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Summary. We present an introduction to the theory of viscosity solutions of first-
order partial differential equations and a review on the optimal control/dynamical
approach to the large time behavior of solutions of Hamilton-Jacobi equations,
with the Neumann boundary condition. This article also includes some of basics of
mathematical analysis related to the optimal control/dynamical approach for easy
accessibility to the topics.

In memory of Riichi lino, my former adviser at Waseda University.

Introduction

This article is an attempt to present a brief introduction to viscosity solutions
of first-order partial differential equations (PDE for short) and to review some
aspects of the large time behavior of solutions of Hamilton-Jacobi equations with
Neumann boundary conditions.

The notion of viscosity solution was introduced in [20] (see also [18]) by M. G.
Crandall and P.-L. Lions, and it has been widely accepted as the right notion of
generalized solutions of the first-order PDE of the Hamilton-Jacobi type and fully
nonlinear (possibly degenerate) elliptic or parabolic PDE. There have already been
many nice contributions to overview of viscosity solutions of first-order and/or

* Supported in part by JSPS KAKENHI (#20340019, #21340032, #21224001,
#23340028, and #23244015).
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second-order partial differential equations. The following list touches just a few of
them: [47, 6, 2, 29, 19, 15, 42].

This article is meant to serve as a quick introduction for graduate students or
young researchers to viscosity solutions and is, of course, an outcome of the lectures
delivered by the author at the CIME school as well as at Waseda University, College
de France, Kumamoto University, King Abdulaziz University and University of
Tokyo. For its easy readability, it contains some of very basics of mathematical
analysis which are usually left aside to other textbooks.

The first section is an introduction to viscosity solutions of first-order partial
differential equations. As a motivation to viscosity solutions we take up an optimal
control problem and show that the value function of the control problem is char-
acterized as a unique viscosity solution of the associated Bellman equation. This
choice is essentially the same as used in the book [47] by P.-L. Lions as well as in
[6, 29, 2, 31].

In Sections 2-5, we develop the theory of viscosity solutions of Hamilton-Jacobi
equations with the linear Neumann boundary condition together with the corre-
sponding optimal control problems, which we follow [39, 38, 8]. In Section 6, fol-
lowing [38], we show the convergence of the solution of Hamilton-Jacobi equation
of evolution type with the linear Neumann boundary condition to a solution of the
stationary problem.

The approach here to the convergence result depends heavily on the variational
formula for solutions, that is, the representation of solutions as the value function
of the associated control problem. There is another approach, due to [3], based on
the asymptotic monotonicity of a certain functional of the solutions as time goes
to infinity, which is called the PDE approach. The PDE approach does not depend
on the variational formula for the solutions and provides a very simple proof of
the convergence with sharper hypotheses. The approach taken here may be called
the dynamical or optimal control one. This approach requires the convexity of
the Hamiltonian, so that one can associate it with an optimal control problem.
Although it requires lots of steps before establishing the convergence result, its
merit is that one can get an interpretation to the convergence result through the
optimal control representation.

The topics covered in this article are very close to the ones discussed by G.
Barles [4]. Both are to present an introduction to viscosity solutions and to discuss
the large time asymptotics for solutions of Hamilton-Jacobi equations. This article
has probably a more elementary flavor than [4] in the part of the introduction to
viscosity solutions, and the paper [4] describes the PDE-viscosity approach to the
large time asymptotics while this article concentrates on the dynamical or optimal
control approach.

The reference list covers only those papers which the author more or les con-
sulted while he was writing this article, and it is far from a complete list of those
which have contributed to the developments of the subject.

The author would like to thank the course directors, Paola Loreti and Nicoletta
Tchou, for their encouragement and patience while he was preparing this article.
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Notation:

e When F is a set of real-valued functions on X, sup F and inf F denote the
functions on X given, respectively, by

(sup F)(z) :=sup{f(z) : f€F} and (infF)(z):=inf{f(z): f € F}.

e For any a,b € R, we write a A b = min{a, b} and a V b = max{a, b}. Also, we
write a4+ = a V0 and a— = (—a)+.

e A function w € C([0, R)), with 0 < R < o0, is called a modulus if it is
nondecreasing and satisfies w(0) = 0.

e Forany z = (21,....,%n),y = (Y1, ..., yn) € R", z-y denotes the Euclidean inner
product z1y1 + -+ + Tpy, of x and y.

e For any z,y € R” the line segment between z and y is denoted by [z,y] :=
{1—-t)z+ty : t€]0,1]}.

e For k € Nand 2 C R*, C¥(2,R™) (or simply, C*(£2,R™)) denotes the col-
lection of functions f : 2 — R™ (not necessarily open), each of which has an
open neighborhood U of £ and a function g € C*(U) such that f(z) = g(z)
for all z € (2.

e For f € C(£2,R™), where 2 C R", the support of f is defined as the closure
of {x € 2 : f(x) # 0} and is denoted by supp f.

e UC(X) (resp., BUC(X)) denotes the space of all uniformly continuous (resp.,
bounded, uniformly continuous) functions in a metric space X.

e We write 1g for the characteristic function of the set E. That is, 1g(z) = 1 if
z € F and 1g(x) = 0 otherwise.

e The sup-norm of function f on a set 2 is denoted by | f|lec,2 = || flloc =
supg, | f.

We write R4 for the interval (0, co).
For any interval J C R, AC(J,R™) denotes the space of all absolutely contin-
uous functions in J with value in R™.

e Given a convex Hamiltonian H € C(£2 x R™), where £2 C R" is an open set,
we denote by L the Lagrangian given by

L(z,&) = sup (& -p— H(z,p)) for (z,6) € 2 x R".
peER™
e Let 2 C R™ be an open subset of R*, g € C(92,R), t > 0 and (n,v,1)

S
L*([0, ],R™ x R™ x R) such that n(s) € 2 for all s € [0,¢] and I(s) = 0
whenever 7n(s) € 2. We write

L(t,n,v,1) :/0 [L(n(s), —v(s)) + g(n(s))l(s)]ds.

1 Introduction to viscosity solutions

We give the definition of viscosity solutions of first-order PDE and study their
basic properties.
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1.1 Hamilton-Jacobi equations

Let {2 be an open subset of R™. Given a function H : 2 x R"™ — R, we consider
the PDE
H(z,Du(x)) =0 1in £, (1)

where Du denotes the gradient of u, that is,
Du = (Ugy, Uzs s -y Usy, ) = (Ou/Oz1, ..., Ou/0zy).
We also consider the PDE
ut(z,t) + H(z, Dyu(z,t)) =0 in 2 x (0, 00). (2)

Here the variable t may be regarded as the time variable and u: denotes the time
derivative Ou/dt. The variable x is then regarded as the space variable and D,u
(or, Du) denotes the gradient of u in the space variable x.

The PDE of the type of (1) or (2) are called Hamilton-Jacobi equations. A
more concrete example of (1) is given by

|Du(z)| = k(z),

which appears in geometrical optics and describes the surface front of propagating
waves. Hamilton-Jacobi equations arising in Mechanics have the form

| Du(x)|* +V(z) =0,

where the terms |Du(z)|? and V(z) correspond to the kinetic and potential ener-
gies, respectively.
More generally, the PDE of the form

F(z,u(z), Du(z)) =0 in 2 (3)

may be called Hamilton-Jacobi equations.

1.2 An optimal control problem

We consider the function
X =X©) = (X1(t), X2(t), ..., Xn(t)) e R"

of time t € R, and
. . dx
X=X({t)=—1(t
(="
denotes its derivative. Let A C R™ be a given set, let g : R" x A — R", f :
R™ x A — R be given functions and A > 0 be a given constant. We denote by A
the set of all Lebesgue measurable « : [0, c0) — A.
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Fix any z € R™ and o € A, and consider the initial value problem for the
ordinary differential equation (for short, ODE)
X(t) = g(X(t),a(t)) for ae.t >0, @
X(0) = x.

The solution of (4) will be denoted by X = X (t) = X (¢;x, ). The solution X (¢)
may depend significantly on choices of a € A. Next we introduce the functional

J(z,0) = / " HEX ), alt))e ™ dt, (5)

a function of  and o € A, which serves a criterion to decide which choice of « is
better. The best value of the functional J is given by
Viz) = ;2& J(z,a). (6)
This is an optimization problem, and the main theme is to select a control a =
oz € A so that
V(z) = J(z, ).

Such a control « is called an optimal control. The ODE in (4) is called the dynamics
or state equation, the functional J given by (5) is called the cost functional, and
the function V' given by (6) is called the value function. The function f or t +—
e M F(X(t), a(t)) is called the running cost and X is called the discount rate.

In what follows, we assume that f,g are bounded continuous functions on
R™ x A and moreover, they satisfy the Lipschitz condition, i.e., there exists a
constant M > 0 such that

lf(z,a)l <M, |g(z,a)] < M,
|f(z,a) = f(y,a)| < M|z -y, (7)
l9(z,a) — g(y,a)] < M|z —yl.

A basic result in ODE theory guarantees that the initial value problem (4) has a

unique solution X ().
There are two basic approaches in optimal control theory.

(1) Pontryagin’s Maximum Principle Approach.
(2) Bellman’s Dynamic Programming Approach.

Both of approaches have been introduced and developed since 1950’s.
Pontryagin’s maximum principle gives a necessary condition for the optimality
of controls and provides a powerful method to design an optimal control.
Bellman’s approach associates the optimization problem with a PDE, called
the Bellman equation. In the problem, where the value function V is given by (6),
the corresponding Bellman equation is the following.

AV (z)+ H(z,DV(z)) =0 inR", (8)
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where H is a function given by
H(.’E,p) = Sug{ig(xv CL) P - f(xv CL)},
ac

with z -y denoting the Euclidean inner product in R™. Bellman’s idea is to charac-
terize the value function V' by the Bellman equation, to use the characterization to
compute the value function and to design an optimal control. To see how it works,
we assume that (8) has a smooth bounded solution V' and compute formally as
follows. First of all, we choose a function a : R" — A so that

H(z, DV (z)) = —g(z,a(z)) - DV () — f(,a(z)),
and solve the initial value problem
X(0) =g(X(0),a(X(1),  X(0)=ws,

where z is a fixed point in R™. Next, writing «(t) = a(X(t)), we have
0:/ e MOV(X (1) + H(X(t), DV (X (1)) dt
0

= /oo e (AV(X () — g(X (1), a(t) - DV(X (1)) — f(X(t), a(t)) dt

0

= [T (e V) - X .a0)) a

—V(X(0)) - / T e (X (1), alt)) dt.
Thus we have
Viz) = J(z,a).

If PDE (8) characterizes the value function, that is, the solution V is the value
function, then the above equality says that the control a(t) = a(X(t)) is an optimal
control, which we are looking for.

In Bellman’s approach PDE plays a central role, and we discuss this approach in
what follows. The first remark is that the value function may not be differentiable
at some points. A simple example is as follows.

Ezample 1.1. We consider the case where n =1, A = [-1,1] C R, f(z,a) = 6712,
g(z,a) = a and A = 1. Let X (t) be the solution of (4) for some control a € A,
which means just to satisfy

IX(#)| <1 ae t>0.

Let V be the value function given by (6). Then it is clear that V(—z) = V(z) for
all x € R and that



Introduction to viscosity solutions and the large time ... 7

Viz) = / et @ qp — ez/ L TR T > 0.

0 x

For x > 0, one gets
o2 .2
V’(m)zex/ e T dt—e™",
and

V' _ 2 < _
(0+) = e dt —1< e "dt—1=0.
0 0

This together with the symmetry property, V(—z) = V(z) for all z € R, shows
that V is not differentiable at = = 0.

Value functions in optimal control do not have enough regularity to satisfy, in
the classical sense, the corresponding Bellman equations in general as the above
example shows.

We introduce the notion of viscosity solution of the first-order PDE

F(z,u(z), Du(z)) =0 in £, (FE)
where F' : 2 X R x R"™ — R is a given continuous function.
Definition 1.1. (i) We call u € C(£2) a viscosity subsolution of (FE) if
¢ €CH(R2), 2 € 2, max(u—¢) = (u—¢)(2)
{ = F(z,u(z), D$(2)) < 0.
(ii) We call u € C(£2) a viscosity supersolution of (FE) if
¢ € CH(R2), z € 2, min(u—¢) = (u—9¢)(2)
{ = F(z,u(z),D¢(z)) > 0.

(iif) We callu € C(£2) a viscosity solution of (FE) if u is both a viscosity subsolution
and supersolution of (FE).

The viscosity subsolution or supersolution property is checked through smooth
functions ¢ in the above definition, and such smooth functions ¢ are called test
functions.

Remark 1.1. If we set F~(z,r,p) = —F(x,—r, —p), then it is obvious that u
C(£2) is a viscosity subsolution (resp., supersolution) of (FE) if and only if u™ (z) :
—u(z) is a viscosity supersolution (resp., subsolution) of

S

F~ (z,u (z),Du (x))=0 in {2.

Note also that (F~)” = F and (u~)~ = u. With these observations, one property
for viscosity subsolutions can be phrased as a property for viscosity supersolu-
tions. In other words, every proposition concerning viscosity subsolutions has a
counterpart for viscosity supersolutions.
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Remark 1.2. 1t is easily seen by adding constants to test functions that u € C'(£2)
is a viscosity subsolution of (FE) if and only if

{¢ e C' (), z€ N, max(u — ¢) = (u—¢)(z) =0
= F(2,¢(2), Dé(2)) < 0.

One can easily formulate a counterpart of this proposition for viscosity supersolu-
tions.

Remark 1.3. Tt is easy to see by an argument based on a partition of unity (see
Appendix A.1) that u € C({2) is a viscosity subsolution of (FE) if and only if
¢ € Cl(.Q), z € {2, u — ¢ attains a local maximum at z
= F(z,¢(2), Dé(z)) < 0.

Remark 1.4. 1t is easily seen that u € C({2) is a viscosity subsolution of (FE) if
and only if

¢ e C' (), z€ N2, u— ¢ attains a strict maximum at z
= F(z,¢(2),Dp(z)) <O0.

Similarly, one may replace “strict maximum” by “strict local maximum” in the
statement. The idea to show these is to replace the function ¢ by ¢(x) + |z — 2|
when needed.

Remark 1.5. The condition, ¢ € C*(£2), can be replaced by the condition, ¢ €
C*°(£2) in the above definition. The argument in the following example explains
how to see this equivalence.

Ezample 1.2 (Vanishing viscosity method). The term “viscosity solution” originates
to the vanishing viscosity method, which is a one of classical methods to construct
solutions of first-order PDE.

Consider the second-order PDE

—eAu + F(z,u’(z), Du®(z)) =0 in £, (9)

where € > 0 is a parameter to be sent to zero later on, {2 is an open subset of R",
F is a continuous function on 2 X R x R™ and A denotes the Laplacian
92 0?

:Tﬁ+"'+@'

A
We assume that functions u¢ € C?(£2), with € € (0,1), and u € C(£2) are given
and that

liH(l) u®(z) = u(z) locally uniformly on (2.
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Then the claim is that u is a viscosity solution of
F(z,u(z), Du(z)) =0 in (2. (FE)

In what follows, we just check that u is a viscosity subsolution of (FE). For
this, we assume that

¢eC' (), &€, max(u—¢)=(u—¢)),
and moreover, this maximum is a strict maximum of u — ¢. We need to show that

F(2,u(),D¢(2)) < 0. (10)

First of all, we assume that ¢ € C?(£2), and show that (10) holds. Fix an
r > 0 so that B.(2) C £2. Let z. be a maximum point over B,(Z) of the function
u® — ¢. We may choose a sequence {e;};en C (0, 1) so that lim; .o e; = 0 and
lim; o0 z-; = y for some y € Er(i’). Observe that

(u—¢)(&) < (u = ¢)(2) + |lu — u |0, B, (2)
T = d)(xe;) + |u— uT oo, B ()

)
—¢)

Accordingly, since % is a strict maximum point of u— ¢, we see that y = . Hence, if
J is sufficiently large, then z.; € B,(2). By the maximum principle from Advanced
Calculus, we find that

0 . 0?

a—ﬁni(ugJ — ¢)(ze;) =0 and 8—%2(115" —¢)(z;) <0 forall i=1,2,...,n

VAN VANVAN

Te;) + 2[|u™ — ulloo, B, (2)

l

(u
(u
(u—9)(
(u—9)(

y) asj— oo.

Hence, we get
Du® (xe;) = Dé(ze;), Au(xe;) < Ad(ze,).
These together with (9) yield
—ejA(xc;) + Flxe;,u (), Do(z:,)) < 0.

Sending j — oo now ensures that (10) holds.
Finally we show that the C? regularity of ¢ can be relaxed, so that (10) holds

for all ¢ € C'(£2). Let r > 0 be the constant as above, and choose a sequence
{¢r} C C=() so that

kli»Holo ox(z) = ¢(x) uniformly on B, (%).

Let {yx} C B.(Z) be a sequence consisting of a maximum point of u — ¢5. An
argument similar to the above yields
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klirgo Yk = T.

If k is sufficiently large, then we have yi, € B.(#) and, due to (10) valid for C? test
functions,
F(yr, u(yx), Dor(yx)) < 0.

Sending k — oo allows us to conclude that (10) holds.

1.3 Characterization of the value function

In this subsection we are concerned with the characterization of the value function
of V' by the Bellman equation

AV (z)+ H(z,DV(z)) =0 inR", (11)
where A is a positive constant and

H(z,p) = 323{—9(% a)-p— f(z,a)}.

Recall that
V(z) = inf J(z,a),

acA

J(z,a) = /0oo FX (@), at))e™ M dt,

where X (t) = X (t; x, o) denotes the solution of the initial value problem

{ (t)
X(0) =

Recall also that for all (xz,a) € R™ X A and some constant M > 0,

and

( (t),a(t)) forae.t>0,

)
|f(z,a)] < M, lg(z,a)] < M,
If(z,a) = f(y,a)| < Mz —yl, (12)
lg(z,a) — g(y,a)| < M|z —y|.

The following lemma will be used without mentioning, the proof of which may
be an easy exercise.

Lemma 1.1. Let h,k : A — R be bounded functions. Then

sup h(a) — sup k(a)| vV
acA acA

inf h(a) - inf k(a)| < sup |h(a) — k(a)].

In view of the above lemma, the following lemma is an easy consequence of
(12), and the detail of the proof is left to the reader.
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Lemma 1.2. The Hamiltonian H satisfies the following inequalities:

|H(x,p) — H(y,p)| < M|z —yl(|p| + 1) for all x,y,p € R",
|H(x,p) — H(z,q)| < M|p — q| for all z,p,q € R".

In particular, we have H € C(R™ x R™).
Proposition 1.1. The inequality
M
\% < =
V) <X
holds for all z € R™. Hence, the value function V is bounded on R™.

Proof. For any (z,a) € R™ x A, we have

e /0°° e F(X (1), a(t))] dt < M/O‘”e*“ ar="20

Applying Lemma 1.1 yields

M
[V (z)| < sup |J(z,a)] < —.
acEA A
Proposition 1.2. The function V is Hélder continuous on R™.

Proof. Fix any z,y € R". For any o € A, we estimate the difference of J(z, «)
and J(y,a). To begin with, we estimate the difference of X (t) := X (¢;z,«) and
Y (t) := X (¢;y, «). Since

X () — Y ()] =]g(X (1), a(t) — g(Y (1), a(t))]
<M|X(t)-Y(t)] forae. t>0,

we find that
[X(5) = Y (0)] <[X(0) = Y (0)] + / K (5) - V(o)) ds
<l|z —vy| +M/75 |X(s) —Y(s)|ds forall t>0.
0
By applying Gronwall’s inequality, we get

IX(t)—Y(@t)| <|z—yleM forall t>0.

Next, since

(. a) - J(y,0)| < / T e F(X (5),als)) — F(V(s), a(s))] ds,

0
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if A > M, then we have

|J(z,a) — J(y,a)| < /Ooo e MM|X(s) = Y(s)|ds

< M/o e Mz —yleM* ds = 7A§|i;\/fyl7
and
V(@) - V)l < e~y (13)
WI=x—m* o

If 0 < A < M, then we select 0 < 6§ < 1 so that M < A, and calculate

£(&a) = f(n, )| <IF(€ a) = fn,@)|" T
< (Mg —n)? (M)~ forall £,neR"ac A,

and

T (2,0) — Iy, )| < (20)1 / T e (MIX (s) — Y(s)])’ ds

<(2M)'° / e M (Mlz —y|)?e®* ds
0

® e 2M |z —y|°
§2M|x—y|0/ e ATOM)s g = 218 I
o A —OM

which shows that .
2M |z — y|
— < —————. 14
Vi) - Vi) < 22 (14
Thus we conclude from (13) and (14) that V' is Holder continuous on R™. O

Proposition 1.3 (Dynamic programming principle). Let 0 < 7 < oo and
x € R™. Then

V) = it ([ MO, a)d+ e VX)),

acA 0
where X (t) denotes X (t; z, o).

Proof. Let 0 < 7 < oo and « € R". Fix v € A. We have

_ Te—kt ooe—At
J(a,y) = / FOX(8),(0)) dt + / FOX(8), () dt "

- / "o (X (1), at)) db + e / T e p(v (1), A1) dt,

0
where

X(t) =Xtz y), at) =), BE):=~(t+71),
Y(t):=X({t+7)= X X(1),0).
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By (15), we get

() > / "M (X (1), alt)) dt + e V(X (7)),
0
from which we have

J(z,7) > inf (/O e*“f(X(t),a(t))dt+e**TV(X(T))).

acA

Consequently,

V(z) > inf (/0 e P (D), a(t) di + e TV(X()).

acA

Now, let «, 3 € A. Define v € A by

o) = {a(t) if 0<t<r,
B T

Set
X(t):=X(t;z,a) and  Y(t):= X (X (7),0).

We have

X(t)=X(t;z,v) and «at)=~(() forall te]o0, ],
Bt)=~(t+7) and Y(t)=X(t+7) forall ¢t>0.

Hence, we have (15) and therefore,
V() < /0 e M F(X(8), a(t)) dE + e T I(X(7), B).
Moreover, we get
V@) < [ e X0 a0) e+ e V),
and

V(z) < inf (/T e*“f(X(t),a(t))dt+e*”V(X(T))).

acA 0
Combining (16) and (17) completes the proof. 0O

Theorem 1.1. The value function V is a viscosity solution of (11).

13

(17)
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Proof. (Subsolution property) Let ¢ € C'(R™) and # € R", and assume that
(V = 9)(&) = max(V — ¢) = 0.

Fix any a € A and set a(t) := a, X(t) := X(¢; &, ). Let 0 < h < oo. Now, since
V < ¢, V(Z) = ¢(&), by Proposition 1.3 we get

h
(@) =V(2) < / M F(X (1), a(t)) dt + e V(X (h))

0

IN

h
/ (X (1), a(t)) dt + e N G(X (1)),

0

From this, we get

h t
og/o e_Mf(X(t),a)dt—F/O %(e_’\tqb(X(t)))dt

h .
- / e (F(X(1), @) = A(X (1) + DO(X (1)) - X (1)) dt (18)

0

:/ M (F(X(8),a) = AS(X (1) + D(X (1)) - 9(X (1), a)) dt.

0

Noting that

t) — 2 = ’/X ds)</|g |ds<M/ ds=Mt,  (19)
dividing (18) by h and sending h — 0, we find that

0 < —A(&) + f(&,a) + g(&,a) - DP().

Since a € A is arbitrary, we have A¢p(&) + H(Z, Do(z)) < 0.
(Supersolution property) Let ¢ € C*(R™) and & € R", and assume that

(V = ¢)(#) = min(V — ¢) = 0.
Fix ¢ > 0 and h > 0. By Proposition 1.3, we may choose a € A so that
V(&) 4 eh > /Oh e ME(X (1), at)) dt + e V(X (R)),
where X (t) := X(t;#,a). Since V > ¢ in R" and V(2) = ¢(2), we get
#(2) +¢eh > /Oh e MF(X (L), at)) dt + e M p(X (h)).

Hence we get
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" —At td —At
0> / (X atm)dt+ [ G OX (1)) dt — oh
h .
- / e (F(X (D), (1) — AS(X (1) + DO(X (1)) - X (1)) dt —eh (20)

= / M (FX(®), alt)) = AG(X (1)) + DH(X (1)) - g(X (), (1)) dt — eh.

0

By the definition of H, we get

/h e_)\t()\(z’(X(t)) + H(X(t), Do(t))dt +eh > 0.

As in (19), we have
| X (t) — & < Mt.
Dividing (20) by h and sending h — 0 yield

AG(2) + H(&, Dp(£)) + & > 0,
from which we get Ap(&) + H(Z, Dé(£)) > 0. The proof is now complete. O

Theorem 1.2. Let v € BUC(R™) and v € BUC(R™) be a viscosity subsolution and
supersolution of (11), respectively. Then u < v in R™.

Proof. Let £ > 0, and define u. € C(R"™) by u.(z) = u(z) — e({x) + M), where
(z) = (|z]? +1)*/2. A formal calculation

ue(x) + H(z, Duc(z)) <u(z) —eM + H(x, Du(z)) + eM|D(z)|
<wu(z) + H(z, Du(z)) <0

reveals that u. is a viscosity subsolution of (11), which can be easily justified.
We show that the inequality u. < v holds, from which we deduce that u < v is
valid. To do this, we assume that supgn (ue — v) > 0 and will get a contradiction.
Since
lim (ue —v)(z) = —o0,

|&|—o0

we may choose a constant R > 0 so that

sup (ue —v) < 0.
R™"\Br

The function u: — v € C(ER) then attains a maximum at a point in Bgr, but not
at any point in 0Bg.
Let a > 1 and consider the function

D(x,y) = us(x) — v(y) — afe —y[*



16 Hitoshi Ishii

on K := Br x Bg. Since & € C(K), & attains a maximum at a point in K. Let
(a,Ya) € K be its maximum point. Because K is compact, we may choose a
sequence {a;} C (1, oco) diverging to infinity so that for some (Z,9) € K,
(xaj7y04j) - (:%7?) aSjHOO.
Note that
0 < max(ue —v) = max &(z,z) < P(Ta, Ya)
Br ©€BR (21)
2
= ue(Ta) = v(Ya) — alTa — Yol
from which we get
alra — yo‘|2 < sup ue + sup(—v).
R‘VL ]Rﬂ,

We infer from this that £ = §. Once again by (21), we get

Jf%ax(u5 —v) < ue(xa) — V(Ya)-

Setting o = «; and sending j — oo in the above, since u, v € C(R™), we see that

max(u: —v) € m(ue(wa) — v(ya))
ER a=aj,j—00

= us(2) — v(&).
That is, the point % is a maximum point of u. — v. By (21), we have

alza = yal® < ue(wa) — v(ya) — max(u —v),
Br

and hence

lim  alze — yo¢|2 =0.

a:ozj,jﬁoo
Since & is a maximum point of u. — v, by our choice of R we see that & € Br.
Accordingly, if @ = «; and j is sufficiently large, then x4, yo € Br. By the viscosity
property of u. and v, for @« = o; and j € N large enough, we have

Ue(za) + H(2a,20(Ta = ya)) <0, 0(ya) + H(Ya,20(za — ya)) 2 0.
Subtracting one from the other yields
Ue(Ta) = v(ya) < H(Ya, 20(Ta = ya)) = H(Za, 20(Ta — ya))-
Using one of the properties of H from Lemma 1.2, we obtain
Ue(Ta) — V(Ya) < M|za — Ya|(2a|za — yal| + 1).
Sending a = a; — 00, we get
ue(2) —v(z) <0,

which is a contradiction. 0O
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1.4 Semicontinuous viscosity solutions and the Perron method

Let u,v € C(£2) be a viscosity subsolutions of (FE) and set
w(z) = max{u(x),v(z)} for x € 2.

It is easy to see that w is a viscosity subsolution of (FE). Indeed, if ¢ € C*(£2),
y € 2 and w — ¢ has a maximum at y, then we have either w(y) = u(y) and
(u—0)(x) < (w—¢)(x) < (w—)(y) = (u—¢)(y) for all z € 12, or w(y) = v(y)
and (v—¢)(z) < (v—09)(y), from which we get F(y, w(y), Dp(y)) < 0. If {ug tren C
C() is a uniformly bounded sequence of viscosity subsolutions of (FE), then the
function w given by w(z) = sup, ur(z) defines a bounded function on {2 but it
may not be continuous, a situation that the notion of viscosity subsolution does
not apply.

We are thus led to extend the notion of viscosity solution to that for discon-
tinuous functions.

Let U C R", and recall that a function f : U — RU {—o00,00} = [—00, oq] is
upper semicontinuous if

limsup f(y) < f(z) forall z e U.

y—x

The totality of all such upper semicontinuous functions f will be denoted by
USC(U). Similarly, we denote by LSC(U) the space of all lower semicontinuous
functions on U. That is, LSC(U) := —USC(U) = {—f : f € USC(U)}.

Some basic observations regarding semicontinuity are the following three propo-
sitions.

Proposition 1.4. Let f : U — [—o00, o0]. Then, f € USC(U) if and only if the
set {x € U : f(z) < a} is a relatively open subset of U for any a € R.

Proposition 1.5. If F C LSC(U), then supF € LSC(U). Similarly, if F C
USC(U), then inf F € USC(U).

Proposition 1.6. Let K be a compact subset of R™ and f € USC(K). Then f
attains a mazimum. Here the mazimum value may be either —oo or oo.

Next, we define the upper (resp., lower) semicontinuous envelopes f* (resp.,
£2) of £+ U — [~oo, 00] by

f(@) = lim sup{f(y) : y € UN Br(2)}

(resp., f« = —(—f)" or, equivalently, f.(z)=lim,_o+inf{f(y) : y € UNBr(x)}).

Proposition 1.7. Let f : U — [—o0, 00|. Then we have f* € USC(U), f« €
LSC(U) and

f*(z) =min{g(z) : ¢ € USC(U), g > f} forall z€U.
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A consequence of the above proposition is that if f € USC(U), then f* = f in
U. Similarly, f. = fin U if f € LSC(U).
We go back to
F(z,u(z), Du(z)) =0 in (2. (FE)
Here we assume neither that F' : 2 x R x R™ — R is continuous nor that 2 C R"
is open. We just assume that F' : 2 x R x R"™ — R is locally bounded and that (2
is a subset of R".

Definition 1.2. (i) A locally bounded function u : 2 — R is called a viscosity
subsolution (resp., supersolution) of (FE) if

{¢> €C' (1), 2 € 2, max(u” — ) = (u" — ¢)(2)
= F.(z,u"(2),Dp(z)) <0

( {¢ € C'(2), z € 2, min(u. — ¢) = (us — ¢)(2) )
resp., .
= F"(2,u.(2), Dg(2)) > 0

(ii) A locally bounded function u : 2 — R is a viscosity solution of (FE) if it is
both a viscosity subsolution and supersolution of (FE).

