for all s ∈ (0, T ), |.η(s)| ≤ 1 for a.e. s ∈ (0, T )
and T ≤ C|x− y|.

Let ρ be a defining function of Ω. We may assume that ‖Dρ‖∞,Rn ≤ 1 and
|Dρ(x)| ≥ δ for all x ∈ (∂Ω)δ := {y ∈ Rn : dist(y, ∂Ω) < δ} and some constant
δ ∈ (0, 1).

Let z ∈ Ω. We can choose r > 0 so that Br(z) ⊂ Ω. Then, for each x, y ∈ Br(z),
with x 6= y, the line η(s) = x+ s(y− x)/|y− x|, with s ∈ [0, |x− y|], connects two
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points x and y and lies inside Ω. Note as well that
.
η(s) = (y − x)/|y − x| ∈ ∂B1

for all s ∈ [0, |x− y|].
Let z ∈ ∂Ω. Since |Dρ(z)|2 ≥ δ2, by continuity, we may choose r ∈ (0, δ3/4)

so that Dρ(x) · Dρ(z) ≥ δ2/2 for all x ∈ B4δ−2r(z). Fix any x, y ∈ Br(z) ∩ Ω.
Consider the curve ξ(t) = x+ t(y − x)− t(1− t)6δ−2|x− y|Dρ(z), with t ∈ [0, 1],
which connects the points x and y. Note that

|ξ(t)− z| ≤ (1− t)|x− z|+ t|y − z|+ 6t(1− t)δ−2|x− y||Dρ(z)|
< (1 + 3δ−2)r < 4δ−2r

and 4δ−2r < δ. Hence, we have ξ(t) ∈ B4δ−2r(z) ∩ (∂Ω)δ for all t ∈ [0, 1]. If
t ∈ (0, 1/2], then we have

ρ(ξ(t)) ≤ ρ(x) + tDρ(θξ(t) + (1− θ)x) · (y − x− 6(1− t)δ−2|x− y|Dρ(z))

≤ t|x− y|(1− 3(1− t)) < 0

for some θ ∈ (0, 1). Similarly, if t ∈ [1/2, 1), we have

ρ(ξ(t)) ≤ ρ(y) + (1− t)|x− y|(1− 3t) < 0.

Hence, ξ(t) ∈ Ω for all t ∈ (0, 1). Note that

|
.
ξ(t)| ≤ |y − x|(1 + 6δ−2).

If x = y, then we just set η(s) = x = y for s = 0 and the curve η : [0, 0]→ Rn
has the required properties. Now let x 6= y. We set t(x, y) = (1 + 6δ−2)|x− y| and
η(s) = ξ(s/t(x, y)) for s ∈ [0, t(x, y)]. Then the curve η : [0, t(x, y)]→ Rn has the
required properties with C = 1 + 6δ−2.

Thus, by the compactness of Ω, we may choose a constant C > 0 and a
finite covering {Bi}Ni=1 of Ω consisting of open balls with the properties: for each

x, y ∈ B̂i ∩ Ω, where B̂i denotes the concentric open ball of Bi with radius twice
that of Bi, there exists a curve η ∈ AC([0, t(x, y)],Rn) such that η(s) ∈ Ω for all
s ∈ (0, t(x, y)), |.η(s)| ≤ 1 for a.e. s ∈ [0, t(x, y)] and t(x, y) ≤ C|x− y|.

Let ri be the radius of the ball Bi and set r = min ri and R =
∑
ri, where i

ranges all over i = 1, ..., N .
Let x, y ∈ Ω. If |x − y| < r, then x, y ∈ B̂i for some i and there is a curve

