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Abstract. We consider the ergodic (or additive eigenvalue) problem for the Neumann
type boundary value problem for Hamilton-Jacobi equations and the corresponding dis-
counted problems. When denoting by uλ the solution of the discounted problem with
discount factor λ > 0, we establish the convergence of the whole family {uλ}λ>0 to a
solution of the ergodic problem, as λ → 0, and give a representation formula for the
limit function via the Mather measures and Peierls function. As an interesting byprod-
uct, we introduce Mather measures associated with Hamilton-Jacobi equations with the
Neumann type boundary condtitions. These results are variants of the main results in
the paper “Convergence of the solutions of the discounted equations” by A. Davini, A.
Fathi, R. Iturriaga and M. Zavidovique, where they study the same convergence problem
on smooth compact manifolds without boundary.
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1. Introduction

We consider the ergodic problem (or additive eigenvalue problem) with Neumann type
boundary condition

(1)

{
H(x,Du(x)) = c in Ω,

γ(x) ·Du(x) = g(x) on ∂Ω.

Here the problem is to seek for a pair (u, c) ∈ C(Ω)×R such that the above two conditions
hold in the viscosity sense. Throughout this article we assume that Ω is a given subset of
Rn and H, γ and g are given functions on Ω×Rn, ∂Ω and ∂Ω, respectively, and moreover,

(i) Ω is a bounded open connected subset of Rn, with C1 boundary,
(ii) H ∈ C(Ω × Rn,R), g ∈ C(∂Ω,R),
(iii) γ ∈ C(∂Ω,Rn) is a vector field oblique to the boundary ∂Ω, that is, γ(x) ·ν(x) > 0

for all x ∈ ∂Ω, where ν(x) denotes the outer unit normal of Ω at x ∈ ∂Ω,
(iv) H is a convex Hamiltonian, that is, the function p 7→ H(x, p) is convex on Rn for

every x ∈ Ω,
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(v) H is a coercive Hamiltonian, that is,

(2) lim
R→∞

inf{H(x, p) : (x, p) ∈ Ω × (Rn \BR)} = ∞,

where BR denotes the open ball of Rn with radius R and center at the origin.

Furthermore, solutions, sub- and super-solutions of Hamilton-Jacobi equations here mean
those in the viscosity sense (see [3, 1, 5]).
The following existence and uniqueness result has been established.

Theorem 1. (i) There exists a solution (u, c) ∈ Lip (Ω)× R of (1) and (ii) the constant
c is unique in the sense that if (v, d) ∈ C(Ω)× R is another solution of (1), then d = c.

The above theorem is valid without the convexity assumption on the Hamiltonian H.
We refer to [12, Corollary 3.7, Theorem 6.1], [4, Theorem 1.2, (i)] for a proof of the above
theorem.
We call the constant c, given by the above theorem, the critical value (or additive

eigenvalue) for (1) and denote it by cH .
It is a classical observation (see [16] for the case of periodic settings) that the discounted

problem with discount factor λ > 0

(3)

{
λuλ(x) +H(x,Duλ(x)) = 0 in Ω,

γ(x) ·Duλ(x) = g(x) on ∂Ω

gives an efficient approach to solving problem (1). This problem (3) is a standard
boundary value problem of the Neumann type for the Hamilton-Jacobi equation λuλ +
H(x,Duλ) = 0 in Ω. As in [16, 4], one way to establish the existence result of Theorem 1
is the following. We solve (3), to get a unique solution uλ for every λ > 0, next show that
the families {λuλ}λ>0 and {uλ}λ>0 are respectively uniformly bounded and equi-Lipschitz
continuous on Ω, and then define c ∈ R and u ∈ Lip (Ω) by taking the limit (uniform
limit on Ω), along a suitable sequence λ = λj → 0,{

c = − limλuλ(x),

u(x) = lim(uλ(x)−minΩ u
λ),

to find a solution (u, c) of (1).
Recently there has been much interest in the question if for the solution uλ ∈ Lip (Ω),

the following convergence holds or not:

(4) lim
λ→0

(uλ(x) + λ−1cH) = u(x) uniformly on Ω

for some function u ∈ Lip (Ω). See for this [10, 15, 6]. It is quite recent that Davini, Fathi,
Iturriaga and Zavidovique [6] have given a positive and decisive answer to this question
when H is a convex and coercive Hamiltonian and Ω is a compact smooth manifold
without boundary.
We show in this article that the method of [6], together with the recent developments

[12, 13, 14] of weak KAM theory for Hamilton-Jacobi equations with Neumann type
boundary conditions, is adapted and modified to the Neumann type boundary value
problem, to establish the following two theorems. As is seen later, an interesting outcome
of this study is that notion of Mather measures is naturally generalized to Hamilton-Jacobi
equations with Neumann type boundary conditions.
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Theorem 2. For each λ > 0 let uλ ∈ C(Ω) be a (unique) solution of (3). Then there
exists a solution u ∈ Lip (Ω) of (1), with c = cH , such that

(5) u(x) = lim
λ→0

(uλ(x) + λ−1cH) uniformly on Ω.