We warn here that the envelopes Fi. and F'™ are taken in the full variables. For
instance, if £ € 2 X R x R", then

F.(¢) = rlir(r]l+inf{F(17) :nENRXRXRY, |n—¢& <r}

We say conveniently that w is a viscosity solution (or subsolution) of F'(z,u(z), Du(z)) <
0 in £ if u is a viscosity subsolution of (FE). Similarly, we say that u is a viscosity
solution (or supersolution) of F(z,u(z), Du(z)) > 0 in {2 if u is a viscosity super-
solution of (FE). Also, we say that u satisfies F'(x,u(x), Du(z)) < 0 in §2 (resp.,
F(z,u(z), Du(x)) > 0 in £2) in the viscosity sense if u is a viscosity subsolution
(resp., supersolution) of (FE).

Once we fix a PDE, like (FE), on a set {2, we denote by S~ and S the sets
of all its viscosity subsolutions and supersolutions, respectively.

The above definition differs from the one in [19]. As is explained in [19], the
above one allows the following situation: let {2 be a nonempty open subset of R and
suppose that the Hamilton-Jacobi equation (1) has a continuous solution u € C(£2).
Choose two dense subsets U and V of 2 such that UNV =0 and UUV # Q.
Select a function v : 2 — R so that v(z) = u(z) if x € U, v(z) = u(z) + 1 if
z €V and v(z) € [u(z), u(z) + 1] if z € 2\ (UU V). Then we have v.(z) = u(x)
and v*(z) = u(z) + 1 for all z € 2. Consequently, v is a viscosity solution of (1).
If UUV # (2, then there are infinitely many choices of such functions v.

The same remarks as Remarks 1-4 are valid for the above generalized definition.
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Definition 1.3. Let 2 C R"™ and u : 2 — R. The subdifferential D™ u(z) and

superdifferential D u(x) of the function u at x € 2 are defined, respectively, by
D u(z)={peR” : u(x+h) >ulxz)+p-h+o(h|) as z+he 2, h— 0},
Dtu(z)={peR” : u(z+h) <ulx)+p-h+o(h|]) as z+hec 2, h—0}

where o(|h|) denotes a function on an interval (0,9), with § > 0, having the prop-
erty: limp_o o(|h|)/|h| = 0.

We remark that D~ u(z) = —D*V(—u)(z). If u is a convex function in R and
p € D™ u(zx) for some z,p € R™, then

u(x+h) >ulx)+p-h foral heR"™

See Proposition A.3 for the above claim. In convex analysis, D™ u(x) is usually
denoted by du(x).

Proposition 1.8. Let 2 C R" and u : 2 — R be locally bounded. Let x € (2.
Then

DT u(z) = {Dé(z) : ¢ € C'(2), u— ¢ attains a mazimum at }.

As a consequence of the above proposition, we have the following: if u is locally
bounded in 2, then

D u(z) = — DT (—u)(x)
= —{D¢(x) : ¢ € C'(R), —u — ¢ attains a maximum at z}
={D¢(x) : ¢ € C'(2), u — ¢ attains a minimum at z}.

Corollary 1.1. Let 2 CR". Let F : 2 xR XR" - R andu : 2 — R be locally
bounded. Then u is a viscosity subsolution (resp., supersolution) of (FE) if and

only if
Fi(z,u"(z),p) forallz € 2, p € DT u*(x)
p

<0
( resp., F*(z,us(z),p) >0  forallz € 2, p€ D u.x)).

This corollary (or Remark 3) says that the viscosity properties of a function,
i.e., the properties that the function be a viscosity subsolution, supersolution, or
solution are of local nature. For instance, under the hypotheses of Corollary 1.1,
the function w is a viscosity subsolution of (FE) if and only if for each x € {2 there
exists an open neighborhood U, in R™, of x such that u is a viscosity subsolution
of (FE) in U, N 2.

Proof. Let ¢ € C*(£2) and y € 2, and assume that v — ¢ has a maximum at y.
Then

(u=0)y+h) <(u-9¢)(y) ify+hes
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and hence, as y+h € 2, h — 0,
u(y +h) <u(y) + oy +h) — é(y) = u(y) + Dé(y) - h + o(|hl).
This shows that
{D¢(y) : ¢ € C*(2), u— ¢ attains a maximum at y} C DV u(y).
Next let y € £2 and p € DT u(y). Then we have
uly+h) <uy)+p-h+w(h])|h] fy+heR2and|h| <o

for some constant § > 0 and a function w € C([0, J]) satisfying w(0) = 0. We may
choose w to be nondecreasing in [0, §]. In the above inequality, we want to replace
the term w(|h|)|h| by a C* function 1 (h) having the property: 1 (h) = o(|h|).
Following [23], we define the function 7 : [0,0/2] — R by

2r
~y(r) = / w(t)dt.
0
Noting that
2r
~(r) > / w(t)dt > w(r)r forr €0, §/2],
we see that
uly+h) <u(y)+p-h+~(h]) ify+he2and|h| <§/2.

It immediate to see that v € C*([0, §/2]) and v(0) = 4/(0) = 0. We set ¢(h) =
Y(|h|) for h € Bs/2(0). Then ¢ € C*(Bs/2(0)), ¥(0) = 0 and Dy(0) = 0. It is now
clear that if we set

¢(z) =u(y) +p-(x—y) +¢(x—y) forze Bs(y),

then the function u — ¢ attains a maximum over 2N Bs/2(y) at y and D¢(y) = p.
O

Now, we discuss a couple of stability results concerning viscosity solutions.

Proposition 1.9. Let {uc}.c0,1) C S~ . Assume that 2 is locally compact and
{uc} converges locally uniformly to a function u in 2 ase — 0. Then u € S~.

Proof. Let ¢ € C*(£2). Assume that u* — ¢ attains a strict maximum at & € £2. We
choose a constant r > 0 so that K := B,.(2) N £ is compact. For each ¢ € (0, 1),
we choose a maximum point (over K) of u; — ¢.

Next, we choose a sequence {€;} C (0, 1) converging to zero such that z.; — z
for some z € K as j — oo. Next, observe in view of the choice of z. that
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(u” = @) (ze;) = (ug; — @)(ze;) — [[u" — ug,floo i
(ug, = ¢)(&) = [lu” — ug, [loo,

> (W = ) (2) = 2fu” — ug, [loo, k-

%

Sending j — oo yields

(u” = ¢)(2) 2 limsup(ue; — ¢)(z<;) = liminf(uc; — ¢)(ze;) 2 (u” — d)(2),

j—o0

which shows that z = # and lim; e ue; (7¢;) = u(2). For j € N sufficiently large,
we have Ze; € Br(i) and, since Ue; € ST,

Fi(ae,,ug,(ze;), Do(ae,)) < 0.
If we send j — oo, we find that u e ™. O

Proposition 1.10. Let §2 be locally compact. Let F C S~ . That is, F is a family
of viscosity subsolutions of (FE). Assume that sup F is locally bounded in §2. Then
we have supF € S~

Remark 1.6. By definition, the set 2 is locally compact if for any = € {2, there
exists a constant 7 > 0 such that 2 N B,(x) is compact. For instance, every open
subset and closed subset of R™ are locally compact. The set A := (0, 1) x[0, 1] ¢ R?
is locally compact, but the set AU {(0, 0)} is not locally compact.

Remark 1.7. Similarly to Remark 5, if £2 is locally compact, then the C! regularity
of the test functions in the Definition 2 can be replaced by the C°° regularity.

Proof. Set u =supF. Let ¢ € C'(£2) and & € 2, and assume that
max(u’ — ¢) = (u” — 6)(#) = 0.

We assume moreover that Z is a strict maximum point of ©* — ¢. That is, we have
(u* — ¢)(x) < 0 for all = # &. Choose a constant r > 0 so that W := 2N B,.(&) is
compact.

By the definition of u*, there are sequences {yr} C W and {vx} C F such that

Yr — T, ve(yr) — u*(2) as k — oo.
Since W is compact, for each k € N we may choose a point xx € W such that

mvgx(vz — @) = (vi — ) (zk).

By passing to a subsequence if necessary, we may assume that {1} converges to
a point z € W. We then have

0=(u"—¢)@) = (u" = ¢)(xx) = (v — ¢)(zx)
> (vk = @) (yk) = (v — O)(yr) — (U — §)(2) =0,
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and consequently
lim u*(zx) = klim v (z1) = u*(2).

k—oo

In particular, we see that
(u" ~9)(=) > Jim (u” — 6)(ax) =0,

which shows that z = Z. That is, limg— o zx = .
Thus, we have zj € B-(Z) for sufficiently large k € N. Since vi € S, we get

Fi(wr, vg (i), D(ax)) <0
if k£ is large enough. Hence, sending k — oo yields
F.(3,u" (&), Do(#)) < 0,
which proves that w € S~. O

Theorem 1.3. Let 2 be a locally compact subset of R™. Let {uc}eco,1) and
{F}ec(0,1) be locally uniformly bounded collections of functions on £2 and 2 xR x
R™, respectively. Assume that for each e € (0, 1), ue is a viscosity subsolution of

F.(z,us(z), Duc(z)) <0 in £2.

Set

u(x) = Tgrgl+ sup{uc(y) : y € Br(zx) N2, e € (0, 1)},

F(©) = lim inf{Fe(n) : n € 2xRxR" [n—¢ <r,ee (07}
Then u is a viscosity subsolution of

F(z,u(z), Du(x)) <0 in £
Remark 1.8. The function u is upper semicontinuous in 2. Indeed, we have
u(y) < sup{uc(z) : z€ B.(z)N N2, € (0, )}

for all x € 2 and y € B,(z) N {2. This yields

limsup a(y) < sup{uc(z) : 2 € Br(x) N2, e € (0, r)}
23y—x

for all z € {2. Hence,

limsupa(y) < @(z) for all x € 2.
235y—=x

Similarly, the function F' is lower semicontinuous in {2 x R x R™.
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Proof. Tt is easily seen that for all x € 2, r > 0 and y € B.(x) N £,
uz(y) < sup{ue(z2) : 2z € By(z) N 2}.
From this we deduce that

a(z) = lil’(l)l+ sup{ul(y) : y € B(x)NN2,0<e<r} foral zen

Hence, we may assume by replacing u. by u: if necessary that u. € USC(£2).
Similarly, we may assume that F. € LSC(2 x R x R™).

Let ¢ € C'(2) and # € 2. Assume that @ — ¢ has a strict maximum at . Let
r > 0 be a constant such that B,() N §2 is compact.

For each k € N we choose yx € B, /(&) N 2 and e € (0, 1/k) so that

(%) = uey, (ye)| < 1/k,

and then choose a maximum point xx € B,(£) N 2 of ue, — ¢ over B,.(&) N 2.
Since

(uey, = @) (k) = (uey, — D) (yn),
we get

hI;l_S)Blp(ng = ¢)(xxK) > (a — ) (2),

which implies that

lim zp, =& and lim uc, (zx) = @(Z).
k—o0 k—o0

If k € N is sufficiently large, we have =i € B,(Z) N {2 and hence
Fep (ks tey, (1), Dp(z1)) < 0.

Thus, we get
F(z,u(z), Dp(2)) < 0. u]

Proposition 1.9 can be now seen as a direct consequence of the above theorem.
The following proposition is a consequence of the above theorem as well.

Proposition 1.11. Let 2 be locally compact. Let {ur} be a sequence of viscosity
subsolutions of (FE). Assume that {uy} C USC($2) and that {ur} is a nonincreas-
ing sequence of functions on §2, i.e., up(x) > upti(x) for all x € 2 and k € N.
Set

u(z) = klgl;o ug(z)  for x € L.

Assume that u is locally bounded on §2. Then u € S™.
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Let us introduce the (outer) normal cone N(z, 2) at z € £2 by
Nz 2)={peR":0>p-(x—2)+o(lx—2|) as 2>z — z}.
Another definition equivalent to the above is the following:
N(z,02) = —D%1g(z),

where 1, denotes the characteristic function of {2. Note that if z € {2 is an interior
point of {2, then N(z, 2) = {0}.

We say that (FE) or the pair (F, §2) is proper if F(x,r,p+ q) > F(z,r,p) for
all (z,7,p) € 2 xR x R™ and all ¢ € N(z, 2).

Proposition 1.12. Assume that (FE) is proper. If u € C*(£2) is a classical sub-
solution of (FE), then u € S™.

Proof. Let ¢ € C'(£2) and assume that u — ¢ attains a maximum at z € 2. We
may assume by extending the domain of definition of u and ¢ that u and ¢ are
defined and of class C* in B,.(z) for some > 0. By reselecting r > 0 small enough
if needed, we may assume that

(u—9)(z) < (u—¢)(z)+1 forall z € B(z).

It is clear that the function u — ¢ + 1 attains a maximum over B, (z) at z, which
shows that D¢(z) — Du(z) € DT1g(2). Setting ¢ = —D¢(z) + Du(z), we have
Du(z) = D¢(z) + g and

0> F(z,u(2), D¢(2) + q) 2 F(z,u(z2), Do(2)) = Fi(z,u(2), Dé(2)),
which completes the proof. O

Proposition 1.13 (Perron method). Let F be a nonempty subset of S~ having
the properties:

(P1) supF € F.
(P2) Ifv € F and v € ST, then there exists a w € F such that w(y) > v(y) at
some point y € (2.

Then sup F € S.

Proof. We have supF € F C S~ . That is, supF € S~ . If we suppose that
sup F ¢ S, then, by (P2), we have w € F such that w(y) > (sup F)(y) for some
y € £2, which contradicts the definition of sup F. Hence, sup F € ST. O

Theorem 1.4. Assume that 2 is locally compact and that (FE) is proper. Let
FeLSC(2)NS™ and g € USC(2) NST. Assume that f < g in 2. Set

F={veS8S : f<v<gin2}.

Then sup F € S.
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In the above theorem, the semicontinuity requirement on f,g is “opposite”
in a sense: the lower (resp., upper) semicontinuity for the subsolution f (resp.,
supersolution g). This choice of semicontinuities is convenient in practice since in
the construction of supersolution f, for instance, one often takes the infimum of a
collection of continuous supersolutions and the resulting function is automatically
upper semicontinuous.

Of course, under the same hypotheses of the above theorem, we have following
conclusion as well: if we set F* ={v € St : f <v < gin 2}, then inf F+ € S.

Lemma 1.3. Assume that (2 is locally compact and that (FE) is proper. Letu € S~
and y € 2, and assume that u is not a viscosity supersolution of (FE) at y, that
18,

F*(y,u«(y),p) <0  for some p € D™ u.(y).

Let € > 0 and U be a neighborhood of y. Then there exists a v € S~ such that

u(z) <wv(z) < max{u(x),u«(y) +e} forall x € 2,
v=1u in 2\U, (22)
v (y) > ux(y).

Furthermore, if u is continuous at y, then there exist an open neighborhood V' of
y and a constant § > 0 such that v is a viscosity subsolution of

F(z,v(z),Dv(z)) =—6 inV NI (23)

Proof. By assumption, there exists a function ¢ € C'(§2) such that u.(y) = ¢(y),
us(z) > ¢(z) for all z # y and

F*(y,u«(y), Dg(y)) < 0.
Thanks to the upper semicontinuity of F™*, there exists a 6 € (0, ¢) such that
F*(z,é(z) +t,Dg(x)) < =6 for all (z,t) € (Bs(y) N 2) x [0, 4], (24)

and Bs(y) N 2 is a compact subset of U.
By replacing § > 0 by a smaller number if needed, we may assume that

d(x) +6 <uu(y)+e  forall =€ Bs(y)N 0. (25)

Since u. — ¢ attains a strict minimum at y and the minimum value is zero, if
(2N Bs(y)) \ Bs2(y) # 0, then the constant

m:=  _ min (us — @)
(20B5(1)\Bs 2(v)

is positive. Of course, in this case, we have

u(z) > ¢(z) +m for all z € (2N Bs(y)) \ Bs/2(y).
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Set A = min{m, §} if (2N Bs(y)) \ Bs/2(y) # 0 and A = § otherwise, and observe
that
ui(z) > (z) + A for all z € (2N Bs(y)) \ Bs2(y)- (26)

We define v : 2 — R by

o(@) = {max{u(x),d)(x) + A} ifz € Bs(y),
u(x) if z & Bs(y).

If we set ¢ (z) = ¢(x) + A for x € Bs(y)N 2. by (24), ¢ is a classical subsolution
of (FE) in Bs(y) N £2. Since (FE) is proper, % is a viscosity subsolution of (FE) in
Bs(y) N £2. Hence, by Proposition 1.10, we see that v is a viscosity subsolution of
(FE) in Bs(y) N £2.

According to (26) and the definition of v, we have

v(z) =u(z) forall xz € 2\ Bs/a(y),

and, hence, v is a viscosity subsolution of (FE) in 2\ Bs,2(y) Thus, we find that
vesS.

Since v = u in 2\ Bs(y) by the definition of v, it follows that v = v in 2\ U.
It is clear by the definition of v that v > w in £2. Moreover, by (25) we get

v(z) < max{u(z), u.(y) + e} forall x € 2N Bs(y).

Also, observe that

v (y) = max{u.(y), u«(y) + A} = wa(y) + A > us(y)-

Thus, (22) is valid.
Now, we assume that w is continuous at y. Then we find an open neighborhood
V C Bs(y) of y such that

u(z) < p(x)+ A forall ze€ VN,

and hence, we have v(z) = ¢(x) + A for all z € V N 2. Now, by (24) we see that v
is a classical (and hence viscosity) subsolution of (23). O

Proof (Theorem 1.4). We have F # () since f € F. In view of Proposition 1.13, we
need only to show that the set F satisfies (P1) and (P2).

By Proposition 1.10, we see immediately that F satisfies (P1).

To check property (P2), let v € F be not a viscosity supersolution of (FE).
There is a point y € 2 where v is not a viscosity supersolution of (FE). That is,
for some p € D™ v.(y), we have

F*(y,v«(y),p) < 0. (27)

Noting v« < g« in §2, there are two possibilities: v« (y) = g«(y) or v« (y) < g«(y). If
v« (y) = g«(y), then p € D™ g.(y). Since g € ST, we have
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F*(y,9+(y),p) >0,

which contradicts (27). If v«(y) < g«(y), then we choose a constant € > 0 and a
neighborhood V of y so that

Ve(y) +e<g«(x) forallzeVni. (28)

Now, Lemma 1.3 guarantees that there exist w € S~ such that v < w <
max{v,v«(y) +e} in 2,v=win 2\ V and w.(y) > v.(y). For any z € 2NV, by
(28) we have

w(z) < max{u(z), g«(2)} < g().
For any z € 2\ V, we have

w(z) =v(z) < g(x).

Thus, we find that w € F. Since w.(y) > v«(y), it is clear that w(z) > v(z) at
some point z € 2. Hence, F satisfies (P2). O

1.5 An example

We illustrate the use of the stability properties established in the previous subsec-
tion by studying the solvability of the Dirichlet problem for the eikonal equation

|Du(z)| = k() in £2, (29)
u(z) =0 on 012, (30)

where 2 is a bounded, open, connected subset of R™ and k € C(f2) is a positive
function in £, i.e., k(z) > 0 for all z € Q.

Note that the constant function f(z) := 0 is a classical subsolution of (29). Set
M = max k. We observe that for each y € 912 the function gy(z) := M|z —y| is
a classical supersolution of (29). We set

g(x) = inf{gy(z) : y € 0N} for z € .

By Proposition 1.10 (its version for supersolutions), we see that g is a viscosity
supersolution of (29). Also, by applying Lemma 1.1, we find that g is Lipschitz
continuous in £2.

An application of Theorem 1.4 ensures that there is a viscosity solution w :
2 — R of (29) such that f <u < g in 2. Since f(z) = g(z) = 0 on 942, if we set
u(x) = 0 for z € 92, then the resulting function « is continuous at points on the
boundary 942 and satisfies the Dirichlet condition (30) in the classical sense.

Note that u* < g in {2, which clearly implies that u = u* € USC(£2). Now,
if we use the next proposition, we find that wu is locally Lipschitz continuous in 2
and conclude that u € C(£2). Thus, the Dirichlet problem (29)—(30) has a viscosity
solution u € C(£2) which satisfies (30) in the classical (or pointwise) sense.
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Proposition 1.14. Let R > 0, C > 0 and v € USC(Bg). Assume that u is a
viscosity solution of
|Du(z)| < C  in Bg.

Then u is Lipschitz continuous in Br with C being a Lipschitz bound. That is,
lu(z) — u(y)| < Clz — y| for all 2,y € Br.

Proof. Fix any z € Bgr and set r = (R — |z|)/4. Fix any y € B,(z). Note that
Bsr(y) C Bgr. Choose a function f € C*([0, 3r)) so that f(¢) =t for all t € [0, 27],
f/(t) > 1forallt € [0, 3r) and lim;—3,— f(t) = co. Fix any € > 0, and we claim
that

w(@) < 0(@) = uly) + (C+ o) (e —yl) forall z€ Baly)  (31)

Indeed, if this were not the case, we would find a point £ € Bs,(y) \ {y} such that
u — v attains a maximum at £, which yields together with the viscosity property
of u

C=|Dv(§)|=(C+e

)

This is a contradiction. Thus we have (31)

Note that if € B,.(z), then « € Ba,(y) and f(|z — y|) = | — y|. Hence, from
(31), we get

flg=y)>C+e.

u(z) —u(y) < (C+e)lz—y| forall z,y € Br(z).
By symmetry, we see that
lu(z) —u(y)| < (C+e)|lz—y| forall z,y € By(2),
from which we deduce that
|u(z) —u(y)| < Clz —y| forall z,y € B,(z2), (32)

Now, let z,y € Br be arbitrary points. Set r = * min{R — |z|, R — |y|}, and
choose a finite sequence {z; }/_, of points on the line segment [z, 3] so that z; = «,
ZN =Y, |zi —zi—1| <rforalli=1,..,N and Zf;l |zi — zi—1| = |z — y|. By (32),
we get

|u(zi)—u(zi,1)| S C|z, —Zi71| fOI‘ alli: 1,...,N.

Summing these over i = 1, ..., N yields the desired inequality. 0O

1.6 Sup-convolutions

Sup-convolutions and inf-convolutions are basic and important tools for regulariz-
ing or analyzing viscosity solutions. In this subsection, we recall some properties
of sup-convolutions.

Let u : R®™ — R be a bounded function and ¢ € R;. The standard sup-
convolution u® : R™ — R and inf-convolution u. : R™ — R are defined, respec-
tively, by
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e 1 2 . 1 2
u(z) = yseuﬂgb (u(y) — g\y — x| ) and  u.(x) = yleanﬂ (u(y) + Z\y — x| ) .
Note that
ue(x) = —sup (—u(y) - 2i6|y - :r|2> = —(—u)*(2).

This relation immediately allows us to interpret a property of sup-convolutions
into the corresponding property of inf-convolutions.

In what follows we assume that v is bounded and upper semicontinuous in R™.
Let M > 0 be a constant such that |u(z)| < M for all x € R™.

Proposition 1.15. (i) We have
—M <wu(z)<u(z) <M forall ze€R".

(ii) Let x € R™ and p € DTu®(z). Then

M
Ip| < 2\/? and p € DV u(x + ep).

Another important property of sup-convolutions is that the sup-convolution u*®
is semiconvex in R™. More precisely, the function

€ i 2 _ i 2 1
w(@) 4 gl = sup {uly) = o Wl + Cy- 2

is convex in R™ (see Appendix A.2) as is clear from the form of the right hand side
of the above identity.

Proof. To show assertion (i), we just check that for all z € R",

u”(z) < sup u(y) < M,
yERN

and
u®(z) > u(z) > —M.

Next, we prove assertion (ii). Let # € R™ and p € DT u®(£). Choose a point
¥ € R™ so that

w (@) = u(@) — ol - 2.

(Such a point § always exists under our assumptions on w.) It is immediate to see
that

o198 < u(#) — u(@) < 2M. (33)

We may choose a function ¢ € C*(R™) so that D¢(#) = p and maxgn (u€ —¢) =
(u® — ¢)(Z). Observe that the function

B3 (2,) — uly) — ol — ol — 6(2)
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attains a maximum at (£, 7). Hence, both the functions
R" >z — o |j — 2l — g(a)
s — _
2e Y
and
R'"3z—u(lz+§—12)— ¢(x)
attain maximum values at &. Therefore, we find that

é(i —§)+Dé(3) =0 and De(z) € D u(y),

which shows that 1
p=(5—2) €D u).

From this, we get § = & + £p, and, moreover, p € DV u(& + ep). Also, using (33),
we get |p| < 24/M/e. Thus we see that (ii) holds. O

The following observations illustrate a typical use of the above proposition. Let
(2 is an open subset of R". Let H : 2 xR" — R and u : 2 — R be bounded
and upper semicontinuous. Let M > 0 be a constant such that |u(x)| < M for all
z € 2. Let e >0.Set § =2veM and 25 = {x € 2 : dist(x,d) > &}. Define u°
as above with u extended to R™ by setting u(z) = —M for z € R" \ £2. (Or, in a
slightly different and more standard way, one may define u® by

u®(z) = sup (U(y) - 2%@ - y|2) -

yeN

By applying Proposition 1.15, we deduce that if u is a viscosity subsolution of
H(z,Du(z)) <0 in £,
then u° is a viscosity subsolution of both

H(x +eDu®(x), Du®(z)) <0 in s, (34)

|Duf(z)] < 2\/¥ in 2. (35)

G(z,p) = yien};; H(z+vy,p) for ze€ s,

and

If we set

then (34) implies that u® is a viscosity subsolution of
G(z,Du’(z)) <0 in £2.

If we apply Proposition 1.14 to u®, we see from (35) that u® is locally Lipschitz in
0s.
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2 Neumann boundary value problems

We assume throughout this section and the rest of this article that 2 C R™ is open.
We will be concerned with the initial value problem for the Hamilton-Jacobi
equation of evolution type
ou .
E(m,t) + H(z, Dyu(z,t)) =0 in £2 x (0, c0),
and the asymptotic behavior of its solutions u(z,t) as t — co.
The stationary problem associated with the above Hamilton-Jacobi equation
is stated as

(36)

H(z,Du(z))=0 in £,
boundary condition on 9f2.

In this article we will be focused on the Neumann boundary value problem
among other possible choices of boundary conditions like periodic, Dirichlet, state-
constraints boundary conditions.

We are thus given two functions v € C(90£2,R") and g € C (942, R) which satisfy

v(z)-y(xz) >0 forall z € 912, (37)

where v(x) denotes the outer unit normal vector at x, and the boundary condition
posed on the unknown function w is stated as

v(z) - Du(x) = g(z) for z € O12.

This condition is called the (inhomogeneous, linear) Neumann boundary condition.
We remark that if w € C'(£2), then the directional derivative du/07y of u in the
direction of «y is given by

ou u(z + ty(x)) — u(z)

z) = y(z) - Du(z) = lim

8—7( ) lim : for x € 012.

(Note here that u is assumed to be defined in a neighborhood of z.)
Our boundary value problem (36) is now stated precisely as

H(z,Du(z)) =0 in £,
u SNP
a7(3:) =g(x) on 912. ( )

Let U be an open subset of R™ such that U N 2 # (. At this stage we briefly
explain the wviscosity formulation of a more general boundary value problem

{F(Jc,u(x),Du(m)) =0 inUN{, (38)

B(z,u(z), Du(z)) =0 on U Nos,
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where the functions F' : (UN Q) xRxR” =R, B : (UNJN) xRxR" - R
and u : (UN ) — R are assumed to be locally bounded in their domains of
definition. The function u is said to be a viscosity subsolution of (38) if the following
requirements are fulfilled:

peC (), i€, max(u" —¢) = (u" — ¢)(&)

7}
E
(i)  Fu(@,u"(2), Dg(2)) <0 if #€UNQ,
(il)  Fuo(g,u(£), DP(2)) A Bu(d,u™ (£), Dp(2)) <0 if &€ UNON.

The upper and lower semicontinuous envelopes are taken in all the variables. That
is,fore eUNN,Ec(UNN)xRxR"andne (UNoN) xR xR,

uw*(z) = rl_i,%l+ sup{u(y) : y € Br(x)NUNN)},
F.(§) = lim if{F(X): X € (UN2)xRxR", |X —¢l <1},

B.(n) = lim inf{B(Y) : Y € (UNOR) x RxR", [Y —n| <r}.

The definition of viscosity supersolutions of the boundary value problem (38) is
given by reversing the upper and lower positions of x, the inequalities, and “sup”
and “inf” (including A and V), respectively. Then viscosity solutions of (38) are
defined as those functions which are both viscosity subsolution and supersolution
of (38).

Here, regarding the above definition of boundary value problems, we point out
the following: define the function G' : (UN ) x R x R™ — R by

F(z,u,p) ifxze€,

G(z,u,p) = (39)
B(z,u,p) if z € dL,

and note that the lower (resp., upper) semicontinuous envelope G (resp., G*) of
G is given by

G ) F.(z,u,p) if x € 02,
«\T,U,P) =
F.(z,u,p) A\ Bi(z,u,p) ifx €9
G*( ) F*(ﬁv,u,p) lf.’L‘GQ,
resp., T,u,p) = .
F*(z,u,p) vV B*(z,u,p) ifxe€dnR

Thus, the above definition of viscosity subsolutions, supersolutions and solutions
of (38) is the same as that of Definition 1.2 with F and {2 replaced by G defined
by (39) and U N 2, respectively. Therefore, the propositions in Subsection 1.4
are valid as well to viscosity subsolutions, supersolutions and solutions of (38). In
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order to apply the above definition to (SNP), one may take R™ as U or any open
neighborhood of £2.

In Subsection 1.4 we have introduced the notion of properness of PDE (FE).
The following example concerns this property.

Ezample 2.1. Consider the boundary value problem (38) in the case where n =1,
2=(0,1),U =R, F(z,p) =p—1 and B(z,p) = p — 1. The function u(z) = x on
[0, 1] is a classical solution of (38). But this function u is not a viscosity subsolution
of (38). Indeed, if we take the test function ¢(x) = 2z, then u— ¢ takes a maximum
at x = 0 while we have B(0,#(0)) = F(0,¢'(0)) =2 —1 =1 > 0. However, if we
reverse the direction of derivative at 0 by replacing the above B by the function
-1 forx =1,
B(z,p) = {p

—p+1 forz=0,

then the function u is a classical solution of (38) as well as a viscosity solution of
(38).

Definition 2.1. The domain 2 is said to be of class C* (or simply 2 € C') if
there is a function p € C*(R™) which satisfies

2 ={zeR" : p(z) <0},
Dp(z) #0  for all z € d12.

The functions p having the above properties are called defining functions of (2.

Remark 2.1. If p is chosen as in the above definition, then the outer unit normal
vector v(z) at z € 912 is given by

v(z) =
Indeed, we have
N(z,2) ={tv(z) : t >0} forall z € 912.

To see this, observe that if ¢t > 0, then 15 + ¢p as a function in R™ attains a local
maximum at any point x € 92, which shows that

t|Dp(x)|v(z) € 7D+1§(x) = N(z, ).