η ∈ AC([0, t(x, y)],Rn) such that η(s) ∈ Ω for all s ∈ (0, t(x, y)), |.η(s)| ≤ 1 for a.e.
s ∈ [0, t(x, y)] and t(x, y) ≤ C|x − y|. Next, we assume that |x − y| ≥ r. By the
connectedness of Ω, we infer that there is a sequence {Bij : j = 1, ..., J} ⊂ {Bi :
i = 1, ..., N} such that x ∈ Bi1 , y ∈ BiJ , Bij ∩Bij+1 ∩Ω 6= ∅ for all 1 ≤ i < J , and
Bij 6= Bik if j 6= k. It is clear that J ≤ N . If J = 1, then we may choose a curve η
with the required properties as in the case where |x−y| < r. If J > 1, then we may
choose a curve η ∈ AC([0, t(x, y)], Rn) joining x and y as follows. First, we choose
a sequence {xj : j = 1, ..., J − 1} of points in Ω so that xj ∈ Bij ∩ Bij+1 ∩Ω for

all 1 ≤ j < J . Next, setting x0 = x, xJ = y and t0 = 0, since xj−1, xij ∈ Bj ∩ Ω
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for all 1 ≤ j ≤ J , we may select ηj ∈ AC([tj−1, tj ], Rn), with 1 ≤ j ≤ J ,
inductively so that ηj(tj−1) = xj−1, ηj(tj) = xj , ηj(s) ∈ Ω for all s ∈ (tj−1, tj)
and tj ≤ tj−1 + C|xj − xj−1|. Finally, we define η ∈ AC([0, t(x, y)],Rn), with
t(x, y) = tJ , by setting η(s) = ηi(s) for s ∈ [tj − 1, tj ] and 1 ≤ j ≤ J . Noting that

T ≤ C
J∑
j=1

|xj − xj−1| ≤ C
J∑
j=1

rij ≤ CR ≤ CRr−1|x− y|,

we see that the curve η ∈ AC([0, t(x, y)], Rn) has all the required properties with
C replaced by CRr−1. ut

Remark A.1. (i) A standard argument, different from the above one, to prove the
local Lipschitz continuity near the boundary points is to flatten the boundary by
a local change of variables. (ii) One can easily modify the above proof to prove the
proposition same as Lemma 2.1, except that Ω is a Lipschitz domain.

Proof (Lemma 2.2). Let C > 0 be the constant from Lemma 2.1. We show that
|u(x)− u(y)| ≤ CM |x− y| for all x, y ∈ Ω.

To show this, we fix any x, y ∈ Ω such that x 6= y. By Lemma 2.1, there is
a curve η ∈ AC([0, t(x, y)], Rn) such that η(0) = x, η(t(x, y)) = y, t(x, y) ≤
C|x− y|, η(s) ∈ Ω for all s ∈ [0, t(x, y)] and |.η(s)| ≤ 1 for a.e. s ∈ [0, t(x, y)].

By the compactness of the image η([0, t(x, y)]) of interval [0, t(x, y)] by η, we
may choose a finite sequence {Bi}Ni=1 of open balls contained in Ω which covers
η([0, t(x, y)]). We may assume by rearranging the label i if needed that x ∈ B1,
y ∈ BN and Bi ∩ Bi+1 6= ∅ for all 1 ≤ i < N . We may choose a sequence
0 = t0 < t1 < · · · < tN = t(x, y) of real numbers. so that the line segment
[η(ti−1), η(ti)] joining η(ti−1) and η(ti) lines in Bi for any i = 1, ..., N .

Thanks to Proposition 1.14, we have

|u(η(ti))− u(η(ti−1))| ≤M |η(ti)− η(ti−1)| for all i = 1, ..., N.

Using this, we compute that

|u(y)− u(x)| = |u(η(tN ))− u(η(t0))| ≤
N∑
i=1

|u(η(ti))− u(η(ti−1))|

≤M
N∑
i=1

|η(ti)− η(ti−1)| ≤M
N∑
i=1

∫ ti

ti−1

|.η(s)|ds

=M

∫ tN

t0

|.η(s)|ds ≤M(tN − t0) = Mt(x, y) ≤ CM |x− y|.

This completes the proof. ut
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A.4 Localized versions of Lemma 4.2

Theorem A.9. Let U , V be open subsets of Rn with the properties: V ⊂ U and
V ∩Ω 6= ∅. Let u ∈ C(U ∩Ω) be a viscosity solution of




H(x,Du(x)) ≤ 0 in U ∩Ω,
∂u

∂γ
(x) ≤ g(x) on U ∩ ∂Ω. (131)

Then, for each ε ∈ (0, 1), there exists a function uε ∈ C1(V ∩Ω) such that





H(x,Duε(x)) ≤ ε in V ∩Ω,
∂uε

∂γ
(x) ≤ g(x) on V ∩ ∂Ω,

‖uε − u‖∞,V ∩Ω ≤ ε.

Proof. We choose functions ζ, η ∈ C1(Rn) so that 0 ≤ ζ(x) ≤ η(x) ≤ 1 for all
x ∈ Rn, ζ(x) = 1 for all x ∈ V , η(x) = 1 for all x ∈ supp ζ and supp η ⊂ U .

We define the function v ∈ C(Ω) by setting v(x) = η(x)u(x) for x ∈ U ∩Ω and
v(x) = 0 otherwise. By the coercivity of H, u is locally Lipschitz continuous in

U ∩Ω, and hence, v is Lipschitz continuous in Ω. Let L > 0 be a Lipschitz bound
of v in Ω. Then v is a viscosity solution of




|Dv(x)| ≤ L in Ω,

∂v

∂γ
(x) ≤M in ∂Ω,

where M := L‖γ‖∞,∂Ω . In fact, we have a stronger assertion that for any x ∈ Ω
and any p ∈ D+v(x), {

|p| ≤ L if x ∈ Ω,
γ(x) · p ≤M if x ∈ ∂Ω. (132)

To check this, let φ ∈ C1(Ω) and assume that v− φ attains a maximum at x ∈ Ω.
Observe that if x ∈ Ω, then |Dφ(x)| ≤ L and that if x ∈ ∂Ω, then

0 ≤ lim inf
t→0+

(v − φ)(x− tγ(x))− (v − ψ)(x)

−t
= lim inf

t→0+

v(x− tγ(x))− v(x)

−t − ∂φ

∂γ
(x),

which yields
γ(x) ·Dφ(x) ≤ L|γ(x)| ≤M.

Thus, (132) is valid.
We set
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h(x) = ζ(x)g(x) + (1− ζ(x))M for x ∈ ∂Ω,
G(x, p) = ζ(x)H(x, p) + (1− ζ(x))(|p| − L) for (x, p) ∈ Ω × Rn.

It is clear that h ∈ C(∂Ω) and G satisfies (A5)–(A7), with H replaced by G
In view of the coercivity of H, we may assume by reselecting L if necessary

that for all (x, p) ∈ Ω ×Rn, if |p| > L, then H(x, p) > 0. We now show that v is a
viscosity solution of 



G(x,Dv(x)) ≤ 0 in Ω,

∂v

∂γ
(x) ≤ h(x) on ∂Ω.

(133)

To do this, let x̂ ∈ Ω and p̂ ∈ D+v(x̂). Consider the case where ζ(x̂) > 0, which
implies that x̂ ∈ U . We have η(x) = 1 near the point x̂, which implies that
p̂ ∈ D+u(x̂). As u is a viscosity subsolution of (131), we have H(x̂, p̂) ≤ 0 if x̂ ∈ Ω
and min{H(x̂, p̂), γ(x̂) · p̂− h(x̂)} ≤ 0 if x̂ ∈ ∂Ω. Assume in addition that x̂ ∈ ∂Ω.
By (132), we have γ(x̂) · p̂ ≤M . If |p̂| > L, we have both

γ(x̂) · p̂ ≤ g(x̂) and γ(x̂) · p̂ ≤M.

Hence, if |p̂| > L, then γ(x̂) · p̂ ≤ h(x̂). On the other hand, if |p̂| ≤ L, we have two
cases: in one case we have H(x̂, p̂) ≤ 0 and hence, G(x̂, p̂) ≤ 0. In the other case,
we have γ(x̂) · p̂ ≤ g(x̂) and then γ(x̂) · p̂ ≤ h(x̂). These observations together show
that

min{G(x̂, p̂), γ(x̂) · p̂− h(x̂)} ≤ 0.

We next assume that x̂ ∈ Ω. In this case, we easily see that G(x̂, p̂) ≤ 0.
Next, consider the case where ζ(x̂) = 0, which implies that G(x̂, p̂) = |p̂| − L

and h(x̂) = M . By (132), we immediately see that G(x̂, p̂) ≤ 0 if x̂ ∈ Ω and
min{G(x̂, p̂), γ(x̂) · p̂− h(x̂)} ≤ 0 if x̂ ∈ ∂Ω. We thus conclude that v is a viscosity
solution of (133).