Next, let z € 02 and ¢ € C*(R™) be such that 15 — ¢ attains a strict maximum
over R"™ at z. Observe that —¢ attains a strict maximum over R atz. Fixa constant
r > 0 and, for each k € N, choose a maximum (over B.(z)) point z; € By(z) of
—¢ — kp?, and observe that — (¢ + kp?)(zx) > —(¢+kp?)(2) = —¢(2) for all k € N
and that x; — z as k — oco. For k € N sufficiently large we have
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D(¢ + kp®) (k) =0,
and hence
Do(zr) = —2kp(zr) Dp(zk),

which shows in the limit as £ — oo that
Dé(z) = —tDp(z) = —tDp(2)|u(2),

where t = limy_ o 2kp(21) € R. Noting that —(¢ + kp?)(z) < —¢(z) < —¢(2) for
all z € 2, we find that x1, € B,-(2)\ 2 for all k € N. Hence, we have ¢ > 0. Thus, we
see that N(z,2) C {tv(z) : t > 0} and conclude that N(z, 2) = {tv(z) : t > 0}

Henceforth in this section we assume that 2 is of class C*.

Proposition 2.1. If u € C*(2) is a classical solution (resp., subsolution, or su-
persolution) of (SNP), then it is a viscosity solution (resp., subsolution, or super-
solution) of (SNP).

Proof. Let G be the function given by (39), with B(z,u,p) = v(z) - p — g(x). Ac-
cording to the above discussion on the equivalence between the notion of viscosity
solution for (SNP) and that for PDE G(z, Du(z)) = 0 in {2 and Proposition 1.12,

it is enough to show that the pair (G, {2) is proper. From the above remark, we
know that for any = € 812 we have N(z, 2) = {tv(z) : t > 0} and

G(z,p+tv(z)) =~(z) - (p+tv(z)) > v(z) -p=G(x,p) forallt>0.

As we noted before, we have N(z, 2) = {0} if z € £2. Thus, we have for all z € 2
and all ¢ € N(z, 2),
G(z,p+4q) 2 G(z,p). O

We may treat in the same way the evolution problem
ue(z,t) + H(z,t, Dyu(z,t)) =0 in 2 x J,

40
@(x,t) = g(z,1) on 982 x J, (40)

where J is an open interval in R, H : NxJxR*" > Randg: 002 xJ — R.If
weset =02 xR, U=R" x J,
F(z,t,p,q) = q+ H(z,p) for (x,t,p,q) € 2 xJxR" xR,
and
B(z,t,p,q) = v(z) - p—g(z,t) for (z,t,p,q) € 02 x J xR" xR,

then the viscosity formulation for (38) applies to (40), with (2 replaced by (2.
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We note here that if p is a defining function of £2, then it, as a function of (z, t),
is also a defining function of the “cylinder” £2xR. Hence, if we set §(z,t) = (v(x), 0)
and o(z,t) = (v(z),0) for (z,t) € I(2 x R) = 902 x R, then o(z,t) is the outer
unit normal vector at (z,t) € 92 x R. Moreover, if y satisfies (37), then we have
Y(z,t) - o(z,t) = y(x) - v(z) > 0 for all (z,t) € 92 x R. Thus, as Proposition 2.1
says, if (37) holds, then any classical solution (resp., subsolution or supersolution)
of (40) is a viscosity solution (resp., subsolution or supersolution) of (40).

Before closing this subsection, we add two lemmas concerning C' domains.

Lemma 2.1. Let {2 be a bounded, open, connected subset of R™. Assume that {2
is of class C*. Then there exists a constant C > 0 and, for each x,y € 2 with
x # vy, a curve n € AC([0, t(z,y)]), with t(x,y) > 0, such that t(z,y) < Clz — y|,
n(s) € 2 for all s € (0, t(z,y)), and |n(s)| < 1 for a.e. s € [0, t(z,y)].

Lemma 2.2. Let {2 be a bounded, open, connected subset of R™. Assume that {2
is of class C'. Let M > 0 and u € C(£2) be a viscosity subsolution of |Du(x)| < M
in §2. Then the function u is Lipschitz continuous in 2.

The proof of these lemmas is given in Appendix A.3.

3 Initial-boundary value problem for Hamilton-Jacobi
equations

We study the initial value problem for Hamilton-Jacobi equations with the Neu-
mann boundary condition.
To make the situation clear, we collect our assumptions on {2, v and H.

(A1) {2 is bounded open connected subset of R™.
(A2) 02 is of class C*.

(A3) v € C(02,R") and g € C(912,R).

(A4) ~(z)-v(z) > 0 for all z € 9020

(A5) H € C(£2 xR™).

(A6) H is coercive, i.e.,

Rlim inf{H(z,p) : (z,p) € 2 xR", |p| > R} = oo,

In what follows, we assume always that (A1)—(A6) hold.

3.1 Initial-boundary value problems

Given a function ug € C(f2), we consider the problem of evolution type
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{ut + H(z,Dzu) =0 in £2 x (0, 00), (ENP)
v(z) - Deu = g(x) on 012 x (0, 00),
u(z,0) = uo(z) for z € 0. (ID)

Here u = u(x,t) is a function of (z,t) € £2 x [0,00) and represents the unknown
function.

When we say w is a (viscosity) solution of (ENP)—(ID), u is assumed to satisfy
the initial condition (ID) in the pointwise (classical) sense.

Henceforth @ denotes the set £2 x (0, co).

Theorem 3.1 (Comparison). Let u € USC(Q) and v € LSC(Q) be a viscos-
ity subsolution and supersolution of (ENP), respectively. Assume furthermore that

u(z,0) < v(x,0) for allz € 2. Then u < v in Q.

To proceed, we concede the validity of the above theorem and will come back
to its proof in Subsection 3.3.

Remark 3.1. The above theorem guarantees that if u is a viscosity solution of
(ENP)—(ID) and continuous for ¢ = 0, then it is unique.

Theorem 3.2 (Existence). There exists a viscosity solution u of (ENP)—(ID) in

the space C(Q).
Proof. Fix any ¢ € (0, 1). Choose a function uo,. € C*(£2) so that
luo,e(z) —uo(z)] <e  forall xe€ .
Let p € C'(R™) be a defining function of £2. Since
Dp(x) = |Dp(z)|v(z) for z € 012,
we may choose a constant M. > 0 so large that

M.~(x) - Dp(x) > n‘%%x(|g| + |v-Dug,e|) forall x € 9.

Next choose a function ¢ € C*(R) so that

¢(0) =1,
-1<¢(r) <0 for r <0,
0<¢'(r) <1 for r <0.

Setting
xe(z) = eC(Mep(z) /),
we have
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—e<xe(z) <0 for all = € 02,
~v(z) - Dxe(z) > |g(z)| + |v(z) - Duo,e ()] for all = € 912,

and we may choose a constant C > 0 such that
|Dxe(x)] < C.  forall z € Q.
Then define the functions f£ € C*(£2) by
FE (@) = uoe() £ (xe () + 22),

and observe that

uo(z) < fF(z) <wo(x)+3¢  forall z € 2,
uo(z) > f= (z) > uo(z) —3e  for all = € £,
y(z) - DfF (z) > g(x) for all = € 012,
v(z) - Df: (z) < g(x) for all = € 0f2.

Now, we choose a constant A. > 0 large enough so that
|H(z, DfE(z))| < A.  forall z e 2,

and set B
gE (@) = [E@) £ At for (1) € Q.

The functions gF, g € C'(Q) are a viscosity supersolution and subsolution of
(ENP), respectively, and satisfy the inequality

l9Z (2,0) —uo(z)| < 3e  forall x e 2.

Setting

Rt (2,t) = inf{gZ (z,t) : € € (0, 1)},
h ) = SU»p{gs_(xvt) HIEONS (07 1)}»

(z,

t
we observe that h™ € USC(Q) and h~ € LSC(Q) are, respectively, a viscosity
supersolution and subsolution of (ENP). Moreover we have

uo(z) = h*(z,0) forall z € 2,
h™(x,t) < uo(x) < ht(x,t) forall (z,t) € Q.

By Theorem 1.4, we find that there exists a viscosity solution u of (ENP) which

satisfies B
h™(z,t) < u(z,t) < hT(z,t)  forall (z,t) €qQ.

Applying Theorem 3.1 to u™ and w. yields
u* <wu. forall (z,t) €Q,

while u. < u* in Q by definition, which in particular implies that u € C(Q). The
proof is complete. O
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Theorem 3.3 (Uniform continuity). The wviscosity solution v € C(Q) of
(ENP)—(ID) is uniformly continuous in Q. Furthermore, if uo € Lip(£2), then

u € Lip(Q).

Lemma 3.1. Let ugp € Lip(£2). Then there is a constant C > 0 such that the
functions uo(x) + Ct and uo(x) — Ct are, respectively, a viscosity supersolution and
subsolution of (ENP)—(ID).

Proof. Let p and ¢ be the fucntions which are used in the proof of Theorem 3.2.
Choose the collection {uo,c}ee(0,1) C C*(£2) of functions so that

lim luo,e — uol|ss,2 =0,
e—0

sup || Duo,e||oo,2 < 00.
e€(0,1)

As in the proof of Theorem 3.2, we may fix a constant M > 0 so that

M~(x) - Dp(z) = M|p(z)|v(z) - v(z)
>lg(x)| + |y(x) - Duo(x)| for all z € 0f2.

Next set
R= sup |Duo.lloc,2 + M|Dpllcs,q,
£€(0,1)
and choose C' > 0 so that
max |H| < C.
2xBp

Now, we put
vz (@,1) = uo e (x) £ (Me((p(x)/2) + Ct)  for (x,1) € Q,

and note that v and v_ are a classical supersolution and subsolution of (ENP).
Sending ¢ — 0+, we conclude by Proposition 1.9 that the functions uo(z) 4+ Ct and
uo(z) — C't are a viscosity supersolution and subsolution of (ENP), respectively.
O

Proof (Theorem 3.3). We first assume that uo € Lip({2), and show that u €

Lip(@). According to Lemma 3.1, there exists a constant C' > 0 such that the
function ug(z) — Ct is a viscosity subsolution of (ENP). By Theorem 3.1, we get

u(z,t) > uo(z) —Ct  for all (z,t) € Q.

Fix any t > 0, and apply Theorem 3.1 to the functions u(x,t+ s) and u(z,s) — Ct
of (z,s), both of which are viscosity solutions of (ENP), to get

u(z,t+s) > u(z,s) —Ct forall (z,s)€ Q.



Introduction to viscosity solutions and the large time ... 39

Hence, if (p,q) € DV u(z, s), then we find that as t — 0+,
u(z,s) <wu(z,s+t)+ Ct < wu(z,s) + gt + Ct+ o(t),
and consequently, ¢ > —C. Moreover, if = € {2, we have
0=q+ H(z,p) 2 H(z,p) - C.
Due to the coercivity of H, there exists a constant R > 0 such that
p € Br.

Therefore, we get

Thus, if (z,s) € £ x (0,00) and (p,q) € DT u(z, s), then we have

lp| + lg| < M := R+ C + max |H|.

2xBRr

Thanks to Proposition 1.14, we conclude that v is Lipschitz continuous in Q.

Next, we show in the general case that u € UC(Q). Let ¢ € (0, 1), and choose

a function ug,. € Lip({2) so that
l[to,e —uofloe <e.
Let ue be the viscosity solution of (ENP) satisfying the initial condition

ue(z,0) = uge(x) forall z € Q.

As we have shown above, we know that u. € Lip(Q). Moreover, by Theorem 3.1
we have
ue —ull L 5 <e.

It is now obvious that v € UC(Q). O

3.2 Additive eigenvalue problems

Under our hypotheses (A1)—(A6), the boundary value problem

{ H(z,Du) =0 in £2, (SNP)

~v(z)- Du=g(z) on 0f2

may not have a viscosity solution. For instance, the Hamiltonian H(z,p) = |p|* +1
satisfies (A5) and (A6), but, since H(z,p) > 0, (SNP) does not have any viscosity
subsolution.

Instead of (SNP), we consider the additive eigenvalue problem
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v(z)-Dv=g(z) on . (EVP)

{H(m,Dv) =a in £,
This is a problem to seek for a pair (a,v) € R x C(£2) such that v is a viscosity
solution of the stationary problem (EVP). If (a,v) € RxC(2) is such a pair, then a
and v are called an (additive) eigenvalue and eigenfunction of (EVP), respectively.
This problem is often called the ergodic problem in the viewpoint of ergodic optimal
control.

Theorem 3.4. (i) There exists a solution (a,v) € R x Lip(£2) of (EVP).
(ii) The eigenvalue of (EVP) is unique. That is, if (a,v), (b,w) € R x C(£2) are
solutions of (EVP), then a = b.

The above result has been obtained by Lions-Papanicolaou-Varadhan [44].
In what follows we write ¢ for the unique eigenvalue a of (EVP).

Corollary 3.1. Let u € C(Q) be the solution of (ENP)—(ID). Then the function
u(x,t) + ¢t is bounded on Q.

Corollary 3.2. We have
¢ =inf{a € R : (EVP) has a viscosity subsolution v}.

Lemma 3.2. Letb,c € R and v,w € C(£2). Assume that v (resp., w) is a viscosity
supersolution (resp., subsolution) of (EVP) with a =b (resp., a =c). Then b < c.

Remark 3.2. As the following proof shows, the assertion of the above lemma is
valid even if one replaces the continuity of v and w by the boundedness.

Proof. By adding a constant to v if needed, we may assume that v > w in £2. Since
the functions v(x) — bt and w(x) — ¢t are a viscosity supersolution and subsolution
of (ENP), by Theorem 3.1 we get

v(z) —bt > w(x) —ct for all (z,t) € Q,
from which we conclude that b <e¢. O
Proof (Theorem 3.4). Assertion (ii) is a direct consequence of Lemma 3.2.

We prove assertion (i). Consider the boundary value problem

{ A+ H(x,Dv)=0 in £2, (41)

v(x)-Dv=g on 042,
where A > 0 is a given constant. We will take the limit as A — 0 later on.

We fix A € (0, 1). Let p € C*(R™) be a defining function of the domain 2.
Select a constant A > 0 so large that Ay(z) - Dp(x) > |g(z)]| for all z € 912, and
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then B > 0 so large that B > A|p(z)| + |H (z,2ADp(z))| for all z € £2. Observe
that the functions Ap(z) + B/ and —Ap(z) — B/A are a classical supersolution
and subsolution of (41), respectively.

The Perron method (Theorem 1.4) guarantees that there is a viscosity solution
vy of (41) which satisfies

loa(z)] < Ap(z) + B/A < B/XA  for all z € £2.

Now, since B
—dua(z) < B for all x € £2,

vy satisfies in the viscosity sense
H(xz,Dvux(z)) < B forall =€ {2,

which implies, together with the coercivity of H, the equi-Lipschitz continuity of
{va}re(o,1)- Thus the collections {vx—info va}rc(o,1) and {Ava}re(o, 1) of functions
on (2 are relatively compact in C(§2). We may select a sequence {\;}jen C (0, 1)

such that
Aj — 0,

vy, () — irrlzfv)‘j — v(z),

Ajun; () — w(z)

for some functions v,w € C(§2) as j — oo, where the convergences to v and w are
uniform on 2. Observe that for all z € £2,

w(z) = lim A\jva, (z)

j—o0

= lim A;[(v; (z) — iI(lZf uy;) + iI!12f vy, ]

j—o0
= lim A;j 1%f Uxjs

j—o0

which shows that w is constant on £2. If we write this constant as a, then we see by
Proposition 1.9 that v is a viscosity solution of (EVP). This completes the proof
of (). O

Proof (Corollary 3.1). Let v € C(£2) be an eigenfunction of (EVP). That is, v is
a viscosity solution of (EVP), with a = ¢*. Then, for any constant C' € R, the
function w(z, t) := v(zx) —c*t+C is a visocosity solution of (ENP). We may choose
constants C;, i = 1,2, so that v(z) + C1 < uo(z) < v(x) + Cs for all z € 0. By
Theorem 3.1, we see that

v(z) — Ft 4+ C <u(z,t) <v(x) — cFt+Cy  forall (z,t) €Q,

which shows that the function u(z,t) + ¢#t is bounded on Q. O
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Proof (Corollary 8.2). It is clear that
¢ >¢* :=inf{a € R : (EVP) has a viscosity subsolution v}.

To show that ¢# < ¢*, we suppose by contradiction that ¢# > ¢*. By the definition
of ¢*, thereis a b € [c*, ¢*) such that (EVP), with a = b, has a viscosity subsolution
1. Let v be a viscosity solution of (EVP), with a = ¢*. Since b < ¢¥, v is a viscosity
supersolution of (EVP), with a = b. We may assume that ¢» < v in £2. Theorem 1.4
now guarantees the existence of a viscosity solution of (EVP), which contradicts
Theorem 3.4, (ii) (see Remark 3.2). O

Example 3.1. We consider the case where n =1, 2 = (-1, 1), H(z,p) = H(p) :=
|p| and ~v(&1) = =£1, respectively, and evaluate the eigenvalue ¢#. We set gmin =
min{g(—1),g(1)}. Assume first that gmin > 0. In this case, the fucntion v(z) = 0
is a classical subsolution of (SNP) and, hence, ¢# < 0. On the other hand, since
H(p) > 0 for all p € R, we have ¢* > 0. Thus, ¢ = 0. We next assume that
gmin < 0. It is easily checked that if g(1) = gmin, then the function v(z) = gminz is
a viscosity solution of (EVP), with @ = |gmin|. (Notice that

_D+U(_1) = (_007 _lgminH @] [_‘gminly |gmin|]7
=D v(=1) = [|gminl, 00).)

Similarly, if g(—1) = gmin, then the function v(z) = |gmin|z is a viscosity solution
of (EVP), with a = |gmin|. These observations show that ¢ = |gmin|.

3.3 Proof of comparison theorem

This subsection will be devoted to the proof of Theorem 3.1.
We begin with the following two lemmas.

Lemma 3.3. Let u be the function from Theorem 3.1. Set P = 2 x (0, 00). Then,
for every (z,t) € 912 x (0, co0), we have

u(z,t) = limsup u(y,s). (42)
P3(y,s)—(z,t)

Proof. Fix any (z,t) € 042 x (0, c0). To prove (42), we argue by contradiction, and
suppose that

limsup  u(y,s) < u(z,t).
P3(y,s)—(x,t)

We may choose a constant r € (0, ¢) so that
u(y,s) <wu(x,t) forall (y,s) € PN (By(x) x [t —r, t +7]). (43)

Note that
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PN(Br(z)xt—rt+7) = (2N B(z) x [t —r, t +7].

Since u is bounded on 2 x [t — 7, t + r], we may choose a constant o > 0 so
that for all (y,s) € 2 x [t —r,t + 7],
u(y,s) —ally —z|* + (s —)%) < u(x,t) if |y—x| >7/2 or |s—t| >r/2. (44)

Let p be a defining function of (2. For k € N we define the function ¢ €
C'(R"*") by
Uy, s) = kp(y) — ally —«|* + (s — 1)°).
Consider the function
u(y, s) +¢(y, s)

on the set (Q N Er(x)) X [t —r, t +7]. Let (yk, sk) € (ﬁ N Er(a:)) X [t—=r t+7]
be a maximum point of the above function.
Noting that
P(y,s) <0 forall (y,s) € P

and using (43) and (44), we observe that for all (y,s) € (2N B,(z)) x [t —r, t+7],
u(y; s) +¢(y,s) <ulz,t) = u(z,t) + (1)

if either y € 2, |y — x| >r/2, or |s—t| > r/2. Accordingly, we have
(g 5¢) € (020 Boja(@)) x (E—1/2, t+7/2).
Hence, setting
pr = kDp(yr) +20(yx, — ) and qx = 2a(sk — 1),

we have
min{gr + H(Yx, pr), Y(¥r) - Pr — g(yx)} < 0.
If we note that
V() - Dp(yx) = min~y - Dp > 0,

then, by sending & — oo, we get a contradiction. O

Lemma 3.4. Lety,z € R", and assume that y-z > 0. Then there exists a quadratic
function ¢ in R™ which satisfies:

C(tx) = t°¢(z) for all (z,t) € R" x R,

((z) >0 if ©#0,

z2-D¢(x) =2(y-2)(y-z) forall x€R"™
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Proof. We define the fucntion ¢ by

We observe that for any ¢ € R,

o+t = otz = LELE] @k 1)
= |o - L5 4y a)? 2y 2)(y - 2) + 2y, 2)%

from which we find that
z-D¢(x) =2(y - 2)(y - x).
If {(x) =0, then y -z = 0 and

Lz 2
0=¢((x) = ‘x— Hz’ = |z|?.
Y-z

Hence, we have z = 0 if {(z) = 0, which shows that {(x) > 0 if = # 0. It is obvious
that the function ¢ is homogeneous of degree two. The function ¢ has the required
properties. O

For the proof of Theorem 3.1, we argue by contradiction: we suppose that

sup (u—wv) >0,
2x[0,00)

and, to conclude the proof, we will get a contradiction.

Reduction 1: We may assume that there exist a constant 6 > 0 and a finite
open interval J C (0, o) such that

u is a viscosity subsolution of

u(x,t) + H(x, Dyu(z,t)) < =6 in 02 x J, (45)
A(z) - Doz, t) < g(x) on 902 x 1,
max(u —v) > 0> max (u —v), (46)
QxJ 22x0J

and

u and v are bounded on 2 x J. (47)
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Proof. We choose a T' > 0 so that SUP5., (o T)(u —v) >0 and set

ue(x,t) = u(z, t) — ﬁ for (z,t) € 2 x [0, T),

where € > 0 is a constant. It is then easy to check that u. is a viscosity subsolution
of

ey + H(z, Daue(z,t)) < 7% in 2 x (0,7),
Oue

< :
o (z,t) < g(x) on 902 x (0, T)

Choosing € > 0 sufficiently small, we have

sup (ue —v) > 0> max (ue —v).
2x[0,T) 2x{0}

If we choose a > 0 sufficiently small, then

max (ue —v) >0> max (ue —v).
02x[0,T—a] 02x8[0,T—a]

Thus, if we set J = (0, T — ) and replace u by uc, then we are in the situation of
(45)—(47). O

We may assume furthermore that u € Lip(£2 x J) as follows.

Reduction 2: We may assume that there exist a constant § > 0 and a finite
open interval J C (0, co) such that

u is a viscosity subsolution of

ue(z,t) + H(z, Dyu(z,t)) < —0  in 2 x J, (48)
y(x) - Dgu(z,t) < g(x) on 082 x J,
max(u —v) > 0> max (u— v), (49)
2xJ 2xoJ
and
u € Lip(2 x J) and v is bounded on 2 x J. (50)

Proof. Let J be as in Reduction 1. We set J = (a,b). Let M > 0 be a bound of
|u| on 2 x [a, b].
For each € > 0 we define the sup-convolution in the t-variable

(t—s)Q),

ue(z,t) = max (u(m,s) i

s€[a,b]

We note as in Subsection 1.6 that
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M > uc(z,t) > u(z,t) > —M forall (z,t) € 2 x [a, b].

Noting that

2%(1573)2 <OM = |t—s| <2VEM

and setting m. = 2veM, we find that
(t—s)*

ue(x,t) = max (u(m,s) i

a<s<b
Let (z,t) € 2 x (a +me, b—m.). Choose an s € (a, b) so that

(t— s

ue(z,t) = u(z, s) — 7

Note by (51) that
[t — s| < me.

(51)

) for all (z,t) € 2 x (a4 me, b—me).

Let (p,q) € DVuc(z,t) and choose a function ¢ € C'(2 x (a, b)) so that
D¢(z,t) = (p,q) and max(us — @) = (ue — ¢)(x,t). Observe as in Subsection 1.6

that
(p,(s —t)/e) € DTu(z,s) and @ +q=0.
Hence,
(p,a) € DT u(z, s).

Therefore, we have

g+ H(z,p)+6<0 if z e,
min{qg + H(z,p) + 6, v(z) -p—g(x)} <0 if z € dfn.

Moreover, we see that
[t — s| < e

lgl = < —,
£ g

and m
H(z,p) < —q< ?5 if x € £2.

Hence, by the coercivity of H, we have
lgl + |p| < R(e) ifz e 02,

for some constant R(g) > 0.
Thus, we conclude from (52) that u. is a viscosity subsolution of

ug + H(z, Dyu) < =8 in 2% (a+me, b—me),
v-D.u<g on 92 x (a+ me, b—me),

(53)

and from (53) that u. is Lipschitz continuous in 2 X (a +me, b —m.). By Lemma

3.3, we have
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ue(z,t) = lim sup ue(y,s) forall (z,t) € 002 % (a+me, b—me).
2x(a+me, b—me)>(y,s)

Since u. € Lip(£2 X (a + me, b — m.)), the limsup operation in the above formula
can be replaced by the limit operation. Hence,

ue € C(2 x (a+me, b—my.)),

which guarantees that wu. is Lipschitz continuous in 2 x (a 4 me, b — me).
Finally, if we replace v and J by u. and (a + 2me, b — 2m.), respectively, and
select € > 0 small enough so that

B max (ue —v) >0> max (ue —v),
2x[a+2me,b—2m,] 2x0la+2me,b—2m,]

then conditions (48)—(50) are satisfied. O

Reduction 3: We may assume that there exist a constant § > 0 and a finite
open interval J C (0, co) such that
u is a viscosity subsolution of
ue(z,t) + H(z, Dyu(z,t)) < —0  in 2 x J, (54)
¥(z) - Dyu(z,t) < g(z) =6 on 02 X J,

v is a viscosity supersolution of
ve(z,t) + H(z, Dev(z,t)) > in 2 x J, (55)
v(x) - Dgv(z,t) > g(x) + 0 on 02 x J,

max(u —v) > 0> max (u — v), (56)
2xJ 2xoJ

and
u € Lip(2 x J) and v is bounded on 2 x J. (57)

Proof. Let u, v, J be as in Reduction 2. Set J = (a, b). Let p be a defining function
of {2 as before. Let 0 < & < 1. We set

ue(x,t) = u(w,t) —ep(x) and we(x,t) = v(x,t) +ep(x) for (x,t) € 2 x J,

and
He(x,p) = H(x,p —eDp(x)) +¢  for (x,p) € 2 x R™.

Let (x,t) € 2 x J and (p,q) € D™ ve(x,t). Then we have
(p - SDP(I)v(I) € D7U($,t).

Since v is a viscosity supersolution of (ENP), if z € £2, then
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q+ H(z,p—eDp(z)) > 0.
If x € 012, then either

q+ H(z,p —eDp(z)) > 0,
or

y(z) - p=7(x) - (p—eDp(x)) + ev(z) - Dp(x)
>g(x) + ey(z) - Dp(z) > g(x) + Ae,
where
A:rg}zn'y~Dp (>0).

Now let (p,q) € DVuc(x,t). Note that (p + eDp(z),q) € Dt u(x,t). Since
u € Lip(£2 x [a, b]), we have a bound Cp > 0 such that

lg] < Co.
If x € £2, then

q+ H(z,p—eDp(x)) <q+ H(z,p+eDp(z)) + w(2e|Dp(x)])
< =54 w(2eCh),

where
C1 = max |Dp|,
7]

and w denotes the modulus of continuity of H on the set 2 x Bric,, with R > 0
being chosen so that

min  H > Cy.
2% (R™\BR)

(Here we have used the fact that H(z,p + eDp(z)) < Cp, which implies that

Ip+eDp(z)| < R.)
If x € 042, then either

q+ H(z,p—eDp(z)) < =6 + w(2eCh),

V(@) -p <7(2) - (p+eDp(a)) —e(z) - Dp(z) < g(x) = Ae.

Thus we see that v, is a viscosity supersolution of

Vet +H5(x7DJcU€) >e in £2 x J7
~v(z) - Dve(z) > g(x) + e on 992 X J,

and wu. is a viscosity subsolution of

Ue,t + He(z, Dyue) < =6+ w(2C1e) +€  in 2 % J,
v+ Due < g(z) — Ae on 92 x J,
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If we replace u, v, H and ¢ by u., ve, H. and
min{e, Ae, 0 — w(2C1€) — €},

respectively, and choose ¢ > 0 sufficiently small, then conditions (54)—(57) are
satisfied. 0O

Final step: Let u, v, J and ¢ be as in Reduction 3. We choose a maximum
point (z,7) € £2 x J of the function v — v. Note that 7 € J, that is, 7 & 9J.
By replacing w, if necessary, by the function

u(z,t) —ele — 2> —e(t — 7)?,

where ¢ > 0 is a small constant, we may assume that (z,7) is a strict maximum
point of u — v.
By making a change of variables, we may assume that z = 0 and

2N By = {z = (21,...,Zn) € Bar : o <0},

while we may assume as well that [t —r, 7+ 1] C J.
We set 4 = v(0) and apply Lemma 3.4, with y = (0,...,0,1) € R" and z = 4,
to find a quadratic function ¢ so that

C(te) =t°¢(€) for all (£,) € R" x R,
(&) >0 if ¢+#0,
4-DC(E) = 24nbn  forall €= (1,...,6n) €R™,

where 4, denotes the n-th component of the n-tuple 4.
By replacing ¢ by a constant multiple of ¢, we may assume that

(&) > ¢ for all € € R",
IDC(E)| < Colé|  for all £ € R™,

>0 ifé&, >0,

£ D
¥ C(é){go e, <0,
where Cy > 0 is a constant.

Let M > 0 be a Lipschitz bound of the function u. Set

g =9(0), u:gl%Q and M; = M + |u|.

We may assume by replacing r by a smaller positive constant if needed that for all
T € B-NOoS2,

. 1) R 1)
[v(z) — 4l < 2+ Cody) and [g(x) —g| < 5 (58)
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For o > 1 we consider the function
@(1’7 t7y7 5) = u(xft) - U(y7 5) — K- (.T - y) - O‘C(I - y) - Oé(t - 5)2

_ 2
on K := ((.Q NB.(0,7) X [t —r, T+ r}) . Let (za, ta, Yas Sa) be a maximum point
of the function @. By the inequality (Yo, Sa, Ya; Sa) < P(Za, ta, Yas Sa), We get

a(|za = Yol + (ta — 5a)%) ((Ta = Ya) + (ta = 5a)*)
<u(@ayta) = uYa, sa) + |1l[Ta — Yal
<M (|70 — Yol + ta — sal)?,

and hence
a(|za = yal® + [ta — sal*)!/* < M. (59)

As usual we may deduce that as o — o0,

(Tas Ta)s (Yas 8a) = (0,7),
’LL(ZCQ, ta) - u(07 T)a
U(ya, 504) - U(O7 T)'
Let o > 1 be so large that
(Zasta); (Yas sa) € (RN Br) X (1 =1, 7 +7).
Accordingly, we have
(,LL + OZDC(.Z'OL - ya), 2a(t04 - Sa)) € D+u(xav ta),
(b + aDl(za — Ya), 20(ta — Sa)) € D™ (Yo, Sa)-
Using (59), we have
a|lD((za — ya)| < Coat|Za — ya| < CoMi. (60)
If zo € 012, then zo,n, = 0 and (za — Ya)n > 0. Hence, in this case, we have
¥ D{(za — ya) >0,

and moreover, in view of (58) and (60),

Y(@a) - (0 + aD{(Ta = ya)) =7 (1 + aD(Ta — Ya))
= [v(@a) = F(|ul + Coby)
R 0
>9(2a) =19 = 9(za)| = 5 > g(za) — 0.
Now, by the viscosity property of u, we obtain

20(ta — Sa) + H(za, t + aD{(za — ya)) < =9,
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which we certainly have when z, € 2.
If yo € 002, then (o — ya)n < 0 and
¥ D¢(za — ya) < 0.
As above, we find that if yo € 042, then

Y(Ya) - (1 + aD{(za — ya)) <6,
and hence, by the viscosity property of v,

2(ta = 8a) + H(Ya, pp + aD{(za — ya)) =6,

which is also valid in case when y, € 2.
Thus, we always have

{ 20(ta — 0) + H(Ta, pp + aD((Ta — Ya)) < —
é.