We may invoke Theorem 4.2, to find a collection {vε}ε∈(0,1) ⊂ C1(Ω) such that





G(x,Dvε(x)) ≤ ε for all x ∈ Ω,
∂vε

∂γ
(x) ≤ h(x) for all x ∈ ∂Ω,

‖vε − v‖∞,Ω ≤ ε.
But, this yields





H(x, vε(x)) ≤ ε for all x ∈ V ∩Ω,
∂vε

∂γ
(x) ≤ g(x) for all x ∈ V ∩ ∂Ω,

‖vε − u‖∞,V ∩Ω ≤ ε.

The functions vε have all the required properties. ut
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The above theorem has a version for Hamilton-Jacobi equations of evolution
type.

Theorem A.10. Let U , V be bounded open subsets of Rn×R+ with the properties:
V ⊂ U , U ⊂ Rn × R+ and V ∩Q 6= ∅. Let u ∈ Lip(U ∩Q) be a viscosity solution
of 



ut(x, t) +H(x,Dxu(x, t)) ≤ 0 in U ∩ (Ω × R+),

∂u

∂γ
(x, t) ≤ g(x) on U ∩ (∂Ω × R+).

Then, for each ε ∈ (0, 1), there exists a function uε ∈ C1(V ∩Q) such that





uεt (x, t) +H(x,Dxu
ε(x, t)) ≤ ε in V ∩ (Ω × R+),

∂uε

∂γ
(x, t) ≤ g(x) on V ∩ (∂Ω × R+),

‖uε − u‖∞,V ∩Q ≤ ε.

(134)

Proof. Choose constants a, b ∈ R+ so that U ⊂ Rn × (a, b) and let ρ be a defining
function of Ω. We may assume that ρ is bounded in Rn. We choose a function
ζ ∈ C1(R) so that ζ(t) = 0 for all t ∈ [a, b], ζ′(t) > 0 for all t > b, ζ′(t) < 0 for all
t < a and min{ζ(a/2), ζ(2b)} > ‖ρ‖∞,Ω .

We set

ρ̃(x, t) = ρ(x) + ζ(t) for (x, t) ∈ Rn+1,

Ω̃ = {(x, t) ∈ Rn+1 : ρ̃(x, t) < 0}.

It is easily seen that

Ω̃ ⊂ Ω × (a/2, 2b) and Ω̃ ∩ (Rn × [a, b]) = Ω × [a, b].

Let (x, t) ∈ Rn+1 be such that ρ̃(x, t) = 0. It is obvious that (x, t) ∈ Ω × [a/2, 2b].
If a ≤ t ≤ b, then ρ(x) = 0 and thus Dρ(x) 6= 0. If either t > b or t < a, then

|ζ′(t)| > 0. Hence, we have Dρ̃(x, t) 6= 0. Thus, ρ̃ is a defining function of Ω̃.

Let M > 0 and define γ̃ ∈ C(∂Ω̃,Rn+1) by

γ̃(x, t) =
(
(1 +Mρ(x))+γ(x), ζ′(t)

)
,

where we may assume that γ is defined and continuous in Ω. We note that for any
(x, t) ∈ ∂Ω̃,

γ̃(x, t) ·Dρ̃(x, t) = (1 +Mρ(x))+γ(x) ·Dρ(x) + ζ′(t)2.

Note as well that (1 +Mρ(x))+ = 1 for all x ∈ ∂Ω and

lim
M→∞

(1 +Mρ(x))+ = 0 locally uniformly in Ω.
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Thus we can fix M > 0 so that for all (x, t) ∈ ∂Ω̃,

γ̃(x, t) ·Dρ̃(x, t) = (1 +Mρ(x))+γ(x) ·Dρ(x) + ζ′(t)2 > 0.

Noting that for each x ∈ Ω, the x-section {t ∈ R : (x, t) ∈ Ω̃} of Ω̃ is an open

interval (or, line segment), we deduce that Ω̃ is a connected set. We may assume

that g is defined and continuous in Ω. We define g̃ ∈ C(∂Ω̃) by g̃(x, t) = g(x).