)
2(ta — sa) + H(Ya, p + aD{(Ta — ya)) >

Sending o — oo along a sequence, we obtain
g+ HO,p+p)<—6 and q+H(O,u+p) >4

for some p € ECoMl and ¢ € [-2M;, 2M,], which is a contradiction. This completes
the proof of Theorem 3.1. O

4 Stationary problem: weak KAM aspects

In this section we discuss some aspects of weak KAM theory for Hamilton-Jacobi
equations with the Neumann boundary condition. We refer to A. Fathi [26, 25],
W. E [22] and L. C. Evans [24] for origins and developments of weak KAM theory.

Throughout this section we assume that (A1)-(A6) and the following (A7)
hold:

(A7) The Hamiltonian H is convex. That is, the function p — H(z,p) is convex in
R" for any z € £2.

As in Section 2 we consider the stationary problem

H(z,Du(z)) =0 in £,

ou (SNP)
a—’y(x) = g(x) on 0f2.

As remarked before this boundary value problem may have no solution in general,
but, due to Theorem 3.4, if we replace H by H — a with the right choice of a € R,
the problem (SNP) has a viscosity solution. Furthermore, if we replace H by H —a
with a sufficiently large a € R, the problem (SNP) has a viscosity subsolution. With
a change of Hamiltonians of this kind in mind, we make the following hypothesis
throughout this section:

(A8) The problem (SNP) has a viscosity subsolution.
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4.1 Aubry sets and representation of solutions

We start this subsection by the following Lemma.

Lemma 4.1. Let u € USC(2) be a wviscosity subsolution of (SNP). Then u €
Lip(£2). Moreover, u has a Lipschitz bound which depends only on H and §2.

Proof. By the coercivity of H, there exists a constant M > 0 such that H(z,p) > 0
for all (x,p) € 2 x (R™\ Bar). Fix such a constant M > 0 and note that u is a
viscosity subsolution of |[Du(x)| < M in 2. Accordingly, we see by Lemma 2.2 that
u € Lip(£2). Furthermore, if C' > 0 is the constant from Lemma 2.1, then we have
lu(z) —u(y)| < CM|z —y| for all z,y € £2. (See also Appendix A.3.)

Since the function u(z), as a function of (z,t), is a viscosity subsolution of
(ENP), Lemma 3.3 guarantees that v is continuous up to the boundary 942. Thus,
we get |u(z) — u(y)| < CM|z — y| for all x,y € 2, which completes the proof. O

We introduce the distance-like function d : 2 x 2 — R by
d(z,y) = sup{v(z) —v(y) : v € USC()NS™},

where ST = S7(£2) has been defined as the set of all viscosity subsolutions of
(SNP). By (A8), we have S~ # (0 and hence d(z,z) = 0 for all z € . Since
USC(£2) N S~ is equi-Lipschitz continuous on {2 by Lemma 4.1, we see that the
functions (z,y) — v(x)—v(y), with v € USC(£2)NS ™, are equi-Lipschitz continuous
and d is Lipschitz continuous on 2 x £2. By Proposition 1.10, the functions z —
d(z,y), with y € f2, are viscosity subsolutions of (SNP). Hence, by the definition
of d(z, z) we get

d(z,y) —d(z,y) <d(z,2) forall z,y,z € 0.

We set
Fy={v(x) —v(y) : veS™}, with ye,
and observe by using Proposition 1.10 and Lemma 1.3 that F,, satisfies (P1) and
(P2), with £2 replaced by 2\ {y}, of Proposition 1.13. Hence, by Proposition 1.13,
the function d(-,y) = sup Fy, is a viscosity solution of (SNP) in £\ {y}.
The following proposition collects these observations.

Proposition 4.1. We have:

(i) d(z,x) =0 forall x€ 0. B
(ii) d(z,y) < d(x z)+d(z,y) forall z,y,z € (2.
(iii) d(-, y) € ST(R) forall ye N.

) d(5 v)

(iv) d(-, y) € S(2\{y}) forall yec 0.
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The Aubry set (or Aubry-Mather set) A associated with (SNP) is defined by
A={ye@:d,y) €S@)

Ezample 4.1. Let n = 1, 2 = (=1,1), H(z,p) = |p| = f(z), f(z) = 1 - |z],
v(#£1) = 1 and g(#1) = 0. The function v € C*([-1, 1]) given by

(@) 1-1@x+1)? ifz<o,
v =
Tz —1)? ifx>0

is a classical solution of (SNP). We show that d(z,1) = v(z) for all z € [-1, 1]. It
is enough to show that d(z,1) < v(x) for all € [—1, 1]. To prove this, we suppose
by contradiction that max,e;—11j(d(x, 1) — v(x)) > 0. We may choose a constant
e > 0 so small that max,c;_1,17(d(®,1) —v(zx) — (1 —x)) > 0. Let z. € [—-1, 1]
be a maximum point of the function d(x,1) — v(z) — e(1 — x). Since this function
vanishes at = 1, we have z. € [-1, 1). If z- > —1, then we have

0> H(ze,v'(ze) —€) = [V ()| + € — fzc) =€ >0,

which is impossible. Here we have used the fact that v'(z) = |z| — 1 < 0 for all
x € [—1, 1]. On the other hand, if x. = —1, then we have

0> min{H(-1,v'(=1) —¢), —(v'(=1) —€)} = min{e, e} = ¢ > 0,

which is again impossible. Thus we get a contradiction. That is, we have d(z, 1) <
v(z) and hence d(x,1) = v(z) for all € [—1, 1]. Arguments similar to the above
show moreover that

+

1)? ifx <0,
(x—1)* ifz>0,

d(z, —1) = {f(x

=

and

d(z,1) —d(y,1) ifx <y,

d(z,-1) —d(y,-1) ifz>y.
Since two functions d(x, 1) are classical solutions of (SNP), we see that £1 € A.
Noting that d(z,y) > 0 and d(z,z) = 0 for all z,y € [—1, 1], we find that for
each fixed y € [—1, 1] the function z — d(z,y) has a minimum at x = y. If

€ (-1, 1), then H(y,0) = —f(y) < 0. Hence, we see that the interval (—1, 1)
does not intersect .A. Thus, we conclude that A = {-1, 1}.

A basic observation on A is the following:

Proposition 4.2. The Aubry set A is compact.
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Proof. 1t is enough to show that A is a closed subset of 2. Note that the function
d is Lipschitz continuous in {2 x §2. Therefore, if {yx}ren C A converges to y € 2,

then the sequence {d(-, yx)}ren converges to the function d(-, y) in C(£2). By
the stability of the viscosity property under the uniform convergence, we see that
d(-, y) € S. Hence, we have y € A. O

The main assertion in this section is the following and will be proved at the
end of the section.

Theorem 4.1. Let u € C(2) be a viscosity solution of (SNP). Then
u(z) = inf{u(y) + d(z,y) : y € A}  for allz € 0. (61)
We state the following approximation result on viscosity subsolutions of (SNP).

Theorem 4.2. Let u € C(£2) be a viscosity subsolution of (SNP). There exists a
collection {u}.c(o,1) C CY(£2) such that for any € € (0, 1),

H(z,Du*(z)) <e in 2,

(x) <gx)  onoQ,

and
[u” = ulloo,2 <e.

A localized version of the above theorem is in [39] (see also Appendix A.4 and
[8]) and the above theorem seems to be new in the global nature.
As a corollary, we get the following theorem.

Theorem 4.3. Let f1, f2 € C(2) and g1, g2 € C(092). Let u,v € C(£2) be viscosity
solutions of
H(x,Du) < fi in £,

ou <q on 012,

and

— < on 012,

respectively. Let 0 < X\ < 1 and set w = (1 — N)u + . Then w is a viscosity
subsolution of

H(z,Dw) < (1 =X+ Af2 in £,

ow (62)

oy < (1—=MNg1+ Ag2 on 912,
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Proof. By Theorem 4.2, for each e € (0, 1) there are functions u®, v¢ € C'(£2)
such that
[u® = ulloo,2 + |[v° = V]|o,2 <€,
H(z,Du®(z)) < fi(z) +¢ in £,
ou®
ol

(2) < () + on 992,

and B
H(z, Dv*(z)) < fa(z) +e  in £,
ov®
2l

If we set w® = (1 — A)u® + Av®, then we get with use of (A7)

(z) < ga2(x) + € on 0f2.

H(z, Dw®(z)) < (1 =N fi(z) + Afa(z) + ¢ in 02,
ow®
Oy

() < (1 =XNgi(z) + Ag2(x) + ¢ on 0f2.

Thus, in view of the stability property (Proposition 1.9), we see in the limit as
e — 0 that w is a viscosity subsolution of (62). O

The following theorem is also a consequence of (A7), the convexity of H, and
Theorem 4.2.

Theorem 4.4. Let F be a nonempty collection of viscosity subsolutions of (SNP).
Assume that u(z) := inf F(x) > —oo for all x € 2. Then u € Lip(2) and it is a
viscosity subsolution of (SNP).

This theorem may be regarded as part of the theory of Barron-Jensen’s lower
semicontinuous viscosity solutions. There are at least two approaches to this theory:
the original one by Barron-Jensen [11] and the other due to Barles [5]. The following
proof is close to Barles’ approach.

Proof. By the coercivity of H, the collection F is equi-Lipschitz in (2. Hence,
u is a Lipschitz continuous function in 2. For each z € (2 there is a sequence
{Ua,k }ken C F such that limg_.co ug i (z) = u(x). Fix such sequences {us i }ren,
with = € £2 and select a countable dense subset Y C 2. Observe that ¥ x N is a
countable set and

w(z) = inf{uy, r(z) : (y,k) €Y xN} forall z € Q.

Thus we may assume that F is a sequence.
Let F = {uk }xen. Then we have

w(z) = lim (w1 Auz A--- Aug)(z) forall z € 2.

k—oo
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We show that ui A uz A -+ Awuyg is a viscosity subsolution of (SNP) for every
k € N. It is enough to show that if v and w are viscosity subsolutions of (SNP),
then so is the function v A w.

Let v and w be viscosity subsolutions of (SNP). Fix any ¢ > 0. In view of
Theorem 4.2, we may select functions ve, we € C'(£2) so that both for (¢, d) =
(ve,v) and (¢e, ¢) = (we, w), we have

H(z,D¢:(z)) <e forall z € £,

O
<
B (z) < g(x) for all = € 012,

¢ = dlloc,2 <.

Note that (ve A we)(z) = ve(x) — (ve — we)+(x). Let {n}ren C C*(R) be such
that

me(r) — re uniformly on R as k — oo,
0<n(r)<1 foral reR, keN.
We set ze,r, = ve — N © (Ve 5) and observe that
Dz i(x) = (1 — M (ve(z) — we(2))) Dve(z) + i (ve(x) — we (z)) Dwe ().

By the convexity of H, we see easily that z. j satisfies

H(z,Dze;(z)) <e forall ze€ s

8;77(:0) < g(z) for all = € 012.

Since v A w is a uniform limit of z¢ j in Rask —ooande — 0, we see that v A w
is a viscosity subsolution of (SNP).
By the Ascoli-Arzela theorem or Dini’s lemma, we deduce that the convergence

u(x) = klin;o(ul A Aug)(z)

is uniform in 2. Thus we conclude that u is a viscosity subsolution of (SNP). O

Remark 4.1. Theorem 4.2 has its localized version which concerns viscosity subso-
lutions of

H(z,Du(x)) <0 inUnN{,

g—:(az) < g(x) on U N2,
where U is an open subset of R" having nonempty intersection with 2. More im-
portantly, it has a version for the Neumann problem for Hamilton-Jacobi equations
of evolution type, which concerns solutions of

ue(z,t) + H(z, Dou(z,t)) <0 inUN(2xRy),

%(w,t) <g(z) on U N (92 x Ry),



Introduction to viscosity solutions and the large time ... 57

where U is an open subset of R™ x Ry, with U N (2 x Ry) # (. Consequently,
Theorems 4.3 and 4.4 are valid for these problems with trivial modifications. For
these, see Appendix A.4.

Theorem 4.5. We have

¢ = inf {maz(H(@Dz/}(x)) s eCl (), o9/dy < g on 8(2}.
e

Remark 4.2. A natural question here is if there is a function v € C*(£2) which
attains the infimum in the above formula. See [28, 12].

Proof. Let ¢* denote the right hand side of the above minimax formula. By the
definition of c¢*, it is clear that for any a > c*, there is a classical subsolution of
(EVP). Hence, by Corollary 3.2, we see that ¢ < ¢*.

On the other hand, by Theorem 3.4, there is a viscosity solution v of (EVP),
with @ = ¢#. By Theorem 4.2, for any a > ¢* there is a classical subsolution of
(EVP). That is, we have ¢* < ¢*. Thus we conclude that ¢* =¢*. O

Theorem 4.6 (Comparison). Let v,w € C(Q) be a viscosity subsolution and
supersolution of (SNP), respectively. Assume that v < w on A. Then v < w in §2.

For the proof of the above theorem, we need the following lemma.

Lemma 4.2. Let K be a compact subset of 2\ A. Then there exists a function
¥ € CHU N N2), where U is an open neighborhood of K in R™, and a positive
constant 6 > 0 such that
H(z,Dy(z)) < -6 in UN 2,
63
8—w(x)gg(av)—é on U N OS2 (63)
Oy
We assume temporarily the validity of the above lemma and complete the proof
of Theorems 4.6 and 4.1. The proof of the above lemma will be given in the sequel.

Proof (Theorem 4.6). By contradiction, we suppose that M := supﬁ(v —w) > 0.
Let
K={zec: (v—w)(x)=M},
which is a compact subset of 2\ A. According to Lemma 4.2, there are § > 0 and
¢ € CH(UNKR), where U is an open neighborhood of K such that v is a subsolution
of (63).
According to Theorem 4.2, for each € € (0, 1) there is a function v* € C*(£2)

such that

H(z,Dv"(z)) <e in £,

ov®

2l

(2)<gz)  on 0L,
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and

[v° — v]|oo,2 < €.

We fix a A € (0, 1) so that . := —(1 — A)e +dX > 0 and set
ue(z) = (1 = A)v°(z) + M(z).
This function satisfies

H(z,Duc(z)) < —6. in UnN,
Oue
oy

(z) < g(x) — de on UNawn.

This contradicts the viscosity property of the function w if ue —w attains a maxi-
mum at a point z € U N §2. Hence, we have

max(us — w) = max (ue — w).

Uung auUNN

Sending € — 0 and then A — 0 yields

max(v — w) = max (v — w),
une oUung

that is,

M = max (v —w).
aung

This is a contradiction. 0O

Remark 4.3. Obviously, the continuity assumption on v, w in the above lemma can
be replaced by the assumption that v € USC(£2) and w € LSC({2).

Proof (Theorem 4.1). We write w(z) for the right hand side of (61) in this proof.
By the definition of d, we have

u(z) —u(y) < d(z,y) forall z,y € 2,

from which we see that u(z) < w(z).
By the definition of w, for every x € A, we have

w(z) <u(x) +d(z,x) = u(z).

Hence, we have w = u on A.

Now, by Proposition 1.10 (its version for supersolutions), we see that w is a
viscosity supersolution of (SNP) while Theorem 4.4 guarantees that w is a viscosity
subsolution of (SNP). We invoke here Theorem 4.6, to see that v = w in 2. O
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Proof (Lemma 4.2). In view of Theorem 4.2, it is enough to show that there exist
functions w € Lip(£2) and f € C(£2) such that

{f(w) >0 in @
f()>0 in K,
and w is a viscosity subsolution of
H(z,Dw(z)) < —f(z) in £,
—(z) < g(x) on 0f2.

For any z € 2\ A, the function 2 — d(z, z) is not a viscosity supersolution
of (SNP) at z while it is a viscosity subsolution of (SNP). Hence, according to
Lemma 1.3, there exist a function v, € Lip(§2), a neighborhood U, of z in R"
and a constant 6, > 0 such that 1, is a viscosity subsolution of (SNP) and it is

moreover a viscosity subsolution of

H(z,Dy.(z)) < =6, inU.N{,

N
< — 02 2 .
= () <glx)—9¢ on U. N2

We choose a function f, € C(§2) so that 0 < f.(x) < 6 for all z € 2N U, and
f=(x) = 0 for all x € £2\ U, and note that 1, is a viscosity subsolution of

H(z, Dy.(2)) < —fo(z) in 2,

83% (x) < g(x) = fz(x)  on 012
We select a finite number of points z1, ..., zx of K so that {U., }*_, covers K.

Now, we define the function ¢ € Lip(2) by

U@) = 3 Do),

and observe by Theorem 4.3 that v is a viscosity subsolution of
G0 <9 = f0)  on0n

where f € C(£2) is given by

Finally, we note that infx f > 0. O



60 Hitoshi Ishii
4.2 Proof of Theorem 4.2

We give a proof of Theorem 4.2 in this subsection.

We begin by choosing continuous functions on R™ which extend the functions
g, v and v. We denote them again by the same symbols g, v and v.

The following proposition guarantees the existence of test functions which are
convenient to prove Theorem 4.2.

Theorem 4.7. Let € > 0 and M > 0. Then there exist a constant A > 0 and
moreover, for each R > 0, a neighborhood U of 982, a function x € C*((2UU)xR™)
and a constant § > 0 such that for all (z,€) € (RQUU) x R",

Mg < x(z,€) < A(|¢] + 1),

and for all (xz,€) € U x Bg,

IA

o) Doyfog [ HE T v E<s
VPRI s @)+ £ i ) £> -6

Y

It should be noted that the constant A in the above statement does not depend
on R while U, x and § do.

We begin the proof with two Lemmas.

We fix r > 1 and set

R ={(y,2) €R" xR" : y-z> 77", max{|y|, |2} <r}.

We define the function ¢ € C°°(R*™ x R™) by
I P AR S L
C(y,2,8) = ’5 y~zZ’ +(y-8)”

Lemma 4.3. The function ¢ has the properties:

C(y, 2, t8) = t*¢(y, 2,€) for all (y,z,&,t) € R2" x R" x R,
C(y,2,€) >0 for all (y,z,€) € RZ" x (R™\ {0}),
2 DeC(y,2,8) =2(y - 2)(y-€)  for all (y,2,€) € RZ" x R™.

This is a version of Lemma 3.4, the proof of which is easily adapted to the

present case.
We define the function ¢ : R?™ x R"” — R by

By, 2,€) = (((y, 2,€) +1)'/%.
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Lemma 4.4. There exists a constant A > 1, which depends only on r, such that
for all (y,2,£) € R2" x R™,

2 Dedly, 2,€) = ¢y, 2,6) " (y - 2)(y - €),
max{A7¢], 1} < é(y, 2, €) < A(|€] + 1),
max{|Dy¢(y, 2, )], |D-¢(y, 2, §)[} < A(|] + 1),
|Deg(y, 2, )| < A

Proof. 1t is clear by the definition of ¢ that

oy, 2,€) > 1.
We may choose a constant C' > 1 so that for all (y, z,£) € R2™ x §"71,

max{((?J: Z7£)7 C(y7 ng)_17 |Dy<(y7 Z7€)|7 |DZC(y7 Z7£)|7 |D§C(y7 Zv&)l} S 07
where S"7! := {z € R™ : |z| = 1}. By the homogeneity of the function ¢(y, z, €)
in &, we have

max{((y, 2,€), [Dy((y, 2, €)1, ID=C(y, 2, )} < CIEP,
|DeC(y, 2, 8)| < CEl, (64)

(Y26 =07l
for all (y, z,&) € R2™ x R™. From this it is follows that
CTH2lel < b(y, 2, €) < CV(g] + 1),

By a direct computation, we get

DIC(y7 2 '5)
20(y, 2,€)

for x =y, 2,€.

Did)(yazaé-) =

Hence, using (64), we get

ClgP+1 . _ClgP 1
20(y,2,6) ~ 290(y,2,6)  2¢(y,2,6)

In the same way, we get

|Dyo(y, 2,€)| < < C*P(lgl+1).

|D=6(y, 2, 6)| < C*2(j¢] +1).
Also, we get

Clgl+1 clel 1 3/2
(OhC
2¢(y, 2,€) = 20(y, 2,€) - 20(y,2,€) =

Using (64) again, we observe that

L. Loy o 2Py, 28 (y-2)(y-§)
Deolw20="55028 = =0

By setting A = C%/2, we conclude the proof. O

|Deg(y, 2,8)| <
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Let a > 0. For any W C R™ we denote by W the a—neighborhood of W, that
is,
W ={z e R" : dist(z, W) < a}.

For each § € (0, 1) we select vs € C(£21,R™), v5 € C (2, R™) and gs € C* (24, R)
so that for all z € 21,

max{|vs(z) — v(z)], [vs(z) —v(2)], 95(x) — g(z)[} < 6. (65)

(Just to be sure, note that 2! = {x € R" : dist(z, 2) < 1}.)
By assumption, we have

v(z) -vy(x) >0 forall z € 0.
Hence, we may fix 6o € (0, 1) so that
inf{vs(z) - ys(x) : © € (02)°, & € (0, §o)} > 0.
We choose a constant r > 1 so that if § € (0, do), then

min{vs(z) - ys(2), [ys(z)[} > 77,
max{\z/(;(m)|, |75('T)|} <, (66)
lgs ()| + 1 <.

for all 2 € (862)°. In particular, we have
(vs(x), vs(x)) € RZ™  for all x € (862)° and & € (0, &). (67)

To proceed, we fix any € € (0, 1), M > 0 and R > 0. For each ¢ € (0, dg) we
define the function 15 € C*((92)% x R™,R) by

Y5 () - €

Ys(z,§) = (gs(z) + ¢ )
(@8 = 5@+ O
choose a cut-off function ns € C§(R™) so that

suppns C (012)°,
0<ns(x) <1 forallzeR"

ns(z) =1 for all z € (002)°/?,
and define the function x5 € C*(£2°0) by
Xo (@, €) = M(E)(1 = ns()) + ns () [s (@, ) + (r* + M) A¢s(x, )] ,
where A is the constant from Lemma 4.4, (¢) := (|€]> + 1)/? and ¢s(z, &) ==

d(vs(x),vs(x), €). Since suppns C (962)% for all § € (0, do), in view of (67) we see
that xs is well-defined.
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Proof (Theorem 4.7). Let 8 € (0, 1) and 5, ¢5, xs € C*(£2°° x R™) be as above.
Let § € (0,00), which will be fixed later on. It is obvious that for all (z,§) €
(2)% x R",
{ Vs(x) - Detps(z,€) = gs() + &, (68)
[ (2, €)] < r*€].
For any (z,€) € (002)° x R™, using (66), (68) and Lemma 4.4, we get
s (,€) + (1 + M)Ags(x,€) > —r?|¢| + (* + M)Ig| > Mg,

and
1€+ (r* + M) A1) + 1)

(2r® + M)A*(j¢| + 1).

Ys(@,€) + (r? + M) Ags(x,€) <
<

Thus, we have
ME| < xs(x, ) < (2r° + M)A (J¢| + 1) for all (z,€) € 2° x R™. (69)
Now, note that if (z,£) € (89)6/2 x R"™, then
Xs (2, €) = s (x, &) + (r* + M) Ags(x,€).
Hence, by Lemma 4.4 and (68), we get

(vs(x) - vs(x)) (ws () - €)
ds(z,8)

75(2) - Dexs(,€) = gs(x) + e+ (r* + M)A
for all (z,¢) € (92)%/? x R™.
Next, let (z,€) € 2° x R™. Since
Dexs(,€)
= (1 = 0s(2)D(€) +ns(2) [Dews (2, €) + (r* + M)ADes(x,€)] ,
using Lemma 4.4, we get

D (2, )] < max {M|D<s>|, % 4 (r® + M)A|Dedss(x, f)\}

< max{M, r* 4+ (1> + M)A*} = (2> + M) A>.

(70)

Let (x,€) € (82)°/? x Bg. Note by (65) and (70) that
|(v8(2) = v(x)) - Dexs (@, €)| < 8(2r* + M)A*.
Note also that if v(z) - £ <, then

2 (vs(z) - v5(x)) (vs () - §)
(T +M)A ¢5(x7€)

< o2 ana @B O o e

< (P + M)Ar*5(1 + R).
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Hence, if v(z) - £ < 4, then
(@) Dexs(x,€) < v5() - Dexs(w, &) + 6(2r” + M)A

<6(2r* + M)A* + gs(x) + ¢

2 (ws(x) - ys(2)) (vs(x) - £)
+ (" + M)A 63(2.6)
<gl@)+e+d[1+ (2r® + M)A*r® + (r* + M) Ar®(1 + R)].

Similarly, we see that if v(z) - £ > —§, then

v(@)-Dexs (@, §)
>g(z) +e— 081+ (2r° + M)A*r® + (r* + M)Ar*(1 + R)] .

If we select & € (0,d0) so that

S[14 2r® + M)A*r® + (r* + M)Ar*(1+ R)] <

N | ™

then we have for all (z,&) € (92)°/? x B,

g(z) +2¢ if v(z)-

7(@) - Dexs(, E){ s i

£<9,
£ -

Thus, the function x = xs has the required properties, with (8!2)6/2 and (2r% +
M)A? in place of U and A, respectively. O

We are ready to prove the following theorem.

Theorem 4.8. Let ¢ > 0 and u € Lip(f2) be a wviscosity subsolution of (SNP).
Then there exist a neighborhood U of 982 and a function u. € C*(2UU) such that

H(z,Du.(z)) <e forall x € 2UU,
Y(z) - Duc(z) < g(x) +e  forall z €U, (71)

[ue — ullos,2 <.

Proof. Fix any € > 0 and a constant M > 1 so that M — 1 is a Lipschitz bound
of the function u. With these constants € and M, let A > 0 be the constant from
Theorem 4.7. Set R = M + 2/, and let U, x and ¢ be as in Theorem 4.7.

Let o > 0. We define the sup-convolution u, € C(£2UU) by

o (r) = max(u(y) — ax(z, (y — z)/a)).
yeN
Let 2 € QUU, p € DT uy(z) and y € 2 be a maximum point in the definition
of uq, that is,

ta() = u(y) — ax(z, (y — z)/a). (72)
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It is easily seen that

{ Dex(z, (y — x)/a) € DT u(y),

(73)
p = Dex(z, (y —)/a) — aDex(x, (y — x)/a).

Fix an ap € (0, 1) so that

(802)°% C U.
Here, of course, V denotes the closure of V. For a € (0, ag) we set Uy = (89)“2
and Vo, = 2U U = 2°°. Note that x € CH(Vy x R™). We set W, = {(z,y) €
Vo x 2 : (72) holds}.
Now, we fix any a € (0, ag). Let (z,y) € Wa. We may choose a point z € 2
so that |z — z| < o®. Note that

u(y) — ax(z, (y — v)/a) = ua(z) = u(2) — ax(z, (z — )/a).

Hence,

ax(z,(y —z)/a) < (M —1)|z —y| + ax(z, (z — z)/a).
Now, since M |¢] < x(z,€) < A(|¢|+1)) for all (x,€) € Vo xR™ and |z—2| < o < a,
we get

Mlz —y| <(M = 1)(|z — y| + @®) + aA(|z — z|/a + 1)
<(M =Dz —y| + oM + 24).

Consequently,
ly —z| < a(M +24)=Ra forall (z,y) € Wa. (74)
Next, we choose a constant C' > 0 so that
|Dax(z,8)| + |Dex(z, )| < C  for all (z,§) € Vo, X Br.

Let (z,y) € Wa and z € Bra(z) N Va,. Assume moreover that € U. In view of
(74) and the choice of x and §, we have

(&) Dexs (@, (y — 2)/) < g(z) + 2¢ if v(z)-(y—=x)<ad,
K XA >g(z) + g if v(z):(y—z)>—ad.
We observe that
< ad +wy(Ra)Ra  if v(z) - (y—2x) < a—é,
V(@) -2 % , )
> - —wy(Ra)Ra  if v(z)-(y—z) > —5

where w, denotes the modulus of continuity of the function v on V,,. Observe as
well that
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7(2) - Dex(, (y — x)/a) = 7(2) - Dex(z, (y — z) /)| < Cw,(Ra),
19(2) = 9(2)] <wy(Ra),
where w, and wy denote the moduli of continuity of the functions v and g on the

set Vo, respectively.
We may choose an ay € (0, ap) so that

wy(Ra1)R < g and Cwy(Ra1) + wg(Rai) < Z,

and conclude from the above observations that for all (z,y) € W, and z; €
Bra(z) N Vo, withe=1,2,3,if €U and «a < a1, then

<g(z2)+3 if v(z3) (y—2z) <ad/2,

21) - Dex(x,(y — )/ 75
) DB WD S s+ S it ) -0) 2 etz
We may assume, by reselecting a1 > 0 small enough if necessary, that

(00)% cU. (76)

In what follows we assume that o € (0, a1). Let (z,y) € W, and p € DT ua(2).
By (73) and (74), we have

max{|p|, [Dex(, (y — z)/a)[} < C(1 +a). (77)

Let wy denote the modulus of continuity of H on Vo, X Be(14ap)-

We now assume that y € 92. By (74) and (76), we have z € U. Let p be
a defining function of 2. We may assume that |Dp| < 1 in V., and po :=
infy,, [Dpl > 0. Observe that

a® > p(z) = p(z) = ply) = Dp(z) - (x —y) = |Dp(2)lv(2) - (z — y)
for some point z on the line segment [z, y]. Hence, we get
v(z) - (z—y) < py'a’

If « < pod/2, then
v(z) (y—=x) > —ad/2.
Hence, noting that |z — z| < |z — y| < Ra, by (75), we get

3

Y(W) - Dexs(z, (y — ) /) > g(y) + T

and, by the viscosity property of wu,
02> H(y, Dexs(w, (y — v)/a)) = H(z,p) —wu ((R+ C)a).

Thus, if wg((R+ C)a) < e and o < ppd/2, then we have
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H(z,p) <e.

On the other hand, if y € (2, then, by the viscosity property of u, we have
0> H(y, Dexs(w, (y — x)/cv)).

Therefore, if wg((R+ C)a) < €, then

H(z,p) <e.
We may henceforth assume by selecting a1 > 0 small enough that

wa((R+C)a1) <e and a1 < pod/2,
and we conclude that u, is a viscosity subsolution of
H(z,Dua(x)) <e in V,. (78)
As above, let (z,y) € W, and p € D uq (). We assume that z € U,. Then
—a® < p(z) < p(z) — ply) < Dp(2) - (& —y)

for some z € [z,y], which yields
v(z) - (y — ) < [Dp(z)|"'a® < pyla’.

Hence, if a < ppd /2, then
oo
ve) (y—m) < O,

and, by (75), we get
v(@) - Dex(w, (y — x)/c) < g(x) + 3e.
Furthermore,

(@) - p <¥(x) - DeXeyal®, (y — ) /@) + aCl7||o0,v.,
<g(z) + 3¢ + aCl[7]l0o,Ua, -

We may assume again by selecting a1 > 0 small enough that
1Cllloe.vag <.
Thus, u, is a viscosity subsolution of
v(z) - Dua(z) < g(z) +4e  in U,. (79)
Let (z,y) € W, and observe by using (74) that if € £2, then

[u(z) = ua(z)] < Ju(z) —u(y)| + alx(z, (y —z)/a)l < (MR + C).
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We fix o € (0, a) so that ay (MR + C) < ¢, and conclude that u. is a viscosity
subsolution of (78) and (79) and satisfies

|t — oo, < €.

The final step is to mollify the function uq. Let {kx}r>0 be a collection of
standard mollification kernels.

We note by (77) or (78) that u, is Lipschitz continuous on any compact subset
of V. Fix any A € (0, a®/4). We note that if the closure of V,, /» + By is a compact
subset of V.. Let M7 > 0 be a Lipschitz bound of the function u, on V,, /2 + Bx.

We set

uM@) = ua * ka(z) for ze Vay2-

In view of Rademacher’s theorem (see Appendix A.6), we have

H(z,Duqa(x)) <e for a.e. x € Vi,
v(x) - Dua(z) < g(z) + 4e for a.e. x € Ua.

Here Du,, denotes the distributional derivative of u., and we have
Du’ = kx * Du, In Va/g.

By Jensen’s inequality, we get

H(z,Du*(z)) < | H(z, Dua(z —y))ka(y) dy

By

< H(z —y, Duc(z — y))ka(y) dy + wm (N)
B

S e+ wH(>‘)7

where wg is the modulus of continuity of H on the set V, x By, . Similarly, we get
7() - Du(2) < g(2) + 4e +wy(A) + Miwy(N),

where wy and w, are the moduli of continuity of the functions g and v on Vi,
respectively. If we choose A > 0 small enough, then (71) holds with v* € Cl(Va/z),
U, 2 and 5¢ in place of u., U and ¢, respectively. The proof is complete. O

Proof (Theorem 4.2). Let € > 0 and u € Lip(§2) be a viscosity subsolution of
(SNP). Let p be a defining function of 2. We may assume that

Dp(z) -v(x) >1 forall ze€ dfn.

For § > 0 we set _
u’ (x) = u(z) — dp(x) for z € 2.

It is easily seen that if § > 0 is small enough, then u? is a viscosity subsolution of
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H(z, Du’(z)) <e in £,
{ y(z) - Du’(z) < g(x) =& on 9,
and the following inequality holds:
[u® = ul|oo,2 < e

Then, Theorem 4.8, with min{e, 6}, u®, H — e and g — § in place of ¢, u, H and
g, respectively, ensures that there are a neighborhood U of 02 and a function
ue € CH(2UU) such that

H(z, Duc(z)) < 2¢ in QUU,

v(z) - Duc(z) < g(z) in U,

l[ue = ulloc,2 < 2,

which concludes the proof. O

5 Optimal control problem associated with (ENP)—(ID)

In this section we introduce an optimal control problem associated with the initial-
boundary value problem (ENP)—(ID),

5.1 Skorokhod problem

In this section, following [38, 45], we study the Skorokhod problem. We recall that
R4 denotes the interval (0, co), so that Ry = [0, c0). We denote by Li, (R4, R)
(resp., ACioc(R4, R¥)) the space of functions v : Ry — R* which are integrable
(resp., absolutely continuous) on any bounded interval J C R-.

Given z € 2 and v € L, .(R+,R"), the Skorokhod problem is to seek for a
pair of functions, (1, I) € ACioc(Ry,R™) x LL (R4, R), such that

n(0) = =,

n(t) € 2 for all t € Ry,

n(t) + 1(t)y(n(t)) = v(t) for a.e. t € Ry, (80)
I(t) >0 for a.e. t € Ry,

I(t)y=0 ifn(t) € 2 for a.e. t € Ry.

Regarding the solvability of the Skorokhod problem, our main claim is the
following.

Theorem 5.1. Let v € L. (R4, R™) and & € 2. Then there exits a pair (1, 1) €
ACioc(Re, R™) x L (R4, R) such that (80) holds.
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We refer to [45] and references therein for more general viewpoints (especially,
for applications to stochastic differential equations with reflection) on the Sko-
rokhod problem.

A natural question arises whether uniqueness of the solution (7, 1) holds or not
in the above theorem. On this issue we just give the following counterexample and
do not discuss it further.

Ezample 5.1. Let n = 2 and 2 = {x = (z1,22) € R* : z; > 0}. (For simplicity of
presentation, we consider the case where {2 is unbounded.) Define v € C(9£2, R?)
and v € L= (R4, R?) by

(0, 22) = (=1, =3Jas|*z2)  and  w(t) = (-1, 0).
Set
nE(t) = (0, ££*)  for all t > 0.
Then the pairs (n+, 1) and (7, 1) are both solutions of (80), with 5% (0) = (0,0).

We first establish the following assertion.

Theorem 5.2. Let v € L®(R4, R™) and = € 2. Then there exits a pair (n, 1) €
Lip(R4, R™) x L>=(R4, R) such that (80) holds.

Proof. We may assume that -y is defined and continuous on R™. Let p € C*(R™)
be a defining function of 2. We may assume that liminf|;|_ p(x) > 0 and that
Dp is bounded on R™. We may select a constant § > 0 so that for all z € R",

y(z) - Dp(x) > 6|Dp(a)] and  |Dp(a)| =5 if 0< p(a) <.

We set q(x) = (p(x) V0) A for x € R™ and observe that g(x) = 0 for all x € 2
and g(z) > 0 for all 2 € R™\ 2.
Fix € > 0 and x € £2. We consider the initial value problem for the ODE

E(t) + ~g(EM)V(ER) = v(t) for ae t Ry, £(0) =u. (81)

By the standard ODE theory, there is a solution ¢ € Lip(R;) of (81). Fix such a
solution ¢ € Lip(R4, R™) in what follows.

Note that (dgqo &/dt)(t) = Dp(€(t)) - £(t) ae. in the set {t € Ry : po&(t) €
(0, 6)}. Moreover, noting that go¢ € Lip(R, R) and hence it is differentiable a.e.,
we deduce that (dgo&/dt)(t) =0 a.e. in the set {t € Ry : po&(t) € {0, §}}.

Let m > 2. We multiply the ODE of (81) by mq(&(t))™ ' Dp(£(1)), to get

%q(&(t))m + ?Q(ﬁ(t))me(S(t)) ~(€(1)) = ma(£())™ " Da(€(t) - v(t)

a.e. in the set {t € Ry : po&(t) € (0,0)}. For any T' € Ry, integration over
Epr:={te€[0,T]: po&(t) € (0, )} yields
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Q€)™ = g€ )™ + = | al&()™Es)) - Dp(E(s))ds

Er

—m /E 4(£())" " Dp(€(s)) - v(s)ds.

Here we note

and

Combining these, we get

d€@)™ + ™ [ g(e(s)™ Dpe(s))ds

€ Je,
<m ([ ) q(£(8))m|Dp(£(8)d5>1_71” (f ) )" Do) ) "

Hence,

S (/ET q(g(s))”mp(g(s))msy < (/ET v(s)|m|Dp(§(s))|ds>%
15

aem)™ < (5)" m o)™ De(E(s)ds.

Thus, setting Co = || Dpl| oo (rn), we find that for any T' € Ry,

and

m—1
QEW)™ < (%) mCoT ||| P o,y for all ¢ € [0, T. (82)

We henceforth write & for £, in order to indicate the dependence on ¢ of £, and
observe from (82) that for any T > 0,

slir(l)lﬂg[l(%);] dist(&:(t), 2) = 0. (83)

Also, (82) ensures that for any T' > 0,

3=

llv]l .o 0,7)-

5

1) dmCoT
g||q0§e||L°°(0,T) < < 0 )
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Sending m — oo, we find that (§/¢)||q 0 &||Loo (0, 7) < [|v||Loo (0, 7y, and moreover

)
g||q0€s||L°°(R+) < vllpos gy )- (84)

We set I = (1/e)q o &. Thanks to (84), we may choose a sequence €; — 0+ (see
Lemma A.7) so that [.; — I weakly-star in L*°(R}) as j — oo for a function
l € L*°(Ry). It is clear that I(s) > 0 for a.e. s € Ry.

ODE (81) together with (84) guarantees that {&:}c>0 is bounded in L= (Ry).
Hence, we may assume as well that £., converges locally uniformly on R, to a
function n € Lip(R4) as 7 — oo. It is then obvious that n(0) = x and the pair
(n, 1) satisfies

n(t) +/O (I(s)y(n(s)) —v(s))ds =0 forallt € Ry,
from which we get
n(t) +1(t)y(n(t)) =v(t) for a.e. t € Ry.

It follows from (83) that n(t) € 2 for ¢t > 0.

In order to show that the pair (7, 1) is a solution of (80), we need only to prove
that for a.e. t € Ry, I(t) =0 if n(t) € 2. Set A= {t >0 : n(t) € £2}. It is clear
that A is an open subset of [0, c0). We can choose a sequence {Ij}ren of closed
finite intervals of A such that A = (J, .y Ix- Note that for each k € N, the set
n(Ix) is a compact subset of {2 and the convergence of {£c, } to n is uniform on I.
Hence, for any fixed k € N, we may choose J € N so that & (t) € £2 for all ¢ € I,
and j > J. From this, we have q(§,(t)) = 0 for t € I, and j > J. Moreover, in
view of the weak-star convergence of {l¢;}, we find that for any k € N,

/Il(t)dt: im [ (¢, (0)™dt =0,

j—oo It &‘j

which yields I(t) = 0 for a.e. t € Ij. Since A = (U, o Ir, we see that I(t) = 0 a.e.
in A. The proof is now complete. O

For 2 € £2, let SP(z) denote the set of all triples
(7]7 v, l) S ACIOC(RJﬂRn) X Llloc(EJr,Rn) X Llloc(RwL)

which satisfies (80). We set SP = {J__5 SP(x).

We remark that for any z,y € £2 and T € Ry, there exists a triple (n,v,1) €
SP(x) such that 7(T) = y. Indeed, given z,y € 2 and T € Ry, we choose a curve
n € Lip([0, T, 2) (see Lemma 2.1) so that 7(0) = 2, n(T) = y and n(t) € 2 for
all t € Ry. We extend the domain of definition of i to R by setting n(t) = y for
t > T. If we set v(t) = n(t) and I(t) = 0 for t > 0, we have (n,v,l) € SP(x), which
has the property, n(T) = y.
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We note also that problem (80) has the following semi-group property: for any
(z,t) € 2 x Ry and (1, v1, l1), (172, v2, l2) € SP, if 11(0) = x and 72(0) = n1(¢)
hold and if (n, v, 1) is defined on R4 by

(m(s), v1(s), l1(s)) for s € [0, t),
(m2(s —t), va(s = t), la(s — 1)) for s € [t, 00),

(n(s), v(s), Us)) = {

then (1, v, [) € SP(z).
The following proposition concerns a stability property of sequences of points
in SP.

Proposition 5.1. Let {(nx, vk, lx) }ren C SP. Letx € 2 and (w,v,1) € Lioe(R4, R*™ 1),
Assume that as k — oo,

ne(0) —
(M, vk, Ie) — (w,v,1)  weakly in L'([0, T], R*"T)

for every T € Ry. Set
n(s) == +/ w(r)dr  for s > 0.
0

Then (n,v,1) € SP(z).

Proof. For all t > 0 and k € N, we have

t t
m(® =00+ [ s =m(0)+ [ @s) = o) ds.
0 0
First, we observe that as k — oo,
me(t) — n(t) locally uniformly on R,

and then we get in the limit as k — oo,

nt) ==z +/O (v(s) = U(s)y(n(s)))ds forall t>0.

This shows that n € ACioc (I@JF,R") and
n(s) +1(s)y(n(s)) =v(s) for a.e. s€Ry.

It is clear that n(0) = z, n(s) € 2 for all s € Ry and I(s) > 0 for a.e. s € Ry.

To show that (n, I) € SP(z), it remains to prove that for a.e. t € Ry, I(¢t) =0
if n(t) € £2. As in the last part of the proof of Theorem 5.2, we set A = {t >0 :
n(t) € 2} and choose a sequence {I;};en of closed finite intervals of A such that
A=U,en ;- Fix any j € N and choose K € N so that nx(t) € £2 for all t € I; and
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k > K. From this, we have l(t) = 0 for a.e. t € I; and k > K. Moreover, in view
of the weak convergence of {l.}, we find that

/z = lim [ L()dt =0,

I

which yields l( ) = 0 for a.e. t € I;. Since j is arbitrary, we see that I(t) = 0 a.e.
nA={ O

JEN

Proposition 5.2. There is a constant C' > 0, depending only on {2 and v, such
that for all (n, v, 1) € SP,

()| VI(s) < Clv(s)| for a.e. s> 0.

An immediate consequence of the above proposition is that for (1, v, ) € SP,
if v € LP(Ry, R™) (resp., v € LY (R4, R™)), with 1 < p < oo, then (1, 1) €
LP(R-h Rn+1) (resp., (777 l) € Ly, (R+7 Rn+1))'

loc

Proof. Thanks to hypothesis (A4), there is a constant do > 0 such that v(z)-y(z) >
8o for x € 002. Let p € C*(R™) be a defining function of (2.

Let s € R4 be such that n(s) € 912, n is differentiable at s, I(s) > 0 and
1(s) +1(s)y(n(s)) = v(s). Observe that the function pon attains a maximum at s.
Hence,

0= —p(n(s)) = Dp(n(s)) - n(s) = | Dp(n(s))|v(n(s)) - 1(s)

= U(s)7(n(s)))
— U(s)%)-
Thus, we get

I(s) < 85 'w(n(s)) - v(s) < & ' u(s)|

n(s)| =v(s) = U(s)v(n(s))] < [v(s)] + ()] [V]lse.00
<1+ 60 1Ylloo.02) [0(s)]
which completes the proof. 0O

and

5.2 Value function I

We define the function L € LSC(2 x R™, (—oo, 00]), called the Lagrangian of H,
by
L(xz,§) = sup (&-p— H(z,p)).
pER™

For each z the function £ — L(x,€) is the convex conjugate of the function p —
H(x,p). See Appendix A.2 for properties of conjugate convex functions.
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We consider the optimal control with the dynamics given by (80), the running

cost (L, g) and the pay-off ug, and its value function V' on Q, where Q = 2 x R,
is given by

Vat) = int { [ (Eln(s). =) + gln(s))()ds

+uo(n(®) 5 (m,v,0) € SP()}  for (w,1) € Q,

(85)

and V(z,0) = uo(zx) for all z € 2.

For t > 0 and (n,v,l) € SP = SP(x), we write

z€R

L(t,n,v,1) :/0 (L(n(s), —v(s)) + g(n(s))l(s))ds
for notational simplicity, and then formula (85) reads
Vix,t) = inf{ﬁ(t,n,v,l) +uo(n(?)) : (n,v,l) € SP(x)}.

Under our hypotheses, the Lagrangian L may take the value co and, on the
other hand, if we set C'=min__5(—H(z,0)), then we have

L(z,6) > C forall (z,¢&) € 2 xR"

Thus, it is reasonable to interpret

AL@@rwmw:w

if the function: s — L(n(s), —v(s)) is not integrable, which we adopt here.

It is easily checked as in the proof of Proposition 1.3 that the value function
V satisfies the dynamic programming principle: given a point (z,¢) € @ and a
nonanticipating mapping 7 : SP(z) — [0, t], we have

V(x,t) = inf {E(T(a),a) +V(n(r(a)), t—7(a) : a=(n,uvl) € SP(CE)}. (86)

Here a mapping 7 : SP(z) — [0, t] is called nonanticipating if T(a) = 7(8)
whenever a(s) = ((s) a.e. in the interval [0, 7(c)].

We here digress to recall the state-constraint problem, whose Bellman equation
is given by the Hamilton-Jacobi equation

ue(z,t) + H(z, Deu(z,t)) =0 in 2 x Ry,

and to make a comparison between (ENP) and the state-constraint problem. For
x € 2 let SC(z) denote the collection of all € AC)oc(R+,R™) such that 7(0) = z
and n(s) € 2 for all s € R;. The value function V : 2 xRy — R of the state-
constraint problem is given by
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‘7(1’, t) = inf {/0 L(n(s), —n(s))ds +uo(n(t)) : n € SC(CIZ’)}.

Observe that if n € SC(z), with 2 € £2, then (5,7,0) € SP(z). Hence, we have

V(x,t) = inf {L(t,7,7,0) +uo(n(t)) : n € SC(x)}
>V(x,t) forall (z,t) € 2 x Ry.

Heuristically it is obvious that if g(x) ~ oo, then

~

V(z,t) = V(z,t).

In terms of PDE the above state-constraint problem is formulated as follows:
the value function V is a unique viscosity solution of

u(z,t) + H(z, Dyu(z,t)) <0 in 2 xRy,
ug(x,t) + H(z, Dyu(z,t)) >0 in 2 x Ry.

See [50] for a proof of this result in this generality. We refer to [56, 17] for state-
constraint problems. The corresponding additive eigenvalue problem is to find
(a,v) € R x C(£2) such that v is a viscosity solution of

{H(w,Dv(x))<a in ? (&7

H(z,Dv(z)) >a in {2
We refer to [40, 50, 17] for this eigenvalue problem.
Ezample 5.2. We recall (see [50]) that the additive eigenvalue ¢ for (87) is given by
¢ =1inf{a € R : (87) has a viscosity subsolution v},

For a comparison between the Neumann problem and the state-constraint problem,
we go back to the situation of Example 3.1. Then it is easy to see that ¢ = 0. Thus,
we have ¢# = ¢ = 0 if and only if min{g(—1),g(1)} > 0.

We here continue the above example with some more generality. Let ¢ and
¢ denote, as above, the eigenvalues of (EVP) and (87), respectively. It is easily
seen that if 9 € C(£2) is a subsolution of (EVP) with a = ¢, then it is also a
subsolution of (87) with a = ¢#, which ensures that & < ¢#.

Next, note that the subsolutions of (87) with a = é are equi-Lipschitz contin-
uous on {2. That is, there exists a constant M > 0 such that for any subsolution
b of (87) with a = ¢, [1(x) — ¥(y)| < M|z —y| for all z,y € 2. Let ¥ be any sub-
solution of (87) with a = ¢, y € 82 and p € DV ¢(y). Choose a ¢ € C*(£2) so that
D¢(y) = p and 1 — ¢ has a maximum at y. If ¢ > 0 is sufficiently small, then we

have y—tr(y) € 2 and, moreover, Y(y—tv(y)) —¥(y) < ¢(y—tv(y)) —¢(y). By the
last inequality, we deduce that |p| < M. Accordingly, we have y(y) - p < M|v(y)|
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for all p € DVe(y). Thus, we see that if g(x) > M|vy(z)| for all z € 942, then
any subsolution ¢ of (87) with a = ¢ is a subsolution of (EVP) with a = é. This
shows that if g(x) > M|y(z)| for all = € 812, then ¢# < &. As we have already seen
above, we have ¢ < ¢, and, therefore, ¢ = ¢, provided that g(z) > M|y(z)| for
all x € 092

Now, assume that ¢ = ¢ and let a = ¢ =

¢. It is easily seen that
{t¢ : ¢ is a subsolution of (EVP)} C {¢ : 4 is a subsolution of (87)},

which guarantees that dy < ds on 22, where dn (-, y) = sup }'év, ds(-,y) = sup }'ys,
and

Fy (resp.,ff) ={Y —¥(y) : ¢ is a subsolution of (EVP) (resp., (87))}.

Let Ay and Ag denote the Aubry sets associated with (EVP) and (87), respec-
tively. That is,

An ={y € 2 : dn(-,y) is a solution of (EVP)},
As ={y € 22 : ds(-,y) is a solution of (87)}.

The above inequality and the fact that dn(y,y) = ds(y,y) = 0 for all y € 2 imply
that Dz dn (2, y)|e=y C Dz ds(x,y)|e=y- From this inclusion, we easily deduce that
As C An.

Thus the following proposition holds.

Proposition 5.3. With the above notation, we have:

(i) e<ct.
(i) If M > 0 is a Lipschitz bound of the subsolutions of (87) with a = ¢ and
g(x) > M|y(z)| for all x € 90, then é = c*.
(iii) Ifé=c*, then dy < ds on 2% and As C Ax.

5.3 Basic lemmas

In this subsection we present a proof of the sequential lower semicontinuity of
the functional (n,v,1) — L(T,n,v,l) (see Theorem 5.3 below). We will prove an
existence result (Theorem 5.6) for the variational problem involving the functional
L in Subsection 5.4. These results are a variation of Tonelli’s theorem in variational
problems. For a detailed description of the theory of one-dimensional variational
problems, with a central focus on Tonelli’s theorem, we refer to [14].

Lemma 5.1. For each A > 0 there exists a constant Ca > 0 such that

L(x, &) > Al§]| — Ca  for all (z,€) € 2 x R™.
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Proof. Fix any A > 0 and observe that

L(.CE,&) 2 max (6 p— H(xvp))

PEBA

> Al¢| + min (—H(x,p)) for all (z,£) € 2 x R™.

PEBA

Hence, setting C4 > maxg g |H|, we get

L(z,€) > Al¢| — Ca  for all (x,¢) € 2 x R™. ]
Lemma 5.2. There exist constants 6 > 0 and Coy > 0 such that
L(z,&) < Co  for all (z,€) € 2 x Bs.

Proof. By the continuity of H, there exists a constant M > 0 such that H(z,0) <
M for all z € 2. Also, by the coercivity of H, there exists a constant R > 0 such
that H(z,p) > M+1 for all (x,p) € 2x0Br. Weset § = R™. Let (z,€) € 2x Bs.
Let ¢ € Bg be the minimum point of the function f(p) := H(x,p) — & - p on Bg.
Noting that f(0) = H(z,0) < M and f(p) > —6R+ M + 1 = M for all p € 0Bkg,
we see that ¢ € Br and hence § € D, H(x,q), where D, H(z,q) denotes the
subdifferential at g of the function p — H(z,p). Thanks to the convexity of H,
this implies (see Theorem A.7) that L(z, &) = £-q— H(z,q). Consequently, we get

L(z,€) <R+ max |H|.

2XBRr

Thus we have the desired inequality with Co = §R + max H|. O

2xBpr |

For later convenience, we formulate the following lemma, whose proof is left to
the reader.

Lemma 5.3. For each i € N define the function L; on 2 x R™ by

Ll(x7§) = ma,x(f ‘P H(l’,p))

pEB;
Then L; € UC(22 x R™),
Li(x,8) < Liy1(x,€) < L(x,&)  for all (z,6) € 2 xR™ and i €N,
and for all (z,€) € 2 x R™,
Li(z,€) — L(x,§) as i— oo.

The following lemma is a consequence of the Dunford-Pettis theorem.
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Lemma 5.4. Let J = [a, b], with —co < a < b < co. Let {f;}jen C L'(J,R™) be
uniformly integrable in J. That is, for each € > 0, there exists § > 0 such that for
any measurable E C J and j € N, we have

[nwlae<e i 1g1<s
E
where |E| denotes the Lebesque measure of E. Then {f;} has a subsequence which
converges weakly in L*(J,R™).
See Appendix A.5 for a proof of the above lemma.
Lemma 5.5. Let J = [0, T] with T € Ry, (n,v) € L=(J,R") x L'(J,R"), i € N

and € > 0. Let L; € UC({2) be the function defined in Lemma 5.3. Assume that
n(s) € 2 for all s € J. Then there exists a function ¢ € L™ (J,R™) such that for
a.e. s € J,

q(s) € Bi  and  H(n(s),q(s)) + Li(n(s), —v(s)) < —v(s) - q(s) +&.

Proof. Note that for each (z,€) € £2 x R™ there is a point ¢ = g(z,&) € B; such
that Li(z,&) =& -q— H(z,q). By the continuity of the functions H and L;, there
exists a constant r = r(z,§) > 0 such that

Li(y,2) + H(y,q) < z-q+e forall (y,2) € (2N B.(x)) x By(£).

Hence, as 2 x R™ is o-compact, we may choose a sequence {(zr, &k, qr, Tk) }ren C
2 xR™ x B; x R4 such that

2 xR" C | By (wk) X By ()
keN

and for all k € N,
Li(y,2) + H(y,qx) < 2 g +¢  forall (y,2) € By, (zx) X Bry (&)

Now we set Uy = (2N By, (zx)) X By, (&) for k € N and define the function
P: 2 xR"—R" by

P(z,§) =q. forall (x,6)€Ux\|JU; andall keN.

i<k

It is clear that P is Borel measurable in £2 x R". Moreover we have P(z,¢) € B;
for all (z,£) € 2 x R™ and

Li(z,€) + H(z, P(x,€)) < € P(x,€) + e forall (z,€) € 2 xR". (88)

We define the function ¢ € L*°(J, R™) by setting ¢(s) = P(n(s), —v(s)). From
(88), we see that q(s) € B; and

L;(n(s), —v(s)) + H(n(s),q(s)) < —v(s) - q(s) +& for a.e. s € J. O
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Lemma 5.6. Let J = [0, T] with T € Ry, e > 0, ¢ € N, ¢ € L*(J,R") and
n € C(J,R™) such that n(s) € 2 for all s € J. Assume that ||q|| sy < i. Let L; be
the function defined in Lemma 5.3. Then there exists a function v € L*([0, T],R"™)
such that

H(n(s),q(s)) + Li(n(s),—v(s)) < —v(s) - q(s) +&  forae. s€[0,T]. (89)

Before going into the proof we remark that for any = € £ the function L;(x, )
is the convex conjugate of the function H(z,-) given by H(z,p) = H(z,p)ifp € B;
and H(z,p) = co otherwise.

Proof. The same construction as in the proof of Lemma 5.5, with the roles of H
and L; beging exchanged, yields a measurable function v : [0, T] — R™ for which
(89) holds. Set C'= maxg, 5 |H| and observe that

Li(z,€) > il¢| — C  for all (z,&) € 2 x R™.
We combine this with (89), to get
e+ gl oo nylv(s)] > ilv(s)] —2C  for a.e. s € J.

Hence,
e+ 2C
||UHLO<>(J) < — O
i—lqllLee ()

The following proposition concerns the lower semicontinuity of the functional

(777 'U) = /() L(n(s), *U(S))ds.

Theorem 5.3. Let J = [0, T] with T € Ry, {(nk,vx)}ren C L=(J,R™) X
LY(J,R™) and (n,v) € L*®(J,R™) x L'(J,R™). Assume that nx(s) € 2 for all
(s,k) € J x N and that as k — oo,

nk(s) — n(s)  uniformly for s € J,
U — v weakly in L'(J,R™).

Let ¢ be a function in L= (J,R) such that ¥(s) > 0 for a.e. s € J. Then
/w(s)L(n(s v(s))ds < hmmf/ U(s ), —vr(s))ds. (90)
J

Proof. Fix any ¢ € N. Due to Lemma 5.5, there is a function ¢ € L*°(J,R™) such
that q(s) € B; and

H(n(s),q(s)) + Li(n(s),—v(s)) < —v(s) - q(s) + % for a.e. s € J. (91)
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Note that for all £ € N,

/ W (s) L(nk(s), —vk(s))ds > / () Li (i (s), —vk(s))ds

> / (s)[~vn(s) - als) — H(mi(s). a(s))]ds,
and
Jm [ pl=us) - a(s) = Hne(s). o))
= [ #ol=0) - a) = Hln(o). o).
Hence, using (91), we get
timint [ ()L (s). 0 (s > [ 0)0uls) - a(s) = Hm (o). ()
> [ woatnts).~us) = 1/ds.

By the monotone convergence theorem, we conclude that (90) holds. O

Corollary 5.1. Under the hypotheses of the above theorem, let {fr,} C L*(J,R) be
a sequence of functions converging weakly in L*(J,R) to f. Assume furthermore
that for all k € N,

L(nk(s), —vk(s)) < fu(s) for a.e. s€ J.

Then
L(n(s), —v(s)) < f(s) for a.e. s€J.

Proof. Set E = {s € J : L(n(s),—v(s)) > f(s)}. By Theorem 5.3, we deduce that
0 > lim inf /I 15(8)[L(ne(s), —vi(s)) — fu(s)]ds
> [ 1e)lEs). ~u() - Fe)ds
= [ 1E6as). () = £(s)) s,

where [- - - |4+ denotes the positive part of [ - -]. Thus we see that L(n(s), —v(s)) <
f(s) forae. seJ. O

Lemma 5.7. Let J = [0, T], with T € Ry, and ¢ € C(2 x J). Let x € 2. Then
there exists a triple (n,v,l) € SP(x) such that

H(n(s), a(n(s), s)) + L(n(s), —v(s)) = —v(s) - q(n(s),s)  for a.e. s € J.
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Proof. Fix k € N. Set § = T'/k and s; = (j — 1)d for j = 1,2,...,k + 1. We define
inductively a sequence {(l‘j,’f]j,ﬂj,lj)}?:l C 2 x SP. We set 21 = = and choose a
& € R™ so that

H(x1,q(21,0)) + L(z1, —&1) < =1 - q(21,0) + 1/k.

Set v1(s) = & for s > 0 and choose a pair (n1,11) € Lip(Ry, 2) x L (R4, R) so
that (n1,v1,01) € SP(z1). In fact, Theorem 5.2 guarantees the existence of such a
pair.

We argue by induction and now suppose that £k > 2 and we are given
(xiymi,vi, ;) forall i = 1,...,5 — 1 and some 2 < j < k. Then set z; = n;-1(9),
choose a & € R"™ so that

H(xjvq(xjvsj)) + L(xjv 7§j) < *é-j ' q(ZC]‘,Sj) + 1/k7 (92)

set v;(s) = & for s > 0, and select a pair (n;,l;) € Lip(R4, 2) x L=(Ry,R)
so that (n;,v;,l;) € SP(z;). Thus, by induction, we can select a sequence
{(x5,m5,v5,1;)}s=1 C 2 x SP such that 21 = 11(0), z; = n;-1(5) = n;(0) for
j=2,...k and for each j = 1,2,...,k, (92) holds with & = v;(s) for all s > 0. We
set Qj = (nj,vj,lj) for j = 1,...,k}.

Note that the choice of z;, n;, vj, l;, with j =1, ..., k, depends on k, which is
not explicit in our notation. We define ax = (7jx, ox, lx) € SP(x) by setting

ar(s) = aj(s—s;) for s€[s;, sj+1) and j=1,..., k.
and

ar(s) = (m(6),0,0) for s> spy1=a.
Also, we define Zy, gr € L= (J,R™) by

Zr(s) =xz; and qr(s) =q(zj,s;) for s€(s;, sj+1) and j=1,.. k.
Now we observe by (92) that for all j =1,..., k,

L(zj,—¢&;) < &R+ max [H|+ 1,

2XBRr
where R > 0 is such a constant that R > maxg,  [g]. Combining this estimate
with Lemma 5.1, we see that there is a a constant C; > 0, independent of k, such

that
v = | < .
l?;iéi [Tk ()] 1?;2(1@ €1 < Ch

By Proposition 5.2, we find a constant C> > 0, independent of k, such that

(7]l Lo yy V k[l Loo @) < Co.