Thus, assumptions (A1)–(A4) hold with n+ 1, Ω̃, γ̃ and g̃ in place of n, Ω, γ and
g.

Let L > 0 be a Lipschitz bound of the function u in U ∩Q. Set

H̃(x, t, p, q) = H(x, p) + q + 2(|q| − L)+ for (x, t, p, q) ∈ Ω̃ × Rn+1,

and note that H̃ ∈ C(Ω̃ × Rn+1) satisfies (A5)–(A7), with Ω replaced by Ω̃.
We now claim that u is a viscosity solution of

{
H̃(x, t,Du(x, t)) ≤ 0 in U ∩ Ω̃,
γ̃(x, t) ·Du(x, t) ≤ g̃(x, t) on U ∩ ∂Ω̃.

Indeed, since U ∩ Ω̃ = U ∩ Q and U ∩ ∂Ω̃ = U ∩ ∂Q, if (x, t) ∈ U ∩ Ω̃ and
(p, q) ∈ D+u(x, t), then we get |q| ≤ L by the cylindrical geometry of Q and, by
the viscosity property of u,

{
q +H(x, p) + 2(|q| − L)+ ≤ 0 if (x, t) ∈ Ω̃,
min{q +H(x, p) + 2(|q| − L)+, γ(x) · p− g(x)} ≤ 0 if (x, t) ∈ ∂Ω̃.

We apply Theorem A.9, to find a collection {uε}ε∈(0,1) ⊂ C1(V ∩ Ω̃ ) such that





H̃(x, t,Duε(x, t)) ≤ ε in V ∩ Ω̃,
γ̃(x, t) ·Duε(x, t) ≤ g̃(x, t) on U ∩ Ω̃,
‖uε − u‖∞,V ∩Ω̃ ≤ ε.

It is straightforward to see that the collection {uε}ε∈(0,1) ⊂ C1(V ∩ Q) satisfies
(134). ut

A.5 A proof of Lemma 5.4

This subsection is mostly devoted to the proof of Lemma 5.4, a version of the
Dunford-Pettis theorem. We also give a proof of the weak-star compactness of
bounded sequences in L∞(J,Rm), where J = [a, b] is a finite interval in R.
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Proof (Lemma 5.4). We define the functions Fj ∈ C(J,Rm) by

Fj(x) =

∫ x

a

fj(t)dt.

By the uniform integrability of {fj}, the sequence {Fj}j∈N is uniformly bounded
and equi-continuous in J . Hence, the Ascoli-Arzela theorem ensures that it has a
subsequence converging to a function F uniformly in J . We fix such a subsequence
and denote it again by the same symbol {Fj}. Because of the uniform integrability
assumption, the sequence {Fj} is equi-absolutely continuous in J . That is, for any
ε > 0 there exists δ > 0 such that

a ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ b,
n∑
i=1

(bi − ai) < δ,

=⇒
n∑
i=1

|fj(bi)− fj(ai)| < ε for all j ∈ N.

An immediate consequence of this is that F ∈ AC(J,Rm). Hence, for some f ∈
L1(J,Rm), we have

F (x) =

∫ x

a

f(t) dt for all x ∈ J.

Next, let φ ∈ C1(J), and we show that

lim
j→∞

∫ b

a

fj(x)φ(x) dx =

∫ b

a

f(x)φ(x) dx. (135)

Integrating by parts, we observe that as j →∞,

∫ b

a

fj(x)φ(x) dx =
[
Fjφ

]b
a
−
∫ b

a

Fj(x)φ′(x) dx

→ [
Fφ
]b
a
−
∫ b

a

F (x)φ′(x) dx =

∫ b

a

f(x)φ(x) dx.

Hence, (135) is valid.
Now, let φ ∈ L∞(J). We regard the functions fj , f, φ as functions defined in R

by setting fj(x) = f(x) = φ(x) = 0 for x < a or x > b. Let {kε}ε>0 be a collection
of standard mollification kernels. We recall that

lim
ε→0
‖kε ∗ φ− φ‖L1(J) = 0, (136)

|kε ∗ φ(x)| ≤ ‖φ‖L∞(J) for all x ∈ J, ε > 0. (137)

Fix any δ > 0. By the uniform integrability assumption, we have

M := sup
j∈N
‖fj − f‖L1(J) <∞.
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Let α > 0 and set
Ej := {x ∈ J : |(fj − f)(x)| > α}.