We may invoke standard compactness theorems, to find a triple (n, v, ) €
Lip(J,R™) x L*=(J,R™"!) and a subsequence of {(7, 7k, x)}ren, which will be
denoted again by the same symbol, so that for every 0 < S < oo, as k — oo,
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i — n  uniformly on [0, S],
(11 Urs Ig) — (0,0,1)  weakly-star in  L°(]0, S], R*" ™).

By Proposition 5.1, we see that (n,v,1) € SP(x). It follows as well that Z(s) — n(s)
and gx(s) — q(n(s), s) uniformly for s € J as k — oo.
Now, the inequalities (92), 1 < j < k, can be rewritten as

L(Zx(s), =k (s))
< —o(s) - qu(s) — H(zx(s),qr(s)) + 1/k  for all s€ [0, T).
It is obvious to see that the sequence of functions
—0k(s) - qr(s) + 1/k — H(Zk(s), Gr(s))
on J converges weakly-star in L*°(J,R) to the function
—v(s) - q(n(s),s) — H(n(s),q(n(s),s)).
Hence, by Corollary 5.1, we conclude that
H(n(s),q(n(s), s)) + L(n(s), —v(s)) < —v(s) - q(n(s),s) forae. seJ,
which implies the desired equality. 0O

Theorem 5.4. Let J = [0, T|, with T € Ry, and {(nk, vk, lk) }ken C SP. Assume
that there is a constant C > 0, independent of k € N, such that

L(T, Nk, vk, ) < C  forall keN.
Then there exists a triple (n, v, l) € SP such that

L(T,n,v,l) < likm inf L(T, ni, vk, lis)-

Moreover, there is a subsequence {(nk;, Vi;, lk;) }ien of {(nk, v, )} such that as
J — 0o,

Mk, (s) = n(s)  uniformly on J,
(i, Vs ley) = (1, 0, 1) weakly in L'(J, R,

Proof. We may assume without loss of generality that ni(t) = ni(T), vk(t) = 0
and [x(t) =0 for all ¢ > T and all k € N.

According to Proposition 5.2, there is a constant Cy > 0 such that for any
(n, v, 1) € SP, |n®)| Vv |I(t)] < Colv(t)| for a.e. ¢ > 0. Note by Lemma 5.1 that
for each A > 0 there is a constant Ca > 0 such that L(z,§) > Al¢| — Ca for all
(z,&) € 2 x R™. From this lower bound of L, it is obvious that for all (z,&,7) €
2 x R™ x Ry, if r < Copl€|, then
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L(z, §) + g(a)r = (4 - Comax|gl) |¢l — Ca, (93)
a0
which ensures that there is a constant C7 > 0 such that for (n, v, ) € SP,
L(n(s), —v(s)) + g(n(s))li(s) + C1 >0 for a.e. s > 0. (94)

Set
A= likminf L(T, i, Vi, L),

and note by (94) that —C1T < A < C. We may choose a subsequence {(ij k5 L, )} ien
of {(Mk, vk, lk)} so that
A= lim L0y, v, by)-

Using (94), we obtain for any measurable E C [0, T,
[ (Lns),~0u() + glnelo)iu(s) + C1) s
E

T
< / (L0 (5), —ox(5)) + g0 ())Ii(5) + C1) ds < C + OiT.
0
This together with (93) yields
(A —Co r%%x|g|) / |ve(s)|ds < Ca|E|+C + CiT for all A > 0.
E

This shows that the sequence {vy} is uniformly integrable on [0, T]. Since | (s)|V
llk(s)] < Coluk(s)] for a.e. s > 0 and vi(s) = 0 for all s > T', we see easily that the
sequence {(7k, vk, lx)} is uniformly integrable on Ry.

Due to Lemma 5.4, we may assume by reselecting the subsequence {(nx;, vk, lx;)}
if necessary that as j — oo,

(ﬁk]‘ ) 'Uijkj) - (’U),U, l) Weakly in Ll([07 S]7R2n+l)

for every S > 0 and some (w,v,1) € L. (Ry, R®*). We may also assume that
Mk, (0) — = as j — oo for some = € 2. By Proposition 5.1, if we set n(s) =
x4 [J w(r)dr for s > 0, then (n,v,1) € SP(z) and, as j — oo,

nk;(s) — n(s) locally uniformly on R..

We apply Theorem 5.3, with the function 1 (s) = 1, to find that

/L(n(s),fv(s))ds Sli_minf/L('rykj (5), —vk; (s))ds.
J J

j—oo
Consequently, we have

L(n,v,1) <liminf L(nk,, vk;, Ik;) = A,
j—00

which completes the proof. O
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5.4 Value function IT

Theorem 5.5. Let u € UC(2 xR4) be the viscosity solution of (ENP)—(ID). Then
V=uin2xRy.

This is a version of classical observations on the value functions in optimal
control, and, in this regard, we refer for instance to [43, 46]. The above theorem
has been established in [39]. The above theorem gives a variational formula for the
unique solution of (ENP)—(ID). This variational formula is sometimes called the
Lax-Oleinik formula.

For the proof of Theorem 5.5, we need the following three lemmas.

Lemma 5.8. Let U C R™ be an open set and J = [a, b] a finite subinterval of Ry.
Let ¢ € C*((UNN) x J) and assume that

Ye(x,t) + H(z, DY(z,t)) <0 for all (z,t) € (UN ) x J, (95)
g—f(:r,t) < g(x) for all (z,t) € (UNOoN) x J, (96)
Pz, t) < Vx,t) for all (z,t) € (U N 2) x J, (97)
Y(z,a) < V(z,a) forall x€UNN. (98)

Then ¢ <V in (UNKR) x J.
We note that the following inclusion holds: (U N 2) C [0U N 0] U (U N 812).
Proof. Let (x,t) € (U N §2) x J. Define the mapping 7 : SP(z) — [0, t — a] by
7(n,v,0) =inf{s >0 : n(s) U} A (t — a).

It is clear that 7 is nonanticipating. Let o = (n,v,l) € SP(z), and observe that
n(s) € U for all s € [0, 7(«)) and that n(7(a)) € U if 7(a) < t — a. In particular,
we find from (97) and (98) that

P(n(r(a)),t = 7(a)) < V(n(r(a)), t — 7(a)). (99)
Fix any a = (5, v, l) € SP(z) Note that
7(e)
vt —r(@) = vie = [ St - 9)ds

0

7(a)
= [T et =) i) — (s - )

()
= /O (D (n(s),t = 5) - (v(s) = L(s)(n(s))) — e (n(s),t — 5))ds.

Now, using (95), (96) and (99), we get
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b(a.t) — V(n(r(@)).t — 7(a))
< [ (= Do)t 9)-006) + 1DVl A(1(5)
T u(n(s).t — 5))ds
</ " (H (), D (s)st — 5)) + Lla(s), —u(s) + U(5)gn(s)
T n(s). - 5))ds
< L(r(a),m,v,0))ds,
which immediately shows that
Wl 1) < inf (£(r(a),m,0,0) + V(n(r(@)).t - (@),

where the infimum is taken over all & = (,v,l) € SP(z). Thus, by (86), we get
Pz, t) < V(e t). O

Lemma 5.9. For any € > 0 there is a constant Cc > 0 such that V(z,t) > wo(x)—
e — Cet for (x,t) € Q.

Proof. Fix any € > 0. According to the proof of Theorem 3.2, there are a function
f € CY(Q) and a constant C' > 0 such that if we set ¥ (z,t) = f(z) — Ct for
(x,t) € Q, then 9 is a classical subsolution of (ENP) and uo(z) > f(z) > uo(z) —¢
for all z € 2.

We apply Lemma 5.8, with U = R", a = 0, arbitrary b > 0, to obtain

V(z,t) > (x,t) > —e+uo(z) — Ct  for all (z,t) € Q,
which completes the proof. O

Lemma 5.10. There is a constant C > 0 such that V(z,t) < wo(z) + Ct for
(z,1) € Q.

Proof. Let (z,t) € Q. Set n(s) = z, v(s) = 0 and I(s) = 0 for s > 0. Then
(n,v,1) € SP(x). Hence, we have

Viz,t) <wuo(x) + /Ot L(z,0)ds = uo(z) + tL(z,0) < uo(z) — t;relg{{nn H(z,p).

Setting €' = —ming_ ., H, we get V(z,t) <wuo(z) +Ct. O

Proof (Theorem 5.5). By Lemmas 5.9 and 5.10, there is a constant C' > 0 and for
each € > 0 a constant C: > 0 such that

—e—Ct < V(z,t) —uo(z) < Ct for all (z,t) € Q.

This shows that V is locally bounded on Q and that
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tlir(1)1+ V(z,t) = uo(z) uniformly for z € 0.
In particular, we have Vi(z,0) = V*(x,0) = uo(x) for all z € £2.

We next prove that V is a subsolution of (ENP). Let (2,%) € Q and ¢ € C*(Q).
Assume that V* — ¢ attains a strict maximum at (,%). We want to show that if
T € {2, then

d)i(‘%v t) + H(i.a D¢(‘%7 t)) < 0»
and if £ € 92, then either

We argue by contradiction and thus suppose that

and furthermore
v(&) - Dp(z,t) > g(2) if &€ dn.
By continuity, we may choose a constant r € (0,%) so that

bu(z,t) + H(z,Dp(z,t)) >0 for all (z,t) € (B,(2)N02) x J, (100)
where J = [f —r, £ + 7], and
v(z) - Dp(x,t) > g(x) for all (z,t) € (Br(2) NHR) x J.

(Of course, if # € £2, we can choose r so that B.(#) N o2 = 0.)
We may assume that (V* — ¢)(&,1) = 0. Set

B = ((0B.(2)n2) x 1)U ((B.(2) N D) x {i - 1}),

and m = —maxp(V*—¢). Note that m > 0 and V(z,t) < ¢(z,t)—m for (z,t) € B.

We set € = r/2. In view of the definition of V*, we may choose a point (z,%) €
2N B(#) x (f—¢, t+¢) so that (V — ¢)(Z,%) > —m. Set a = — + r, and note
that @ > € and dist(Z, 9B, (&)) > €. For each o = (n,v,1) € SP(Z) we set

S(a)={s>0:n(s) € B ()} and 7 =aAinfS(a).

Clearly, the mapping 7 : SP(Z) — [0, a| is nonanticipating. Observe also that if
7(a) < a, then n(7(a)) € OB,(&) or, otherwise,  — 7(a) = f — a = £ — r. That is,
we have

(n(r(a)),t —7(a)) € B for all a=(n,v,l) € SP(Z). (101)

Note as well that (1(s),f — s) € B,.(Z) x J for all s € [0, 7(a)].
We apply Lemma 5.7, with J = [0, a] and and the function ¢(zx, s) = Dé(z,t —
s), to find a triple a = (1, v,1) € SP(Z) such that for a.e. s € [0, al,



88 Hitoshi Ishii

H(n(s), Do(n(s),t = 5)) + L(n(s), —v(s)) < —v(s) - Dd(n(s),t —s)  (102)

For this «, we write 7 = 7(a) for simplicity of notation. Using (101), by the
dynamic programming principle, we have

o(z,t) <V(z,1) +m
Sl:(T,’I],”U,l) + V(vai T) +m
S ‘C'(Tv 7,0, l) + ¢(77(T)7 t— T)'

Hence, we obtain
T d B
0< [ (L) ~0(6)) + sn(e)I) + o). E = 9)ds

< [ @), o)+ sta)ies)
+ Do(n(s),T —s) - 1(s) — ¢e(n(s), T — s))ds
< / " (LO1(), —v(s)) + gn()is)
T D(n(s), T 5) - (v(s) — Us)y(n(s)) — de(n(s), F— s))ds.

Now, using (102), (100) and (5.4), we get

0< [ (= ), Do)t - ) + (I

L) D(n(s).F— 5) - 1(1(s)) — bu(n(s).F — 5))ds
< / 1) (9(n(s)) — v (n(s)) - D(n(s), E — 5))ds <0,

which is a contradiction. We thus conclude that V' is a viscosity subsolution of
(ENP).

Now, we turn to the proof of the supersolution property of V. Let ¢ € C*(Q)
and (2,%) € 2 x R4. Assume that Vi — ¢ attains a strict minimum at (&,7). As
usual, we assume furthermore that mins(Vi — ¢) = 0.

Q
We need to show that if & € §2, then

th(i‘fg) + H(iaDqﬁ(‘%vtA)) Z 07
and if € 012, then

We argue by contradiction and hence suppose that this were not the case. That is,
we suppose that
oe(2,t) + H(&, Do(2,1)) <0,
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and moreover
v(&) - D3, ) < g(2) if & € 99.
We may choose a constant r € (0, ) so that
oi(z,t) + H(z, Dp(z,t)) <0 for all (z,t) € (Br(2)NN2) x J, (103)
where J = [ — r, i + 7], and
y(z) - D(x,t) < g(x) for all (z,t) € (Br(2) NHR) x J. (104)
We set
R= ((aBT(@) N 2) x j) U ((Br(a%) Na2)x {i- r}) and m = min(V. - 9),

and define the function ¢ € C*((B,(2) N 2) x J) by ¢(z,t) = ¢(x,t) + m. Note
that m > 0, inf(Br(i)mﬁ)xj(V* —¢)=-m <0 and V(z,t) > ¢(x,t) for all
(z,t) € R. Observe moreover that

Ye(z,t) + H(xz, DY(z,t)) <0 for all (z,t) € U x J,
Yoy (z,t) < g(x) for all (x,t) € (UNAN) x J.

We invoke Lemma 5.8, to find that ¢ < V in (B,(Z) N £2) x J. This means that
inf(Br(i)ﬁﬁ)xj(V* — 1)) > 0. This contradiction shows that V is a viscosity super-
solution of (ENP).

We apply Theorem 3.1 to Vi, u and V*, to obtain V* < u < Vi in Q, from
which we conclude that u =V in Q. O

Our control problem always has an optimal “control” in SP:

Theorem 5.6. Let (z,t) € 2 x Ry. Then there exists a triple (n, v, 1) € SP()
such that
V(.Z‘, t) = ‘C(tv n,v, l) + U’O(’q(t))

If, in addition, V € Lipgﬁ x J,R), with J being an interval of [0, t], then the triple
(n, v, 1), restricted to Jy == {s € [0,] : t —s € J}, belongs to Lip(J¢, R™) x
Lo (J, R™Th).

Proof. We may choose a sequence {(nk, vk, lx)} C SP(z) such that

V(x>t) = klingo ﬁ(tﬂ?kvvhlk) + UO(’]k(t))

In view of Theorem 5.4, we may assume by replacing the sequence { (1, vk, lk)}
by a subsequence if needed that for some (7,v,1) € SP(z), nk(s) — n(s) uniformly
on [0, t] as k — oo and

L(t,n,v,1) < likm inf £(t,nk, vk, Li)-
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It is then easy to see that
V(x,t) = L(r,n,v,1) + uo(n(t)). (105)
Note by (105) that for all r € (0, ¢),
V(z,t) > L(r,n,v,1) +V(n(r),t —r),
which yields together with the dynamic programming principle
V(z,t) = L(>t,n,v,1)+V(n(r),t—r) (106)

for all 7 € (0, t).
Now, we assume that V' € Lip(£2 x J), where J C [0,1] is an interval. Observe
by (106) that for a.e. r € Jy,

L(n(r), —v(r)) + Ur)g(n(r)) = lim sup

< M(J(r)]* + 1)Y* < M(Jn(r)] + 1),

Vin(r),t —r)=V(nr+e),t—r—c¢)
€

where M > 0 is a Lipschitz bound of the function V on 2 x J. Let C > 0 be the
constant from Proposition 5.2, so that |n(s)| V I(s) < C|v(s)| for a.e. s > 0. By
Lemma 5.1, for each A > 0, we may choose a constant C4 > 0 so that L(y,&) >
A|é| = Ca for (y, €) € 2 x R™. Accordingly, for any A > 0, we get

Alv(r)| < L(n(r), —v(r)) + Ca < =U(r)g(n(r)) + M(|n(r)|+ 1) + Ca
<C(l|glloc,00 + M)|v(r)|+ M+ Ca  for ae. re J.

This implies that v € L*°(J;,R™) and moreover that n € Lip(J;,R™) and | €
L°°(J¢,R). The proof is complete. O

Corollary 5.2. Let u € Lip(2) be a viscosity solution of (SNP) and = € 2. Then
there exists a (n,v,1) € SP(z) such that for all t > 0,

u(z) —u(n(t)) = L(t,n,v,1). (107)

Proof. Note that the function u(x), as a function of (z,t), is a viscosity solution
of (ENP). In view of Theorem 5.6, we may choose a sequence {(7;,v;,l;)}jen so
that 71(0) = =, ;41(0) = n;(1) for all j € N and

u(n;(0)) —u(n;(1)) = L(1,n5,v5,1;)  forall j €N,
We define (n,v,1) € SP(z) by
(n(s),0(s),1(s)) = (mi(s =3 +1),vi(s =5+ 1), Li(s =5+ 1))

for all s € [j — 1, j) and j € N. By using the dynamic programming principle, we
see that (107) holds for all ¢ > 0. O
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5.5 Distance-like function d

We assume throughout this subsection that (A8) holds, and discuss a few aspects
of weak KAM theory related to (SNP).

Proposition 5.4. We have the variational formula for d: for all =,y € 2,
d(z,y) = inf {L(t,n,0,1) : t >0, (n,v,1) € SP(x) such that n(t) =y}. (108)
We use the following lemma for the proof of the above proposition.

Lemma 5.11. Let uop € C(£2) and u € UC(Q) be the viscosity solution of (ENP)-
(ID). Set

v(z,t) = ig%u(x,t +7r)  for x€Q.
Then v € UC(Q) and it is a viscosity solution of (ENP). Moreover, for eacht > 0,
the function v(-,t) is a viscosity subsolution of (SNP).

Proof. By assumption (A8), there is a viscosity subsolution ¢ of (SNP). Note that
the function (x,t) — () is a viscosity subsolution of (ENP) as well.

We may assume by adding a constant to 1 if needed that ¥ < ug in 2. By
Theorem 3.1, we have u(z,t) > ¥(z) > —oo for all (z,t) € Q. Since u € UC(Q),
we see immediately that v € UC(Q). Applying a version for (ENP) of Theorem
4.4, which can be proved based on Theorem A.10, to the collection of viscosity
solutions (z,t) — u(z,t + r), with » > 0, of (ENP), we find that v is a viscosity
subsolution of (ENP). Also, by Proposition 1.10 (its version for supersolutions), we
see that v is a viscosity supersolution of (ENP). Thus, the function v is a viscosity
solution of (ENP).

Next, note that for each x € 2, the function v(z,-) is nondecreasing in Ry.
Let (2,7) € Q and ¢ € C'(£2). Assume that the function 2 3 z — v(z, ) — ¢()
attains a strict maximum at . Let a > 0 and consider the function

v(x,t) — ¢(x) —a(t — 1) on 2x[0,+1].

Let (za,ta) be a maximum point of this function. It is easily seen that (za,ta) —

(z,t) as a — oo. For sufficiently large o, we have to > 0 and either
To €002 and y(za)-  Do(za) < g(za),
or
20(te, — t) + H(xo, Do(z4)) < 0.

By the monotonicity of v(z,t) in t, we see easily that 2a(to —£) > 0. Hence, sending
a — 00, we conclude that the function v(-, ) is a viscosity subsolution of (SNP).
O
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Proof (Proposition 5.4). We write W (x,y) for the right hand side of (108).

Fix any y € £2. For each k € N let ux € Lip(Q) be the unique viscosity solution
of (ENP)—(ID), with uo defined by uo(x) = k|z — y|. By Theorem 5.5, we have the
formula:

uk(z,t) = inf {L£(t,7,0,1) + kln(t) —y| : (n,v,1) € SP(x)}.
It is then easy to see that

inf ug(z,t) < W(z,y) forall (x,k) € 2 xN. (109)

Since d(-,y) € Lip(£2), if k is sufficiently large, say k > K, we have d(-,y) <
klx —y| for all z € £2. Noting that the function (x,t) — d(x,y) is a viscosity
subsolution of (ENP) and applying Theorem 3.1, we get d(z,y) < ux(z,t) for all
(z,t) € Q if k > K. Combining this and (109), we find that d(z,y) < W(z,y) for
all z € .

Next, we give an upper bound on W. According to Lemma 2.1, there exist
a constant C1 > 0 and a function 7 : £ — R4 such that 7(z) < Ci|z — y| for
all x € 2 and, for each 2 € 2, there is a curve n, € Lip([0, 7(z)]) having the
properties: 7;(0) = z, N (1(x)) = y, n:(s) € 2 for all s € [0, 7(z)] and |1.(s)| < 1
for a.e. s € [0,7(x)]. We fix such a function 7 and a collection {n,} of curves.
Thanks to Lemma 5.2, we may choose constants § > 0 and Cy > 0 such that

L(z,6) < Co for all (x,&) € 2 x Bs.

Fix any € 2\ {y} and define (n,v,1) € SP(z) by setting n(s) = Nz(ds) for
hE [0, 7(x) /4], n(s) = y for s > 7(x)/5, (v(s),l(s)) = (n(s),0) for Ry. Observe
that

()/5 .
L(r()/6,m,0,1) = /0 L(na(65), 8710 (65))ds

()

=57 [ L), b5
0

<8 Cor(z) < 6 CoChlz — 9,

which yields
W(z,y) <5 'CoChlz —yl. (110)

We define the function w : Q@ — R by
w(z,t) =inf {L(r,n,v,1) : 7>, (n,v,1) € SP(z) such that n(r)=y}.
It is clear by the above definition that

W(x,y) = tig(f)w(x, t) forallxc . (111)
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Also, the dynamic programming principle yields
w(x,t) = inf {L(t,n,v,1) + W(n(t),y) : n,v,1) € SP(z)}.

(We leave it to the reader to prove this identity.) In view of (110), we fix a k € N
so that 6 1CoC1 < k and note that for all (z,t) € Q,

w(w,t) < inf {L(t,n,v,0) +kln(t) =yl : (n,v,1) € SP(2)} = ur(z,1).
Consequently, we have

inf w(z,t) < infux(z,t) for all = € £2,
>0 >0
which together with (111) yields

Wi(z,y) < gg u(z,t) for all x € 2.

By Lemma 5.11, if we set v(z) = infi~o u(z,t) for = € £2, then v € C(2) is a
viscosity subsolution of (SNP). Moreover, since v(z) < ug(z,0) = k|z — y| for all
x € 02, we have v(y) < 0. Thus, we find that v(z) < v(y) +d(=,y) < d(z,y) for all

x € 2. We now conclude that W (z,y) < v(z) < d(z,y) for all z € £2. The proof is
complete. O

Proposition 5.5. Let y € 2 and § > 0. Then we have y € A if and only if

inf {L(t,n,v,1) : t >, (n,v,1) € SP(y) such that n(t) =y} =0. (112)

Proof. First of all, we define the fucntion v € UC(Q) as the viscosity solution of
(ENP)—(ID), with uo = d(+,y). By Theorem 5.5, we have

u(z,t) = inf {L(t,n,v,1) + d(n(t),y) : (n,v,1) € SP(z)} for all (z,t) € Q.

In view of the dynamic programming principle, we combine this formula and Propo-
sition 5.4, to get

u(z,t) = inf {ﬁ(r, n,v,l) 17 >t, (n,v,1) € SP(z) such that n(r) = y}
for all (x,t) € Q.

(113)

Now, we assume that y € A. The function d(-,y) is then a viscosity solution
of (SNP) and u is a viscosity solution of (ENP)—(ID), with uo = d(-,y). Hence, by
Theorem 3.1, we have d(z,y) = u(z,t) for all (z,t) € Q. Thus,

0=d(y,y) =inf {L(r,n,v,1) : 7>, (n,v,1) € SP(y) such that n(r) =y}
for all £ > 0.

This shows that (112) is valid.
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Now, we assume that (112) holds. This assumption and (113) show that
u(y,8) = 0. Formula (113) shows as well that for each 2 € £2, the function u(z, -)

is nondecreasing in R4. In particular, we have d(z,y) < u(z,t) for all (z,t) € Q.
Let p € D, d(z,y)|c=y. Then we have (p,0) € D~ u(y,d) and

H(y,p) >0 if y € 12,
max{H(y,p), v(y) - p—g(y)} >0 ifyedfn.

This shows that d(-,y) is a viscosity solution of (SNP). Hence, we have y € A. O

6 Large-time asymptotic solutions

We discuss the large-time behavior of solutions of (ENP)—(ID) following [38, 39, 8].

There have been much interest in the large time behavior of solutions of
Hamilton-Jacobi equation since G. Namah and J.-M. Roquejoffre in [54] have first
established a general convergence result for solutions of

ug(z,t) + H(z, Dyu(z,t)) =0 in (z,t) € 2 x R4 (1.2)
under (A5), (A6) and the assumptions

H(z,p) > H(z,0) forall (z,p) € 2xR",

max H(z,0) =0, (114)
where (2 is a smooth compact n-dimensional manifold without boundary. A. Fathi
in [27] has then established a similar convergence result but under different type
hypotheses, where (114) replaced by a strict convexity of the Hamiltonian H(x, p)
in p, by the dynamical approach based on weak KAM theory [26]. G. Barles and
P. E. Souganidis have obtained in [3] more general results in the periodic setting
(i.e., in the case where 2 is n-dimensional torus), for possibly non-convex Hamil-
tonians, by using a PDE-viscosity solutions approach, which does not depend on
the variational formula for the solutions like the one in Theorem 5.5. We refer to
[7] for a recent view on this approach.

The approach of Fathi has been later modified and refined by J.-M. Roquejoffre
[565], A. Davini and A. Siconolfi in [21], and others. The same asymptotic problem
in the whole domain R™ has been investigated by G. Barles and J.-M. Roquejofire
in [10], Y. Fujita, N. Ichihara, P. Loreti and the author in [30, 37, 34, 35, 36] in
various situations.

There have been as well a considerable interest in the large time asymptotic
behavior of solutions of Hamilton-Jacobi equation with boundary conditions. The
investigations in this direction are papers: H. Mitake [49] (the state-constraint
boundary condition), J.-M. Roquejoffre [55] (the Dirichlet boundary condition in



Introduction to viscosity solutions and the large time ... 95

the classical sense), H. Mitake [51] (the Dirichlet boundary condition in the vis-
cosity framework). More recent studies are due to G. Barles, H. Mitake and the
author in [9, 38, 8], where the Neumann boundary conditions including the dy-
namical boundary conditions are treated. In [9, 8], the PDE-viscosity solutions
approach of Barles-Souganidis is adapted to problems with boundary conditions.

E. Yokoyama, Y. Giga and P. Rybka in [59] and Y. Giga, Q. Liu and H. Mitake
in [33, 32] have obtained some results on the large time behavior of solutions of
Hamilton-Jacobi equations with noncoercive Hamiltonian which is motivated by a
crystal growth model.

We also refer to the articles [55, 13] and to [16, 53, 52] for the large time
behavior of solutions, respectively, of time-dependent Hamilton-Jacobi equations
and of weakly coupled systems of Hamilton-Jacobi equations.

As before, we assume throughout this section that hypotheses (A1)—(A7) hold
and that ugp € C(£2). Moreover, we assume that ¢* = 0. Throughout this section
u = u(z,t) denotes the viscosity solution of (ENP)—(ID).

We set

Z ={(z,p) € 2 xR™ : H(z,p) = 0}.

(A9)+ There exists a function wy € C([0, 00)) satisfying wo(r) > 0 for all » > 0 such
that if (z,p) € Z, £ € D, H(z,p) and ¢ € R"™, then

H(z,p+q) >&-q+wo((&-q)x)-

The following proposition describes the long time behavior of solutions of
(ENP)—(ID).

Theorem 6.1. Assume that either (A9); or (A9)_ holds. Then there exists a

viscosity solution w € Lip(£2) of (SNP) for which

lim u(z,t) = w(zx)  uniformly on . (115)

t—o0

The following example is an adaptation of the one from Barles-Souganidis to
the Neumann problem, which shows the necessity of a stronger condition like (A9)+
beyond the convexity assumption (A7) in order to have the asymptotic behavior
described in the above theorem.

Ezample 6.1. Let n = 2 and 2 = By. Let ), ¢ € C*(Ry) be functions such that
0<n(r)<lforalreRy, n(r)=1forallrel0,1], n(r) =0 for all r € [2,00),
¢(r) > 0 for all » € Ry, ¢(r) = 0 for all » € [0,2] U [3,00) and {(r) > 0 for
all » € (2, 3). Fix a constant M > 0 so that M > ||¢||co,r.. We consider the

Hamiltonian H : 2 x R? given by

H(z,y,p,q) = | —yp+2q+ ¢(r)] — ¢(r)
+0(r)Vp? + ¢ + (1 —n(r)) (’%er %q‘ - M)+,
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where r = r(z,y) := /22 + 32. Let u € C'(2 x Ry) be the function given by

u(z,y,t) = ¢(r) (% cost — %sint) ,

where, as above, r = y/x2 + y2. It is easily checked that u is a classical solution of

ui(‘ray7t) + H(.’E,y, Uz(xay7t)7uy(xvy7t)) =0 in By X R+a
V(:va)'(uic(x7y,t)7uy(:r7y7t)):0 on 834 XR+7

where v(z,y) denotes the outer unit normal at (z,y) € dBs. Note here that if we
introduce the polar coordinate system

x=rcosf, y=rsind

and the new function
v(r,0,t) = u(rcosf,rsind,t) for (r,0,t) € Ry x R x Ry,

then the above Hamilton-Jacobi equation reads

vg + ﬁ(r, 0,vr,v9) =0,
where

H(r,0,pr.po) =po +¢(r)] = (r)
T2+ (22) "+ =) (el — M),

while the definition of u reads

v(r,0,t) = ((r)sin(0 — t).

Note also that any constant function w on By is a classical solution of

H(w,y7wz(a7,y7t)7wy(:r7y)) =0 in B47
I/(a:,y)-(wz(:v,y,t),wy(x,y):0 on 8343
which implies that the eigenvalue ¢ is zero.
It is clear that u does not have the asymptotic behavior (115). As is easily
seen, the Hamiltonian H satisfies (A5)—(AT), but neither of (A9)4.
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6.1 Preliminaries to asymptotic solutions
According to Theorem 3.3 and Corollary 3.1, we know that u € BUC(Q). We set

Uoo () = liminfu(z,t) for all z € £.

t—o0
Lemma 6.1. The function ue is a viscosity solution of (SNP) and ue € Lip(£2).
Proof. Note that
Uso (T) = tli>ngo inf{u(z,t+r) : r>0} forall z€ . (116)
By Lemma 5.11, if we set
v(z,t) = inf{u(z,t +r) : r >0} for (z,t) € Q,

then v € BUC(Q) and it is a viscosity solution of (ENP). For each x € 2, the
function v(z,-) is nondecreasing in R.. Hence, by the Ascoli-Arzela theorem or
Dini’s lemma, we see that the convergence in (116) is uniform in 2. By Proposition
1.9, we see that the function us(x), as a function of (x, t), is a viscosity solution of
(ENP), which means that us is a viscosity solution of (SNP). Finally, Proposition

1.14 guarantees that ue € Lip(£2). O
We introduce the following notation:
S ={(r,6) € 2xR" : £ € D, H(x,p) for some (z,p) € Z},
P(z,§)={peR" : (€ D, H(z,p)} for (z,¢) € 2 xR".

Lemma 6.2. (i) Z, S C 2 x Bg, for some Ry > 0.

(ii) Assume that (A9)1 holds. Then there exist constants 6 > 0 and Ry > 0 such
that for any (z,£) € S and any € € (0, §), we have P(z,(1 +¢€)§) # 0 and
P(l‘7 (1 + E)é) C Bg;.

(iii) Assume that (A9)_ holds. Then there exist constants § > 0 and Ry > 0 such
that for any (z,£) € S and any € € (0, §), we have P(z,(1 —e)§) # 0 and
P(z,(1-£)&) C Bn,.

Proof. (i) It follows from coercivity (A6) that there exists a constant R1 > 0 such
that Z C R™ x Bg,. Next, fix any (z,£) € S. Then, by the definition of S, we may
choose a point p € P(x, &) such that (z,p) € Z. Note that |p| < Ri. By convexity
(A7), we have

H(z,p') > H(z,p) +&- (p' —p) forallp’ € R™.
Assuming that ¢ # 0 and setting p’ = p + £/|€| in the above, we get

l=¢- (' —p) <H(z,p) —H(z,p) < sup H— _inf H.
QxBR, 41 22X BR,
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We may choose a constant Re > 0 so that the right-hand side is less than R2, and
therefore £ € Br,. Setting Ro = max{R1, Rz}, we conclude that Z, S C R" x Bpg,.

(ii) By (i), there is a constant Ro > 0 such that Z, S C 2 x Bg,. We set
0 = wo(1), where wo is from (A9), . In view of coercivity (A6), replacing Ro > 0
by a larger constant if necessary, we may assume that H(z,p) > 1+ wo(1) for all
(2.9) € 2 x (R"\ Bn,).

Fix any (z,§) € S, p € P(z,€) and € € (0,9). Note that {,p € Bgr,. By (A9)+,
for all z € R™ we have

H(z,q) >2&-(g=p)+wo((€-(@=p))+)-

We set V := {q € Bagr,(p) : |€- (¢ —p)| < 1}. Let ¢ € V and observe the
following: if ¢ € B2r, (p), which implies that |g| > Ro, then H(x,q) > 14+wo(1) >
14e>1+4+e)¢-(g—p). € (g—p) =1, then H(z,q) > 1+ wo(l) >1+¢e =
(14+¢e)¢-(g—p). Also, if §-(¢—p) = —1, then H(z,q) > §-(g—p) > (1+e)§-(¢—p).
Accordingly, the function G(q) := H(z,q) — (1 +¢)§ - (¢ — p) on R™ is positive on
OV while it vanishes at ¢ = p € V| and hence it attains a minimum over the set V'
at an interior point of V. Thus, P(z, (1 + ¢)£) # 0. By the convexity of G, we see
easily that G(g) > 0 for all ¢ € R™ \ V and conclude that P(z, (1 + €)§) C Bar,-

(iii) Let wo be the function from (A9)_. As before, we choose Ro > 0 so that
Z,8 C 2 x Br, and H(z,p) > 1+ wo(1) for all (z,p) € 2 x (R™\ Br,), and set
0 = wo(1). Note that for all z € R,

H(z,q) > & (q—p)+wo ((€-(a—p)_).

Fix any (z,&) € S, p € P(x,€) and ¢ € (0,6). Set V := {q € Bar,(p) :
|€- (¢ —p)| < 1}. Let ¢ € V and observe the following: if ¢ € 9Bag,(p), then
H(,q) > 1+ wo(1) > 14+¢ > (1—e)é-(g—p). £ (g—p) = —1, then H(z,q) >
—14wo(l) > -14+e=(1-¢e)f-(¢g—p). If&-(g—p) =1, then H(z,q) > &-(q—p) >
(1—¢€)¢-(¢—p). As before, the function G(q) := H(z,q) — (1—¢)¢-(g—p) attamb
a minimum over V at an interior point of V. Consequently, P(z, (1 — ¢)§) #
Moreover, we get P(z, (1 —e)£) C Bagr,. O

Lemma 6.3. Assume that (A9), (resp., (A9)_) holds. Then there exist a constant
01 > 0 and a modulus wy such that for any € € [0,61] and (z,£) € S,

L(z,(1+2)§) < (1+e)L(z,8) +ewi(e) (117)

(resp.,
L(z,(1-¢)&) < (1—¢)L(z,&) + cwi(e) ) (118)

Before going into the proof, we make the following observation: under the
assumption that H, L are smooth, for any (z,&) € S, if we set p := D¢L(x,§),
then
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H(z,p) =0,
p'€: H(l‘,p) +L(l‘,f) :L(I,£)7

and, as € — 0,

L(z, (1 +¢€)§) = L(z,£) +ep- £+ o(e)
= L(x, &) +eL(x,8) + o(e) = (1 + &) L(x, &) + ofe).

Proof. Assume that (A9), holds. Let Rop > 0, R > 0 and ¢ > 0 be the constants
from Lemma 6.2. Fix any (z,£) € S and € € [0,6). In view of Lemma 6.2, we
may choose a p. € P(z, (1 4 £)§). Then we have |p. — po| < 2Ru1, |£§] < Ro and
€ - (pe — po)| < 2RoRi.

Note by (A9), that

H(z,pe) > &+ (pe — po) +wo ((§ - (P — Po))+) -

Hence, we obtain

L(z,(1+€)§) =(1+e)& pe — H(z,pe) < (1+€) & pe
=&+ (e = po) —wo (€ (pe —po))+)
<L +¢)[§ - po— H(z,po)]
+e&+ (pe —po) —wo ((§- (p= —po))+)
<(1+¢e)L(z,&) +¢ max (r — 1wo(r)> .

0<r<2RoR1 €
We define the function w; on [0, 00) by setting wi(s) = maxo<,r<2ryr, (r —wo(r)/s)
for s > 0 and w1(0) = 0 and observe that w; € C([0,00)). We have also L(z, (1 +
e)) < (1+e)L(z,&) 4+ ewi(e) for all € € (0,5). Thus (117) holds with &1 := §/2.
Next, assume that (A9)_ holds. Let Ry > 0, R > 0 and § > 0 be the constants
from Lemma 6.2. Fix any (z,£) € S and ¢ € [0, 9).
As before, we may choose a p. € P(z, (1—¢)¢), and observe that |p. —po| < 2R1,
|€] < Ro and |€ - (pe — po)| < 2RoR1. Noting that

H(vas) >&- (pa _pO) + wo ((é~ (ps —po)),) )

we obtain
Lz,(1-¢)§)=(1—¢)§ -pe — H(z,p:) < (1 =€) & - p-
=&+ (pe = po) —wo ((€- (P = 1p0))_)
<(1-¢)[€-po— H(z,po)]
—e&- (pe —po) —wo ((§+ (pe — po))_)
<(1+4e)L(z,&) + 5091;122%(01{1 (7’ - %wo(r)> .
Setting w1(s) = maxo<r<2ryr, (r — wo(r)/s) for s > 0 and w1(0) = 0, we

find a function wy € C([0, 00)) vanishing at the origin for which L(z, (1 — ¢)¢§) <
(1 —¢e)L(x,&) 4+ ewi(e) for all € € (0,0). Thus (118) holds with d; :=§/2. O
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Theorem 6.2. Let u € Lip(£2) be a subsolution of (SNP). Let n € AC(Ry, R™) be
such that n(t) € 2 for all t € Ry. Set Ry, = {t € Ry : n(t) € dN}. Then there
exists a function p € L= (R4, R™) such that

N(t) for a.e. t € Ry,

)
0 for a.e. t € Ry,

=p(t
H(n(t), p(t)) <
<g(n(t)) forae teR .

Y(n()) - p(t)

Proof. According to Theorem 4.2, there is a collection {uc}eec(0,1) C C*(£2) such
that

H(z, Due(x)) <e for all z € £,
8;; (z) < g(z) for all z € 012,

Huf - uHNyQ <g,

sup |[Duel[ro0(2) < 0.
0<e<1

If we set p(t) = Du. o n(t) for all t € Ry, then we have

us on(t) —us on(0) = /Ot pe(s) -n(s)ds for a.e. t € Ry,
H(n(t), p:(t)) <e forae. teR,,
Y(n(t)) - pe(t) < g(n(t)) fora.e. t € Ryp.

Since {pe}ee(o,1) is bounded in L*°(Ry ), there is a sequence {€;}jen converging to
zero such that, as j — oo, the sequence {p., } converges weakly-star in L>°(R4.) to
some function p € L*°(Ry). It is clear from (119) that

(119)

uon(t) —uon(0) = /Otp(s) -n(s)ds for a.e. t € Ry,

v(n(#)) - p(t) < g(n(t)) for ae. t € Ry .

Now, we fix an i € N so that i > ||p||p®,) and any < T' < oo, and set
J =10, T]. Using Lemma 5.6, for each m € N, we find a function v,, € L*(J,R")
so that

H(n(s),p(s)) + Li(n(s), —vm(s)) < —vm(s) -p(s) +1/m for a.e. s € J. (120)
By the convex duality, we have

H(z,q) = sup (£ - q— Li(z,&)) for all (z,q) € 2 x B,.
£ER™

(Note that L;(z,-) is the convex conjugate of the function H(z,-) + dz , where

dg (p) =0ifpe B; and = oo otherwise.) Hence, for any nonnegative function
3 € L (J,R) and any (j,m) € N?, by (119) we get
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/ m>/¢ $),pe, (3))ds

/ w pEJ( ) - Ll(n(s)7 —'Um(S))]ds.

Combining this observation with (120), after sending j — oo, we obtain

02LM%HW%MW—UW®,

which implies that H(n(s),p(s)) < 0 for a.e. s € [0, T]. Since T' > 0 is arbitrary,
we see that
H(n(s),p(s)) <0 forae secR,.

The proof is complete. 0O

6.2 Proof of convergence
This subsection is devoted to the proof of Theorem 6.1.
Proof (Theorem 6.1). 1t is enough to show that

limsupu(z,t) < us(z) forall z € 2. (121)

t—o0

Indeed, once this is proved, it is obvious that lim—co u(,t) = ueo(2) for all x € §2,
and moreover, since u € BUC(Q), by the Ascoli-Arzela theorem, it follows that
the convergence, lim;— oo u(z,t) = uoo (), is uniform in 2.

Fix any z € . According to Lemma 6.1 and Corollary 5.2, we may choose a
(n,v,1) € SP(z) be such that for all ¢t > 0,

Uoo (2) — Uoo (N(t)) = L(t,m,v,1). (122)

Due to Theorem 6.2, there exists a function ¢ € L (R4, R™) such that

oo(’l7( ) = q(s) - n(s) for a.e. s € Ry,

( (s),q(s)) <0 for a.e. s € Ry, (123)
~v(n) - q(s) < g(n(s)) for a.e. s € Ry b,
where Ry, := {s € Ry : n(s) € 002},
We now show that
H(n(s), q(s)) =0 for a.e. s € Ry,
1(s)v(n(s)) - q(s) = Us)g(n(s)) fora.e. s € Ryp,  (124)

—q(s)-v(s) = H(n(s), q(s)) + L(n(s), —v(s)) fora.e s € Ry.
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We remark here that the last equality in (124) is equivalent to saying that
—v(s) € D, H(n(s), q(s)) for a.e. s € Ry,
(or
q(s) € D¢ L(n(s), —v(s)) for a.e. s € Ry.)
By differentiating (122), we get

d

e (1(5) = L((s), () + Us)g(n(s))  for ae. s € Ry

Combining this with (123), we calculate

(s) - 11(s) + L(n(s), —v(s)) + U(s)g(n(s))

(s) - (v(s) = Us)v(n(s))) + L(n(s), —v(s)) + Us)g(n(s
> — H(n(s),q(s)) = U(s)(a(s) - v(n(s)) — g(n(s))) = 0
for a.e. s € R4, which guarantees that (124) holds.

Fix any € > 0. We prove that there is a constant 7 > 0 and for each = € 2 a
number o(z) € [0, 7] for which

)

Uoo (T) + € > u(z, 0(x)). (125)

In view of the definition of u, for each x € 2 there is a constant t(z) > 0
such that
Uoo () + € > u(z, t(x)).

By continuity, for each fixed x € §2, we can choose a constant r(x) > 0 so that
Uoo(y) +€ > u(y, t(x)) fory € 2N By (z),

where B,(z) := {y € R™ : |y — 2| < p}. By the compactness of £2, there is a finite
sequence x;, ¢ = 1,2, ..., N, such that

2c U B’"(wi)(xi)v

1<i<N

That is, for any y € (2 there exists z;, with 1 < ¢ < N, such that y € By (o)) (24),
which implies
Uoo (y) + € > uly, t(z:)).
Thus, setting
7= max t(z;),
1<i<N
we find that for each x € {2 there is a constant o(x) € [0, 7] such that (125) holds.
In what follows we fix 7 > 0 and o(z) € [0, 7] as above. Also, we choose a
constant 6; > 0 and a modulus w; as in Lemma 6.3.
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We divide our argument into two cases according to which hypothesis is valid,
(A9)+ or (A9)_. We first argue under hypothesis (A9)4. Choose a constant 7' > 7
so that 7/(T — 7) < 61. Fix any ¢t > T, and set 8 = o(n(t)) € [0, 7]. We set
0 = 6/(t — ) and note that § < 7/(t — 7) < §;. We define functions ns, vs, ls on
R+ by

ns(s) =n((1+6)s),
vs(s) = (14 6)v((1 +0)s),

ls(s) = (1 4+ 8)U((1 + 6)s),
and note that (ns, vs, ls) € SP(2).
By (124) together with the remark after (124), we know that H(n(s), ¢(s)) =0
and —v(s) € D, H(n(s), q(s)) for a.e. s € Ry. That is, (n(s), —v(s)) € S for a.e.

s € Ry. Therefore, by (117), we get for a.e. s € Ry,
L(ns(s), —vs(s)) < (1+ é)L(n((l +0)s), —v((1+ 6)3)) + dw1(9).

Integrating this over (0, ¢ — ), making a change of variables in the integral and
noting that (14 6)(¢t — 6) = ¢, we get

t—6 t
/0 L(ns(s), —vs(s))ds < /0 L(n(s), —v(s))ds + (t — 0)dw1(9)
_ /0 L(n(s), —v(s))ds + 6uwr (6),

/Otil( g(ns(s ds—/l g(n(s))d

u(z,t) <L(t—0,ms,vs,1ls) + u(ns(t — 0), 9)
(L ), —v(s)) +U(s)g(n(s)))ds + 0w (8) + u(n(t), o(n(t)))

Z) — Uoo (N(t)) + TW1(6) + uoc (n(t)) + &
=Uoo(2) + Tw1(d) + €.

as well as

Moreover,

IA
:\

Thus, recalling that 6 < 7/(t — 7), we get

u(z,t) < uso(z) + Twl( ) +e. (126)

-
t—T1

Next, we assume that (A9)_ holds. We choose T' > 7 as before, and fix t > T'.
Set = o(n(t—7)) € [0, 7] and 6 = (7—6)/(t—8). Observe that (1—0)(t—0) =t—7
and 6 < 7/(t —7) < ;.



104 Hitoshi Ishii

We set ns5(s) = n((1—9)s), vs(s) = (1-5)v((1—0)s) and I5(s) = (1—0)I((1—0)s)
for s € Ry and observe that (s, vs, l5) € SP(z). As before, thanks to (118), we
have

L(ns(s), —vs(s)) < (1 —=6)L(n((1 —6)s), —v(1 —9)s)) + dw1(d) for a.e. s € Ry.

Hence, we get
t—0 t—T
/O L(ns(s), —va(s))dsgfo L(n(s), —v(s))ds + (t — 0)6w1(6)
= [ L) —v)s + (7 =0 (6),

and

t—0 t—r
/0 13(5)g(ns(s))ds = / (s)g(n(s))ds.

Furthermore, we calculate
U(Z,t) < ‘C(t - 077757 Vs, l5) + U(né(t - 9)7 9)

S [’(t —7,7,0, l) + 7w (6) + u(n(t - T)7 U(U(t - T)))
<Uoo(z) + Twi(6) + €.

Thus, we get

u(z,t) < uoo(2) +Tw1(ti—7_) + ¢,

From the above inequality and (126) we see that (121) is valid. O

6.3 Representation of the asymptotic solution wse

According to Theorem 6.1, if either (A9)4 or (A9)_ holds, then the solution u(x,t)

of (ENP)—(ID) converges to the function wuao(2) in C(£2) as t — oo, where the
function us is given by

Uoo(x) = liminfu(z,t) for z € 0.

In this subsection, we do not assume (A9)1 neither (A9)_ and give two char-
acterizations of the function ueo.

Let S~ and S denote the sets of all viscosity subsolutions of (SNP) and of all
viscosity solutions of (SNP), respectively.

Theorem 6.3. Set -~
Fi={veS :v<uy in 2},
ug = sup Fi,

Fo={weS :w>uy in 2}

Then uoo = inf Fo.
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Proof. By Proposition 1.10, we have ug € S™. It is clear that u; < uo in £2.
Hence, by Theorem 3.1 applied to the functions u; and u, we get ug (z) < u(x,t)
for all (z,t) € @, which implies that uy < us in 2. This together with Lemma

6.1 ensures that u. € Fa, which shows that inf 2 < us in 0.
Next, we set

u (z,t) = il;%u(x,t +7r)  forall (z,t) € Q.

By Lemma 5.11, the function u~ is a solution of (ENP) and the function u™ (-, 0)
is a viscosity subsolution of (SNP). Also, it is clear that u™ (z,0) < uo(z) for all
x € 2, which implies that 4~ (-,0) < uy < inf F in 2. We apply Theorem 3.1 to
the functions v~ and inf F3, to obtain u™ (x,t) < inf Fa(z) for all (z,t) € @Q, from
which we get wuoo < inf F» in £2, and conclude the proof. 0O

Let d : 27 — R and A denote the distance-like function and the Aubry set,
respectively, as in Section 4.

Theorem 6.4. We have the formula:
Uoo () = inf{d(z,y) +d(y,2) +uo(z) : 2€ 2, y€ A} forall x € 0.
Proof. We first show that
ug (x) = inf{uo(y) +d(z,y) : y € 2} forall z € 2,

where v is the function defined in Theorem 6.3.
Let u; denote the function given by the right hand side of the above formula.
Since u, € S~, we have

ug (z) —ug (y) < d(z,y) for all z,y € 2,

which ensures that uy < u in £2.
By Theorem 4.4, we have u; € S§~. Also, by the definition of u;, we have

u; (z) < uo(z) + d(x,x) = uo(x) for all z € 2. Hence, by the definition of ug , we
find that uy > uy in £2. Thus, we have uy = uj in £2.
It is now enough to show that

oo (2) = inf (g (y) + d(z,9)).

Let ¢ denote the function defined by the right hand side of the above formula.
The version of Proposition 1.10 for supersolutions ensures that ¢ € ST, while
Theorem 4.4 guarantees that ¢ € S~. Hence, we have ¢ € S. Observe also that

ug (z) < ug (y) +d(z,y)  forall z,y € 2,

which yields uy, < ¢ in 2. Thus, we see by Theorem 6.3 that ue, < ¢ in £2.
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Now, applying Theorem 4.1 to ue., we observe that for all z € £2,

Uso(2) = inf{uce(y) + d(z,y) : y € A}
> inf{ug (y) +d(z,y) : y € A} = ¢(z).

Thus we find that ue, = ¢ in £2. The proof is complete. O

Combining the above theorem and Proposition 5.4, we obtain another repre-
sentation formula for .

Corollary 6.1. The following formula holds:

Uoo(x) = inf {L(T,n,v,1) + uo(n(T)) : T >0, (n,v,1) € SP(z)
such that n(t) € A for somet € (0, T)}.
Ezample 6.2. As in Example 3.1, let n =1, 2 = (=1, 1) and v = v on 912 (i.e.,
¥(+1) = +1). Let H = H(p) = |p|* and g : 32 — R be the function given
by g(=1) = —1 and g(1) = 0. As in Example 3.1, we see that ¢¥ = 1. We set

H(p) = H(p) — ¢ = |p|*> — 1. Note that H satisfies both (A9)4. and consider the
Neumann problem

H@'(z)) =0 in £, v(x)-v'(z) = g(x) on 952 (127)

It is easily seen that the distance-like function d : 22 — R for this problem is
given by d(z,y) = |z — y|. Let A denote the Aubry set for problem (127). By
examining the function d, we see that A = {—1}. For instance, by observing that

{1} if x € 02,
D, d(z,—1) = ¢ (—o0, 1] ifz=-1,
[1, o0) ifz =1,

we find that —1 € A. Let uo(z) = 0. Consider the problem

ue(z,t) + H(uz(x,t)) =0 for (z,t) € 2 x R4,
v(@)uz(z,t) = g(x) for (x,t) € 002 x Ry,
u(z,0) = uo(x) for z € 0.

If w is the viscosity solution of this problem and the function v is given by v(z,t) =
u(z,t) + ¢t = u(z,t) + t, then v solves in the viscosity sense

vi(x,t) + H(vg(z,8)) =0 for (z,t) € 2 xRy,
y(z)vz (2, t) = g(x) for (x,t) € 002 x Ry,
v(z,0) = uo(x) for x € 0.

Setting
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Uoo (x) = min{d(z,y) + d(y,2) +uo(2) : y € A, 2 € 2} for = € 2,

we note that e (2) = |z + 1| for all z € 2. Thanks to Theorems 6.1 and 6.4, we
have

lim v(z,t) = uco(x) uniformly on 2,

t—oo
which reads B
tlim (u(z,t) +t—|x+1]) =0 uniformly on 2.

That is, we have u(z,t) & —t + |z + 1| as t — oo. If we replace ug(z) = 0 by the
function uo(z) = —3x, then

Uoo(z) =min{|z + 1|+ [1+y| -3y} =|z+1] -1 foral z€ 2,
yeSN

and u(z,t) =~ —t+|z+1|—1ast — oco.

In some cases the variational formula in Corollary 6.1 is useful to see the
convergence assertion of Theorem 6.1.

Under the hypothesis that ¢# = 0, which is our case, we call a point y € 2
an equilibrium point if L(y,0) = 0. This condition, L(y,0) = 0, is equivalent to
minpern H(y,p) = 0.

Let y € {2 be an equilibrium point. If we define (n,v,l) € SP(y) by setting
(n,v,0)(s) = (y, 0, 0), then L(¢t,n,v,l) =0 for all t € R, and Propositions 5.4 and
5.5 guarantee that y € A.

We now assume that A consists of only equilibrium points. Fix any € > 0 and
x € 2. According to Corollary 6.1, we can choose 7,0 € Ry and (n,v,1) € SP(z)
so that n(7) € A and

L(T+o0,n,0,1) +uo(n(T+0)) < uss () + €. (128)

Fix any t > 7 + 0. We define (7, 9,1) € SP(z) by

(1,0,0)(s) = q (,0,0) for s €[r,7+0),
(n,v,1)(s—0) for s€[r+6,00),
where § =t — (7 + o). Using (128), we get

oo + & > L(ET,5,0) + uo(ne(8)) > u(a,t).

Therefore, recalling that liminf; .. u(x,t) = uoo(x), we see that lim; .o u(z,t) =
Uoo () for all z € 0.
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6.4 Localization of conditions (A9).

In this subsection we explain briefly that the following versions of (A9)+ localized
to the Aubry set .4 may replace the role of (A9)4 in Theorem 6.1.

(A10)+ Let
Za={(z,p) € AXR" : H(z,p) =0}.

There exists a function wg € C([0, 00)) satisfying wo(r) > 0 for all 7 > 0 such
that if (z,p) € Za, £ € D, H(x,p) and ¢ € R", then

H(z,p+q) >&-q+wo((€-q)+)-

As before, assume that ¢ = 0 and let u be the solution of (ENP)—(ID) and
Uoo (z) := liminf; o u(z, t).

Theorem 6.5. Assume that either (A10)4 or (A10)_ holds. Then

tlim w(z,t) = uso(x)  uniformly on 0. (129)
If we set _
ul(z) = limsup u(z,t) for z € £2,

t—oo

we see by Theorem 1.3 that the function uZ,(z) is a subsolution of (ENP), as a
function of (z,t), and hence a subsolution of (SNP). That is, ul, € S~. Since
Uso € ST, once we have shown that ul, < ue, on A, then, by Theorem 4.6, we get

ujo <Us in £2,

which shows that the uniform convergence (129) is valid. Thus we only need to
show that u}, < uee on A.
Following [21] (see also [39]), one can prove the following lemma.

Lemma 6.4. For any z € A there exists an a = (n,v,l) € SP(z) such that
d(z,n(t)) = L(t, a) = —=d(n(t),z) for all t>0.

Proof. By Proposition 5.5, for each k € N there are an o = (1, vk, lx) € SP(2)
and 7, > k such that

and (k) = 2.

x| =

ﬁ(’i’k,ak) <

Observe that for any j, k € N with j < k,

I =

7> L3, ar) + /Tk [L(nk (), —vr(s)) + Li(s)g(mx(s))lds

> L(j, o) + d(ne(5), 1 (Tx)),

(130)
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and hence

sup L(j,ar) < oo forall je€N.
keN

We apply Theorem 5.4, with T" = j € N, and use the diagonal argument, to
conclude from (130) that there is an o = (1, v,1) € SP(z) such that for all j € N,

£(j,0) < liminf £, ax) < ~d(1(7), 2)

Let 0 <t < o0, and choose a j € N such that ¢ < j. Using Proposition 5.4 and
Proposition 4.1 (ii) (the triangle inequality for d), we compute that

d(z,n(t)) < L(t,a) = L(j,a) — /tj [L(n(s), —v(s)) +1(s)g(n(s))]ds
< LG, ) —d(n(t),n(5)) < —d(n(g), z) — d(n(t),n(5))
< —=d(n(t), 2).

Moreover, by the triangle inequality, we get
—d(n(t), z) < d(z,n(t)).
These together yield
d(z,n(t)) = L(t, a) = —=d(n(t),z) for all t >0,
which completes the proof. O

The above assertion is somehow related to the idea of the quotient Aubry set
(see [48, 41]). Indeed, if we introduce the equivalence relation = on A by

r=y <= dzy)+d(y,z)=0,
and consider the quotient space A consisting of the equivalence classes
[z]={ye A:y=zx}, with z€ A,
then the space A is a metric space with its distance given by
d([x], [y]) = d(z,y) + d(y, z)-

The property of the curve i in the above lemma that d(z,n(t)) = —d(n(t),z) is
now stated as: n(t) = n(0).

Lemma 6.5. Let p € S~ and z,y € A. If x =y, then

P(z) —P(y) = d(=,y).
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Proof. By the definition of d, we have

Y(x) —p(y) <d(z,y) and  P(y) — () < d(y,x).

Hence,
P(x) —¥(y) <d(z,y) = —d(y, ) < P(z) —¥(y),
which shows that ¥(z) — ¢ (y) = d(z,y) = —d(y,z). O

Proof (Theorem 6.5). As we have noticed above, we need only to show that
uly(z) < uoo(z) forall z € A.

To this end, we fix any z € A. Let o = (n,v,l) € SP(z) be as in Lemma 6.4.
In view of Lemma 6.5, we have

Uoso (2) — Uoo (N(t)) = d(2,n(t)) = L(t, ) for all ¢ > 0.
It is obvious that the same assertion as Lemma 6.3 holds if we replace S by
Sa:={(z,§) e AXR" : (£ € D, H(z,p) for some (z,p) € Za}.
We now just need to follow the arguments in Subsection 6.2, to conclude that
uls(2) < uoo(2).

The details are left to the interested reader. 0O

Appendix

A.1 Local maxima to global maxima

We recall a proposition from [57] which is about partition of unity.

Proposition A.1. Let O be a collection of open subsets of R™. Set W := o U.
Then there is a collection F of C™ functions in R™ having the following properties:

(0L f(z) <1 forallz € W and f € F.
(ii) For each x € W there is a neighborhood V' of x such that all but finitely many
f € F vanish in V.
(iil) D jer f(@) =1 for allz € W.
(iv) For each f € F there is a set U € O such that supp f C U.

Proposition A.2. Let 2 be any subset of R”, u € USC(£2,R) and ¢ € C*(2).
Assume that w — ¢ attains a local mazimum at y € 2. Then there is a function
P € CHR2) such that uw — 1 attains a global mazimum at y and ¢ = ¢ in a
neighborhood of y.
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Proof. As usual it is enough to prove the above proposition in the case when
(u— &)(y) = 0.

By the definition of the space C(£2), there is an open neighborhood Wy of 2
such that ¢ is defined in Wy and ¢ € C*(Wo).

There is an open subset U, C Wy of R™ containing y such that maXUme(u -
@) = (u—¢)(y). Since u € USC(§2,R), for each z € 2\ {y} we may choose an open
subset U, of R™ so that z € Uy, y &€ U, and SUp, Ao U < 0. Set a, = SUPy, no U
for every z € 2\ {y}.

We set O = {U, : z € 2} and W = Jyco U. Note that W is an open
neighborhood of 2. By Proposition A.1, there exists a collection F of functions
f € C°°(R") satisfying the conditions (i)—(iv) of the proposition. According to the
condition (iv), for each f € F there is a point z € 2 such that supp f C U.. For
each f € F we fix such a point z € (2 and define the mapping p : F — (2 by
p(f) = z. We set

V)= Y apf@+ Y #@f(z) forzeW.

FEF, p(f)Ay FEF, p(f)=y

By the condition (ii), we see that v € C*(W). Fix any z € 2 and f € F,
and observe that if f(x) > 0 and p(f) # v, then we have x € supp f C U,(y) and,
therefore, ap sy = SUpy o U 2 u(x). Observe also that if f(x) > 0 and p(f) = vy,

then we have z € U, and ¢(x) > u(z). Thus we see that for all z € (2,

P) > > uw@f@+ > u@f(@) =ul@) ) flx)=u(x).

FEF, p(f#y FeF, p(f)=y fEF

Thanks to the condition (ii), we may choose a neighborhood V' C W of y and
a finite subset {f;}}2; of F so that

N

Zf](a:) =1 forallzeV.

Jj=1

If p(f;j) # y for some j = 1,..., N, then Uys,) N {y} = 0 and hence y ¢ supp f;.
Therefore, by replacing V' by a smaller one we may assume that p(f;) = y for all
j=1,..,N.Since f =0in V for all f € F\{f1,..., fn}, we see that

Y(@) = (@) f;(x) = ¢(x) forallweV.