By the Chebychev inequality, we get

|Ej | ≤ M

α
.

By the uniform integrability assumption, if α > 0 is sufficiently large, then
∫

Ej

|(fj − f)(x)| dx < δ. (138)

In what follows we fix α > 0 large enough so that (138) holds. We write
fj − f = gj + bj , where gj = (fj − f)(1− 1Ej ) and bj = (fj − f)1Ej . Then,

|gj(x)| ≤ α for all x ∈ J and ‖bj‖L1(J) < δ.

Observe that

Ij :=

∫

J

fj(x)φ(x) dx−
∫

J

f(x)φ(x) dx

=

∫

J

(fj − f)(x) kε ∗ φ(x) dx+

∫

J

(fj − f)(x)(φ− kε ∗ φ)(x) dx

and
∣∣∣
∫

J

(fj − f)(x)(φ− kε ∗ φ)(x) dx
∣∣∣

≤
∣∣∣
∫

J

gj(x)(φ− kε ∗ φ)(x) dx
∣∣∣+
∣∣∣
∫

J

bj(x)(φ− kε ∗ φ)(x) dx
∣∣∣

≤ α‖kε ∗ φ− φ‖L1(J) + 2δ‖φ‖L∞(J).

Hence, in view of (135) and (136), we get lim supj→∞ |Ij | ≤ 2δ‖φ‖L∞(J). As δ > 0
is arbitrary, we get limj→∞ Ij = 0, which completes the proof. ut

As a corollary of Lemma 5.4, we deduce that the weak-star compactness of
bounded sequences in L∞(J,Rm):

Lemma A.7. Let J = [a, b], with −∞ < a < b < ∞. Let {fk}k∈N be a bounded
sequence of functions in L∞(J,Rm). Then {fk} has a subsequence which converges
weakly-star in L∞(J,Rm).

Proof. Set M = supk∈N ‖fk‖L∞(J). Let E ⊂ J be a measurable set, and observe
that ∫

E

|fk(t)|dt ≤M |E| for all k ∈ N,

which shows that the sequence {fk} is uniformly integrable in J . Thanks to Lemma
5.4, there exists a subsequence {fkj}j∈N of {fk} which converges to a function f
weakly in L1(J,Rm).
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Let i ∈ N and set Ei = {t ∈ J : |f(t)| > M+1/i} and gi(t) = 1Ei(t)f(t)/|f(t)|
for t ∈ J . Since gi ∈ L∞(J,Rm), we get

∫

J

fkj (t) · gi(t)(t)dt→
∫

J

|f(t)|1Ei(t)dt as j →∞.

Hence, using the Chebychev inequality, we obtain

(
M +

1

i

)|Ei| ≤
∫

J

|f(t)|1Ei(t)dt ≤
∫

J

M1Ei(t)dt = M |Ei|,

which ensures that |Ei| = 0. Thus, we find that |f(t)| ≤M a.e. in J .
Now, fix any φ ∈ L1(J,Rm). We select a sequence {φi}i∈N ⊂ L∞(J,Rm) so

that, as i→∞, φi → φ in L1(J,Rm). For each i ∈ N, we have

lim
j→∞

∫

J

fkj (t) · φi(t)dt =

∫

J

f(t) · φi(t)dt.

On the other hand, we have

∣∣∣
∫

J

fkj (t) · φ(t)dt−
∫

J

fkj (t) · φi(t)dt
∣∣∣ ≤M‖φ− φi‖L1(J) for all j ∈ N

and ∣∣∣
∫

J

f(t) · φ(t)dt−
∫

J

f(t) · φi(t)dt
∣∣∣ ≤M‖φ− φi‖L1(J).

These together yield

lim
j→∞

∫

J

fkj (t) · φ(t)dt =

∫

J

f(t) · φ(t)dt. ut

A.6 Rademacher’s theorem

We give here a proof of Rademacher’s theorem.