Jj=1

It is now easy to see that u — ¢ has a global maximum at y. O

A.2 A quick review of convex analysis

We discuss here basic properties of convex functions on R"”.
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By definition, a subset C' of R™ is convex if and only if
1-t)z+tyeC forall z,ye C,0<t < 1.
For a given function f : U C R™ — [—o00, o], its epigraph epi(f) is defined as
epi(f) ={(z,y) e U XR : y > f(x)}.

A function f : U — [—o0, o0 is said to be convex if epi(f) is a convex subset of
R

We are henceforth concerned with functions defined on R™. When we are given
a function f on U with U being a proper subset of R", we may think of f as a
function defined on R™ having value co on the set R™ \ U.

It is easily checked that a function f : R™ — [—o00, o0] is convex if and only if
for all z,y € R™, ¢,s € R and A € [0, 1],

fFll=XNz+xy) <A =XNt+As if t> f(z) and s> f(y).

From this, we see that a function f : R™ — (—o0, oo] is convex if and only if for
all z,y € R™ and X € [0, 1],

S =Nz +Ay) < (1= A)f(2) + Af(y)-

Here we use the convention for extended real numbers, i.e., for any z € R, —o0 <
z < 00, T+ 00 =+00, z - (+oo) = too if z >0, 0 (+oo) =0, ete.

Any affine function f(x) = a -z + b, where a € R™ and b € R, is a convex
function on R™. Moreover, if A C R™ and B C R are nonempty sets, then the
function on R™ given by

f(z)=sup{a-z+0b: (a,b) € Ax B}

is a convex function. Note that this function f is lower semicontinuous on R"™. We
restrict our attention to those functions which take values only in (—oo, co].

Proposition A.3. Let f : R" — (—o0, 0] be a convex function. Assume that
p € D™ f(y) for some y,p € R"™. Then

f@)>fy)+p-(x—y) foral zeR"
Proof. By the definition of D~ f(y), we have
f@) =2 fy)+p-(@—y) +ol(lz—y)) as z—y.
Hence, fixing z € R", we get
fly) < fltz+ (A -t)y) —tp-(z —y) +o(t) as t —0+.

Using the convexity of f, we rearrange the above inequality and divide by ¢ > 0,
to get

f) < fl@)—p-(x—y)+ol) as t—0+.
Sending t — 0+ yields

f@)>fly)+p-(x—y) forall zeR". O
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Proposition A.4. Let F be a nonempty set of convex functions on R™ with values
in (—oo, oo]. Then sup F is a convex function on R™ having values in (—oo, co].

Proof. 1t is clear that (sup F)(z) € (—oo, oo] for all zx € R". If f € F, z,y € R"
and ¢ € [0, 1], then we have

(A=t +ty) < (1 —t)f(z) +tf(y) < (1 —t)(sup F)(z) + t(sup F)(y)
and hence
(sup F)((1 = t)o + ty) < (1 —t)(sup F)(x) + t(sup F)(y),
which proves the convexity of sup F. 0O

We call a function f : R™ — (—o0, 00| proper convez if the following three
conditions hold.

(i) f is convex on R™.
(if) f € LSC(R").
(i) f(z) # oo.

Let f : R® — [—o00, oo]. The conjugate convex function (or the Legendre-
Fenchel transform) of f is the function f* : R™ — [—o0, oo] given by

[ (x) = sup (z-y — f(y))-

yeR”
Proposition A.5. If f is a proper convex function, then so is f*.

Lemma A.6. If f is a proper convex function on R", then D~ f(y) # 0 for some
y € R™.

Proof. We choose a point zo € R™ so that f(xzo) € R. Let k € N, and define
the function gx on Bi(zo) by the formula gi(z) = f(z) + klz — xo|?. Since gi, €
LSC(B1(wo) and gk(zo) = g(wo) € R, the function g has a finite minimum at a
point xp € Bi(xo). Note that if k is sufficiently large, then
min = min + k> f(xo).
0B o) 5 = o80T flwo)

Fix such a large k, and observe that xx € Bi(zo) and, therefore, —2k(zr — x0) €
D_f(;l’k) O

Proof (Proposition A.5). The function = — z -y — f(y) is an affine function for
any y € R™. By Proposition A.4, the function f* is convex on R". Also, since
the function z — z -y — f(y) is continuous on R™ for any y € R", as stated in
Proposition 1.5, the function f* is lower semicontinuous on R"™.

Since f is proper convex on R™, there is a point zo € R™ such that f(zo) € R.
Hence, we have
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f(y) >y 20— f(xo) > —00 forall yeR™.

By Lemma A.6, there exist points y,p € R™ such that p € D™ f(y). By Propo-
sition A.3, we have

f@)>fly)+p-(x—y) forall zeR".

That is,

py—fly)>p-z—f(z) foral zeR",
which implies that f*(p) = p-y — f(y) € R. Thus, we conclude that f* : R" —
(—o0, o0], f* is convex on R", f* € LSC(R"™) and f*(z) Zoco. O

The following duality (called convex duality or Legendre-Fenchel duality) holds.
Theorem A.6. Let f : R" — (—o0, 0] be a proper convex function. Then
=t
Proof. By the definition of f*, we have
ff@)>z-y—f(y) forall z,y€eR",

which reads
fly)>y-z— f*(z) forall z,y€R".

Hence,
fly) > 7 (y) forall yeR"™

Next, we show that
™ (z) > f(z) forall z€R".

We fix any a € R™ and choose a point y € R™ so that f(y) € R. We fix a number
R > 0so that [y — a| < R. Let k € N, and consider the function g, € LSC(Br(a))
defined by gi(z) = f(x) + k|z — a|®. Let x;, € Br(a) be a minimum point of the
function gr. Noting that if k is sufficiently large, then

i) < +kly—al’> < min f+4kR>= min gy,
gr(zr) < f(y) ly | aBR(a)f BBR(a)gk

we see that zp € Bgr(a) for k sufficiently large. We henceforth assume that k is
large enough so that x € Br(a). We have

D_gk(:ck) = D_f($k) + 2k(xk — a) > 0.

Accordingly, if we set & = —2k(zx — a), then we have & € D™ f(zx). By Propo-
sition A.3, we get

f(x) > flex) + & - (@ —x) forall z € R",
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or, equivalently,
&k -z — flzk) > & -z — f(z) forall z € R™

Hence,
&k xr — f(or) = [ (&)
Using this, we compute that

f7(a) > a-& — fH (&) = &k - a— & - xx + f(xn)
= 2k|zk — al® + f(zk).

We divide our argument into the following cases, (a) and (b).
Case (a): limg oo k|zx — a]> = co. In this case, if we set m = ming,,,) f, then
we have
(a) > likrg'gclf 2k|zr — al® + m = oo,
and, therefore, f**(a) > f(a).
Case (b): liminfy .o klzx — al? < co. We may choose a subsequence {z; }jen
of {xr} so that lim; . xx; = a. Then we have

[ (a) > liminf (2k;|zx; — al®> + f(zk;)) > liminf f(zx;) > f(a).
j—o00 Jj—o00
Thus, in both cases we have f**(a) > f(a), which completes the proof. O

Theorem A.7. Let f : R" — (—o0, o] be proper convex and x,§ € R". Then the
following three conditions are equivalent each other.

(i) €D flx).
(ii) =€ D™ f(£).
(iii) - &= f(x)+ [ (&)
Proof. Assume first that (i) holds. By Proposition A.3, we have

fly) > flx)+&-(y—x) forall yeR",

which reads
§x—flx)>&y—fly) forallyeR"
Hence,

§-x— f(z) = max(§ -y — f(y) = f(§).

yeRn
Thus, (iii) is valid.
Next, we assume that (iii) holds. Then the function y — & -y — f(y) attains a
maximum at x. Therefore, £ € D~ f(z). That is, (i) is valid.
Now, by the convex duality (Theorem A.6), (iii) reads

x-&= " (x) + f1 ()

The equivalence between (i) and (iii), with f replaced by f*, is exactly the equiv-
alence between (ii) and (iii). The proof is complete. O
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Finally, we give a Lipschitz regularity estimate for convex functions.

Theorem A.8. Let f : R" — (—o0, 00| be a convex function. Assume that there
are constants M > 0 and R > 0 such that

|f(x)] <M  for all € Bsg.

Then M
F@) = Fw)] < e~y for all 2,y € B

Proof. Let x,y € Br and note that |z — y| < 2R. We may assume that z # y.
Setting £ = (z — y)/|z — y| and z = y + 2R¢ and noting that z € Bsg,

=yl
ToY=op (2 —y)s
and
_ le—yl,. | lz—yl lz -yl
x—y+72R (2 y)—iﬂ% z+ (1 3R Y,
we obtain | | | |
r—y r—y
<
o < E 86+ (1- 221 g,
and
f@) = £ < 286 - ) < B 5+ 15 < MY
- 2R - 2R - R
In view of the symmetry in « and y, we see that
M
F@) = f@) < Yle—yl forall .y € Br. 0

A.3 Global Lipschitz regularity
We give here a proof of Lemmas 2.1 and 2.2.

Proof (Lemma 2.1). We first show that there is a constant C' > 0, for each z € 2 a
ball B,(z) centered at z, and for each z,y € B.(2)N 2, a curve n € AC([0,T],R™),
with T € R4, such that n(s) € £2 for all s € (0, T), |n(s)] < 1 for a.e. s € (0,7T)
and T' < Clz — y|.

Let p be a defining function of 2. We may assume that ||Dp||cc,rr < 1 and
|Dp(x)| > 6 for all z € (80)° := {y € R : dist(y,d2) < &} and some constant
de(0,1).

Let z € 2. We can choose r > 0 so that B,.(z) C {2. Then, for each z,y € B;(z),
with z # y, the line n(s) = x + s(y — z) /|y — z|, with s € [0, |z — y|], connects two
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points x and y and lies inside 2. Note as well that 7(s) = (y — z)/|y — z| € 9B
for all s € [0, |z — y|].

Let z € 002. Since |Dp(2)|> > 6%, by continuity, we may choose r € (0, 6°/4)
so that Dp(z) - Dp(z) > 6%/2 for all © € Bys-2,(z). Fix any z,y € B.(z) N .
Consider the curve &(t) = z + t(y — ) — t(1 — )65 2|z — y|Dp(z), with t € [0, 1],
which connects the points z and y. Note that

€(t) — 2| < (1= )|z — 2| + tly — 2| + 6t(1 — )5~ |z — y[| Dp(2)]|
<1430 %)r <45 °r

and 46 2r < §. Hence, we have £(t) € Bys—2,(z) N (892)° for all t € [0, 1]. If
t € (0, 1/2], then we have

p(£(1)) < p(x) + tDp(OE(t) + (1 = 0)z) - (y — = — 6(1 — )8 *|z — y|Dp(=))
<tlr—y|(1-3(1-1¢t) <0

for some 6 € (0, 1). Similarly, if ¢ € [1/2, 1), we have

p(E(®) < p(y) + (1 = B)[z —y[(1 - 3t) <O.

Hence, £(t) € £2 for all ¢t € (0, 1). Note that
E@®)] < ly —2|(1+6577).

If x = y, then we just set n(s) = z = y for s = 0 and the curve n : [0, 0] — R"
has the required properties. Now let = # y. We set t(x,y) = (1 + 66 2)|z — y| and
n(s) = &(s/t(z,y)) for s € [0, t(x,y)]. Then the curve i : [0, t(x,y)] — R™ has the
required properties with C' = 1 + 66 2.

Thus, by the compactness of 2, we may choose a constant C > 0 and a
finite coverlng {BY}L L of 2 consisting of open balls with the properties: for each
T,y € B N 2, where B denotes the concentric open ball of B; with radius twice
that of B;, there exists a curve n € AC([0, t(x,y)], R™) such that n(s) € £ for all
s € (0, t(z,y)), n(s)] <1 for a.e. s € [0, t(z,y)] and t(z,y) < Clz — y|.

Let 7; be the radius of the ball B; and set » = minr; and R = Zri7 where %
ranges all over i = 1,..., N.

Let z,y € 0. If |z —y| < 7, then 2,y € B, for some i and there is a curve
n € AC([0, t(z,y)],R™) such that n(s) € 2 for all s € (0,t(x,y)), |n(s)] < 1 for a.e.
s € [0,t(z,y)] and t(z,y) < Clz — y|. Next, we assume that |z — y| > r. By the
connectedness of {2, we infer that there is a sequence {B;; : j =1,...,J} C {B; :
i=1,...,N}such that x € B;,, y € By, Bi;NBy;, N2 # P foralll <7< J,and
Bi; # B, if j # k. It is clear that J < N. If J =1, then we may choose a curve n
with the required properties as in the case where |z —y| < r. If J > 1, then we may
choose a curve n € AC([0, t(z,y)], R") joining z and y as follows. First, we choose
a sequence {z; : j = 1,...,J — 1} of points in {2 so that x; € B;; N By, , N {2 for

all 1 < j < J. Next, setting o =z, x; =y and to = 0, since z;_1,z;;, € B; N N2



118 Hitoshi Ishii

for all 1 < j < J, we may select n; € AC([tj—1, t;], R"), with 1 < j < J,
inductively so that n;(tj—1) = xj—1, n;(t;) = x4, n;(s) € 2 for all s € (t;-1,t;)
and t; < tj—1 + C|z; — x;—1|. Finally, we define n € AC([0, t(z,y)],R"), with
t(z,y) = ts, by setting n(s) = n:(s) for s € [t; — 1,¢;] and 1 < j < J. Noting that

J J
T<C zi—xi_1| <C n.SCRgCerla:—y,
J J J

Jj=1 Jj=1

we see that the curve n € AC([0, t(z,y)], R™) has all the required properties with
C replaced by CRr~t. O

Remark A.1. (i) A standard argument, different from the above one, to prove the
local Lipschitz continuity near the boundary points is to flatten the boundary by
a local change of variables. (ii) One can easily modify the above proof to prove the
proposition same as Lemma 2.1, except that (2 is a Lipschitz domain.

Proof (Lemma 2.2). Let C' > 0 be the constant from Lemma 2.1. We show that
lu(z) —u(y)| < CM|z —y| for all z,y € £2.

To show this, we fix any x,y € (2 such that z # y. By Lemma 2.1, there is
a curve 1 € AC([0, t(z,y)], R") such that n(0) = z, n(t(z,y)) =y, t(z,y) <
Clz —yl|, n(s) € 2 forall s € [0, t(z,y)] and |n(s)] <1 for a.e. s € [0, t(z,y)].

By the compactness of the image n([0, t(x,y)]) of interval [0, t(z,y)] by n, we
may choose a finite sequence {Bi}fvzl of open balls contained in {2 which covers
n([0, t(z,y)]). We may assume by rearranging the label ¢ if needed that x € Bi,
y € By and B; N Bix1 # 0 for all 1 < ¢ < N. We may choose a sequence
0=t < t1 < -+ <t~y = t(x,y) of real numbers. so that the line segment
[n(ti=1), n(ts)] joining n(t;—1) and n(t;) lines in B; for any i = 1,..., N.

Thanks to Proposition 1.14, we have

lu(n(t:)) —u(n(ti=1))| < M|n(t;) — n(ti—1)| foralli=1,...,N.

Using this, we compute that
July) = w(@)] = lu(n(tx)) — uC(to)] < 3 lun(te)) = un(ts-1))
<MYl —n(t) <MY [ iGs)lds

tN
:M/ [n(s)|ds < M(ty —to) = Mt(z,y) < CM|z — y|.
to

This completes the proof. O
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A.4 Localized versions of Lemma 4.2

Theorem A.9. Let U, V be open subsets of R™ with the properties: V CU and
VNNR#£D. Let uw e C(UN ) be a viscosity solution of

H(z,Du(x)) <0 inUnNJL,

U 131
%(m) < g(z) on U NOS2. (131)

Then, for each e € (0, 1), there exists a function u® € C*(V N Q2) such that

H(xz,Du(z)) <e inV N,
ou®

<
R (z) < g(x) on V NaL,

lu® — ul|oo,vne <e.

Proof. We choose functions ¢, n € C*(R™) so that 0 < ¢(z) < n(z) < 1 for all
z €R"™ ((z)=1forall z € V, n(x) =1 for all x € supp ¢ and suppn C U.

We define the function v € C(£2) by setting v(z) = n(z)u(z) for z € UN 2 and
v(z) = 0 otherwise. By the coercivity of H, wu is locally Lipschitz continuous in
U N £2, and hence, v is Lipschitz continuous in 2. Let L > 0 be a Lipschitz bound
of v in £2. Then v is a viscosity solution of

[Dv(z)| <L in £,
g—”(x) <M in 99,
y
where M := L||¥|lc.00. In fact, we have a stronger assertion that for any = € 2
and any p € D v(z),

(132)

p| <L if e,
y(z) - p< M if x€odf.

To check this, let ¢ € C*(£2) and assume that v — ¢ attains a maximum at x € §2.
Observe that if « € £2, then |D¢(z)| < L and that if z € 912, then

(v = ¢)(z — ty(2)) — (v = ¥P)(z)

0 < liminf
t—0+ —t
 fiminf 2EZ0@) —v@) 99
t—0+ —t oy

which yields
v(x) - Do(x) < Lly(z)| < M.

Thus, (132) is valid.
We set
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h(z) =¢(z)g(z) + (1 —¢(z))M for z € 912,
G(z,p) =¢(x)H(z,p) + (1 = ((@))(Ipl = L) for (z,p) € 2 xR".

It is clear that h € C(02) and G satisfies (A5)—(A7), with H replaced by G
In view of the coercivity of H, we may assume by reselecting L if necessary
that for all (z,p) € 2 x R™, if |p| > L, then H(z,p) > 0. We now show that v is a
viscosity solution of
G(z,Dv(z)) <0 in £,

v (133)
a—v(x) < h(z) on 012

To do this, let & € £2 and p € DT v(#). Consider the case where ¢(Z) > 0, which
implies that & € U. We have n(z) = 1 near the point #, which implies that
p € DTu(2). As u is a viscosity subsolution of (131), we have H(%,p) <0if % € 2
and min{H (&, p), v(2) -p— h(2)} < 0if £ € 912. Assume in addition that & € 912.
By (132), we have v(2) - p < M. If |p| > L, we have both

(&) -p<g(&) and ~(2)-p< M.

Hence, if |p| > L, then (&) - p < h(Z). On the other hand, if [p| < L, we have two
cases: in one case we have H(%,p) < 0 and hence, G(&,p) < 0. In the other case,
we have v(2) - p < ¢g(2) and then y(2) -p < h(&). These observations together show
that

min{G(%,p), ¥(&) - p — h(2)} < 0.
We next assume that & € 2. In this case, we easily see that G(&,p) < 0.

Next, consider the case where ((#) = 0, which implies that G(Z,p) = |p| — L
and h(Z) = M. By (132), we immediately see that G(z,p) < 0 if £ € 2 and
min{G(z,p),v(&) -p— h(2)} < 0if & € 912. We thus conclude that v is a viscosity
solution of (133).

We may invoke Theorem 4.2, to find a collection {v}.c(0,1) C C(£2) such that

G(z,Dve(x)) <e forall z € £,
ov®
Oy

[0 = vljoo,2 < €.

(z) < h(x) for all x € 012,

But, this yields

H(z,v"(z)) <e forall z € VN§2,
6; (z) < g(x) for all z € VNoY2,
y

v = ulloo,vne < e.

The functions v® have all the required properties. O
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The above theorem has a version for Hamilton-Jacobi equations of evolution
type.

Theorem A.10. Let U, V be bounded open subsets of R™ x Ry with the properties:
VCU, UCR"xRy and VNQ #0. Let u € Lip(U N Q) be a viscosity solution
! ue(z,t) + H(z, Dyu(z,t)) <0  inUN (02 xRy),

g—:(x,t) < g(x) on UN (002 x Ry).
Then, for each € € (0, 1), there exists a function u¢ € C*(V N Q) such that

ui (z,t) + H(z, Dyu®(z,t)) <e in VN (02 xRy),

5; (z,1) < g(x) on VN (092 x Ry), (134)

lu® = ulloo,vrg < e.

Proof. Choose constants a,b € R4 so that U C R™ X (a,b) and let p be a defining
function of 2. We may assume that p is bounded in R™. We choose a function
¢ € CY(R) so that ¢(t) = 0 for all t € [a, b], ¢'(t) > 0 for all t > b, ¢'(t) < 0 for all
t < a and min{¢(a/2),((20)} > ||p|lco,2-

We set

plw,t) =p(x) +((t) for (z,t) e R™,
Q2 ={(z,t) e R"™ : p(x,t) < 0}.

It is easily seen that
Q2Cc2x(a/2,2b) and 2N (R" X [a, b)) =2 x [a, b].

Let (z,t) € R™™* be such that j(x,t) = 0. It is obvious that (x,t) € 2 x [a/2, 2b].
If a < ¢t < b, then p(z) = 0 and thus Dp(z) # 0. If either ¢ > b or ¢ < a, then
I¢'(t)| > 0. Hence, we have Dj(z,t) # 0. Thus, 5 is a defining function of £2.

Let M > 0 and define 5 € C(862, R"*1) by

A, t) = (L + Mp(x))+7(2), ¢'(1))

where we may assume that v is defined and continuous in 2. We note that for any
(z,t) € 092,

3(w,t) - D, 1) = (1+ Mp(2))+(z) - Dp(a) + ()"
Note as well that (1 + Mp(x))4+ =1 for all z € 92 and

A}im (1+ Mp(z))+ =0 locally uniformly in (2.
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Thus we can fix M > 0 so that for all (z,t) € 12,
5(2,8) - Dp(a,t) = (1+ Mp(a))47(x) - Dp(a) + C'(8)% > 0.

Noting that for each & € £2, the z-section {t € R : (z,t) € 2} of £ is an open
interval (or, line segment), we deduce that (2 is a connected set. We may assume
that g is defined and continuous in 2. We define § € C(912) by g(x,t) = g().
Thus, assumptions (A1)—(A4) hold with n+ 1, 2, 4 and g in place of n, 2, v and
g.

Let L > 0 be a Lipschitz bound of the function v in U N Q. Set

H(x,t,p,q) = H(z,p) +q+2(lg| — L)+ for (z,t,p,q) € 2 x R",

and note that H € 0(5 x R"*1) satisfies (A5)—(A7), with (2 replaced by 2.
We now claim that w is a viscosity solution of

H(z,t, Du(z,t)) <0 inUN®Q,
Y(x,t) - Du(x,t) < g(z,t) on UN L.
Indeed, since UN 2 = UNQ and U NN = U N OQ, if (z,t) € UN Q2 and

(p,q) € DV u(x,t), then we get |¢| < L by the cylindrical geometry of Q and, by
the viscosity property of u,

~—

q+ H(z,p) +2(lq| = L)+ <0 if (z,t) € 02,
min{g + H(z,p) + 2(jg| — L)+,7(z) -p— g(x)} <0 if (,t) € 9.

~—

We apply Theorem A.9, to find a collection {u}.c(0,1y C C* (VN 5) such that

H(z,t, Du®(z,
Y(z,t) - Du(x

[v" = ull vra <&

t)) <e in Vo,
,t) < g(z,t)  on Uﬁf?,

It is straightforward to see that the collection {u®}.c(0,1) C CH(V N Q) satisfies
(134). O

A.5 A proof of Lemma 5.4

This subsection is mostly devoted to the proof of Lemma 5.4, a version of the
Dunford-Pettis theorem. We also give a proof of the weak-star compactness of
bounded sequences in L*°(J,R™), where J = [a, b] is a finite interval in R.
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Proof (Lemma 5.4). We define the functions F; € C(J,R™) b

0= [

By the uniform integrability of {f;}, the sequence {F}};en is uniformly bounded
and equi-continuous in J. Hence, the Ascoli-Arzela theorem ensures that it has a
subsequence converging to a function F' uniformly in J. We fix such a subsequence
and denote it again by the same symbol {F};}. Because of the uniform integrability
assumption, the sequence {F;} is equi-absolutely continuous in J. That is, for any
€ > 0 there exists § > 0 such that

n

a<ar <by<as<by<--<an<by, <b, Z(bi_ai)<6,
i=1

= Z|f] — fj(ai)] <e forall jeN.

An immediate consequence of this is that F' € AC(J,R™). Hence, for some f €
L'(J,R™), we have

x):/ f)dt forall z € J

Next, let ¢ € C*(J), and we show that

lim f] dx—/ f(z (135)

j—o0

Integrating by parts, we observe that as j — oo,

/ £ (@)(w) do = | jcb]i—/aij(xW(x)dx

b b
- [ F@d @ = [ 1@ s
Hence, (135) is valid.

Now, let ¢ € L*(J). We regard the functions f;, f, ¢ as functions defined in R
by setting f;(z) = f(z) = ¢(x) =0 for x < a or © > b. Let {k:}c>0 be a collection
of standard mollification kernels. We recall that

g%”ks *¢— ¢l =0, (136)
|ke * ¢(x)| < ||@llpoe(sy forall zeJ, e>0. (137)
Fix any § > 0. By the uniform integrability assumption, we have

M :=sup| f; — f”Ll(J) < 00.
jEN
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Let oo > 0 and set
Ej:={zeJ:|(fj - f)=@)| >a}.
By the Chebychev inequality, we get

M
|Ej|§g-

By the uniform integrability assumption, if a > 0 is sufficiently large, then

/E (5 — P(@)] dz < 6. (138)

i
In what follows we fix @ > 0 large enough so that (138) holds. We write
fi = f =9; +b;, where g; = (f; — f)(1 —1g;) and b; = (fj — f)1g,. Then,

lgj(@)| <a forall z€J and |bj]lLi <0

Observe that
I = / f3(@)é(x) dz — / f(@)¢(x) do
- /(fj @) ke * 6(a) dx+/(fj ~ @) ke * d)(a) da
J J
and

| [ (65 = D)6 e+ o)) ]
< )/Jgj(m)(qb—kg*(ﬁ)(w)dx’+‘/ij(a:)(¢—k€*¢)(m)dx

< allke x ¢ — @1y + 20|1Bll oo ()

Hence, in view of (135) and (136), we get limsup; . [I;| < 25|@|lLoc(sy- Asd >0
is arbitrary, we get lim; . I; = 0, which completes the proof. 0O

As a corollary of Lemma 5.4, we deduce that the weak-star compactness of
bounded sequences in L= (J,R™):

Lemma A.7. Let J = [a, b], with —o00 < a < b < c0. Let {fx}ren be a bounded
sequence of functions in L°°(J,R™). Then {fr} has a subsequence which converges
weakly-star in L= (J,R™).

Proof. Set M = supycy || fxllzoo(s)- Let E C J be a measurable set, and observe
that

/ |fx(t)|dt < M|E| for all k € N,
E

which shows that the sequence { fx} is uniformly integrable in J. Thanks to Lemma
5.4, there exists a subsequence {f;}jen of {fx} which converges to a function f
weakly in L'(J, R™).
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Let i € Nandset E; ={t € J : |f(t)| > M+1/i} and g;(t) = 15, () f(¢)/|f(¢)]
for t € J. Since g; € L*°(J,R™), we get

/fk dta/|f Y1g, (t)dt as j — oco.

Hence, using the Chebychev inequality, we obtain
1
(s+ DIl < [ 150 ©d < [ Mo =8
J J

which ensures that |E;| = 0. Thus, we find that |f(t)] < M a.e. in J.
Now, fix any ¢ € L'(J,R™). We select a sequence {¢;}ien C L=(J,R™) so
that, as i — 0o, ¢; — ¢ in L*(J,R™). For each i € N, we have

]—?OO

lim n()%@m:/ﬂwwwa
J
On the other hand, we have
| [ 50601 = [ 1,060 < Mo = 6ulrsy fora j e
and

| [ @)oot [ 50 o] < 26 = ouls .
J J
These together yield

lim fk t)dt = / f@) a

]*)OO

A.6 Rademacher’s theorem

We give here a proof of Rademacher’s theorem.

Theorem A.11 (Rademacher). Let B = B; C R" and f € Lip(B). Then [ is
differentiable almost everywhere in B.

To prove the above thoerem, we mainly follow the proof given in [1].

Proof. We first show that f has a distributional gradient Df € L°°(B).
Let L > 0 be a Lipschitz bound of the function f. Let ¢ € {1,2,...,n} and e;
denote the unit vector in R™ with unity as the i-th entry. Fix any ¢ € C3(B) and

observe that
/ f(@) e, (z)dx = hm / Sz G —l—rel) — ¢(z) = P de

= lim / flo—res) f(x)gb(x)dx

r—0+
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and
| [ 1@state| < 1 [ [o(@)de < LB 6] z205.
B B
Thus, the map
CA(B) 3 ¢ — /B F(2)pu, (z)dz € R

extends uniquely to a bounded linear functional G; on L?(B). By the Riesz repre-
sentation theorem, there is a function g; € L*(B) such that

Gi(¢) = /Bgi(x)qﬁ(x)dw for all ¢ € L*(B).

This shows that g = (g1, ...,gn) is the distributional gradient of f.

We plug the function ¢ € L?(B) given by ¢(z) = (gi(z)/|9:(x)|) 185, (z), where
k € Nand E, = {z € B : |gi(z)| > L+ 1/k}, into the inequality |G;(¢)| <
L||éllL1 (), to obtain

[ lo@n @ < L [ 15 (@)ae = LI
B B

which yields
(L +1/k)|Ex| < L|Ek|.
Hence, we get |Ex| = 0 for all k € N and [{z € B : |gi(z)| > L}| = 0. That is,
gi € L=(B) and |gi(z)| < L a.e. in B.
The Lebesgue differentiation theorem (see [58]) states that for a.e. z € B, we
have g(z) € R™ and

lim 1 /B lg(x +y) — g(z)|dy = 0. (139)

Now, we fix such a point € B and show that f is differentiable at x. Fix an
r > 0 so that B,(z) C B. For ¢ € (0, r), consider the function hs € C(B) given by

flz+dy) — fz)

hs(y) = 5

We claim that B
%in% hs(y) = g(z) -y  uniformly for y € B. (140)

Note that hs(0) = 0 and hs is Lipschitz continuous with Lipschitz bound L.
By the Ascoli-Arzela theorem, for any sequence {d;} C (0,r) converging to zero,
there exist a subsequence {J;, }ren of {§;} and a function ho € C(B) such that

Jm hs, () = ho(y) uniformly for y € B.

In order to prove (140), we need only to show that ho(y) = g(z) -y for all y € B.
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Since hs(0) = 0 for all § € (0, ), we have ho(0) = 0. We observe from (139)
that

[ 1ot + 30~ gy = [ law+) - g@ls "y — 0 as 50,
B Bs
Using this, we compute that for all ¢ € C}(B),

/B ho(@)ow: )dy = Tm [ hs, (5)6y: (v)dy

k—oo B

—klim /gi($+5jky)¢(y)dy
—oo Jp

- /B g (2)d(y)dy = /B 0() - Yy, (W)dy.

This guarantees that ho(y) — g(z) - y is constant for all y € B while ho(0) = 0.
Thus, we see that ho(y) = g(z) - y for all y € B, which proves (140).
Finally, we note that (140) yields

flz+y)=f(x) +g(x)-y+o(lyl) as y—0. O
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