Theorem A.11 (Rademacher). Let B = B1 ⊂ Rn and f ∈ Lip(B). Then f is
differentiable almost everywhere in B.

To prove the above thoerem, we mainly follow the proof given in [1].

Proof. We first show that f has a distributional gradient Df ∈ L∞(B).
Let L > 0 be a Lipschitz bound of the function f . Let i ∈ {1, 2, ..., n} and ei

denote the unit vector in Rn with unity as the i-th entry. Fix any φ ∈ C1
0 (B) and

observe that
∫

B

f(x)φxi(x)dx = lim
r→0+

∫

B

f(x)
φ(x+ rei)− φ(x)

r
dx

= lim
r→0+

∫

B

f(x− rei)− f(x)

r
φ(x)dx
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and ∣∣∣
∫

B

f(x)φxi(x)dx
∣∣∣ ≤ L

∫

B

|φ(x)|dx ≤ L|B|1/2‖φ‖L2(B).

Thus, the map

C1
0 (B) 3 φ 7→ −

∫

B

f(x)φxi(x)dx ∈ R

extends uniquely to a bounded linear functional Gi on L2(B). By the Riesz repre-
sentation theorem, there is a function gi ∈ L2(B) such that

Gi(φ) =

∫

B

gi(x)φ(x)dx for all φ ∈ L2(B).

This shows that g = (g1, ..., gn) is the distributional gradient of f .
We plug the function φ ∈ L2(B) given by φ(x) = (gi(x)/|gi(x)|)1Ek (x), where

k ∈ N and Ek = {x ∈ B : |gi(x)| > L + 1/k}, into the inequality |Gi(φ)| ≤
L‖φ‖L1(B), to obtain

∫

B

|gi(x)|1Ek (x)dx ≤ L
∫

B

1Ek (x)dx = L|Ek|,

which yields
(L+ 1/k)|Ek| ≤ L|Ek|.

Hence, we get |Ek| = 0 for all k ∈ N and |{x ∈ B : |gi(x)| > L}| = 0. That is,
gi ∈ L∞(B) and |gi(x)| ≤ L a.e. in B.

The Lebesgue differentiation theorem (see [58]) states that for a.e. x ∈ B, we
have g(x) ∈ Rn and

lim
r→0+

1

rn

∫

Br

|g(x+ y)− g(x)|dy = 0. (139)

Now, we fix such a point x ∈ B and show that f is differentiable at x. Fix an
r > 0 so that Br(x) ⊂ B. For δ ∈ (0, r), consider the function hδ ∈ C(B) given by

hδ(y) =
f(x+ δy)− f(x)

δ
.

We claim that
lim
δ→0

hδ(y) = g(x) · y uniformly for y ∈ B. (140)

Note that hδ(0) = 0 and hδ is Lipschitz continuous with Lipschitz bound L.
By the Ascoli-Arzela theorem, for any sequence {δj} ⊂ (0, r) converging to zero,

there exist a subsequence {δjk}k∈N of {δj} and a function h0 ∈ C(B) such that

lim
k→∞

hδjk (x) = h0(y) uniformly for y ∈ B.

In order to prove (140), we need only to show that h0(y) = g(x) · y for all y ∈ B.
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Since hδ(0) = 0 for all δ ∈ (0, r), we have h0(0) = 0. We observe from (139)
that

∫

B

|g(x+ δy)− g(x)|dy =

∫

Bδ

|g(x+ y)− g(x)|δ−ndy → 0 as δ → 0.

Using this, we compute that for all φ ∈ C1
0 (B),

∫

B

h0(y)φyi(y)dy = lim
k→∞

∫

B

hδjk (y)φyi(y)dy

= − lim
k→∞

∫

B

gi(x+ δjky)φ(y)dy

= −
∫

B

gi(x)φ(y)dy =

∫

B

g(x) · yφyi(y)dy.

This guarantees that h0(y) − g(x) · y is constant for all y ∈ B while h0(0) = 0.
Thus, we see that h0(y) = g(x) · y for all y ∈ B, which proves (140).

Finally, we note that (140) yields

f(x+ y) = f(x) + g(x) · y + o(|y|) as y → 0. ut
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