The theorem above will be proved in the next section. Before stating the second
theorem, some preparations are needed. Henceforth in this introduction we assume that
Theorem 2 is valid, and we write u0 for the limit function given by (5).
Let L denote the Lagrangian of H. That is, L is the function on Ω × Rn given by

L(x, ξ) = sup
p∈Rn

(ξ · p−H(x, p)).

We note (see also [14]) that L is lower semicontinuous and bounded below by the constant
−minx∈ΩH(x, 0) on Ω ×Rn, for any x ∈ Ω the function ξ 7→ L(x, ξ) is convex, and L is

bounded on Ω ×Bδ for some δ > 0 while it takes possibly the value +∞.
We introduce Mather measures (µ1, µ2) associated with (1). We call a pair of finite

Borel measures µ1 and µ2, with compact support, on Ω × Rn and on ∂Ω, respectively, a
Mather measure associated with (1) if the following three conditions hold:

(6)



∫
Ω×Rn

(L(x, ξ) + cH)µ1(dxdξ) +

∫
∂Ω

g(x)µ2(dx) ≤ 0,∫
Ω×Rn

Dϕ(x) · ξ µ1(dxdξ) +

∫
∂Ω

γ(x) ·Dϕ(x)µ2(dx) = 0 for all ϕ ∈ C1(Ω),

µ1 is a probability measure on Ω × Rn.

Our definition of Mather measures above is an adaptation of the standard closed Mather
measures (see [6]) to the Neumann type boundary value problem for Hamilton-Jacobi
equations. The introduction of Mather measures, associated with Hamilton-Jacobi equa-
tions with the Neumann type boundary conditions, seems to be new and original. See
also [18, 9, 8] for general scopes of Mather measures. The second condition in the above
list of conditions corresponds to the requirement that the measure (µ1, µ2) be closed. In
this note, we denote by M the collection of all Mather measures (µ1, µ2) associated with
(1).
For any Borel measure on Ω×Rn, we denote by µ̃1 the projection of µ1 on Ω. That is,

we define µ̃1 by setting µ̃1(B) = µ1(B × Rn) for every Borel subset B of Ω.
Next we introduce briefly the Skorokhod problem. That is the problem, for given

v ∈ L∞([0, ∞),Rn), to look for a pair (η, l) ∈ Lip ([0, ∞), Ω)× L∞([0, ∞),R) such that

(7)


η(0) = x,

η̇(t) + l(t)γ(η(t)) = v(t) a.e. t ≥ 0,

l(t) ≥ 0 and, if η(t) ∈ Ω, l(t) = 0 a.e. t ≥ 0.

We denote by SP(x) the set of all triplets (η, v, l) ∈ Lip ([0, ∞), Ω) × L∞([0, ∞),Rn) ×
L∞([0, ∞),R) which satisfy (7). For more details of the Skorokhod problem, we refer to
[12, 14] and the references therein.
For given t > 0 we define pt : Ω ×Ω → R ∪ {∞} by

(8) pt(x, y) = inf

∫ t

0

[L(η(s),−v(s)) + l(s)g(η(s)) + cH ]ds,
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where the infimum is taken over all (η, v, l) ∈ SP(x) such that η(t) = y. We understand
here, in view of the boundedness of L from below, that if the function s 7→ L(η(s),−v(s))
is not integrable on [0, t], then∫ t

0

L(η(s),−v(s))ds = +∞.

It is easily seen that

(9) pt+s(x, y) = inf
z∈Ω

(pt(x, z) + ps(z, y)) for all x, y ∈ Ω and t, s ∈ [0, ∞).

We define as well a function p on Ω ×Ω by

(10) p(x, y) = lim inf
t→∞

pt(x, y).

This function p is called the Peierls function and is Lipschitz continuous on Ω×Ω, which
is a consequence of Lemma 12 below.
We are ready to state the second main result, which will be proved in Section 3.

Theorem 3. We have

(11) u0(x) = min
(µ1,µ2)∈M

∫
Ω

p(x, y)µ̃1(dy) for all x ∈ Ω.

2. Proof of Theorem 2

The main arguments of the proof of Theorem 2 are stated in the following several
lemmas.

Lemma 4. For the solution uλ of (3), the formula

(12) uλ(x) = inf

∫ ∞

0

e−λt[L(η(t),−v(t)) + l(t)g(η(t))]dt

holds for all x ∈ Ω, where the infimum is taken over all triplets (η, v, l) ∈ SP(x).

As before, we understand in the above formula that if the function t 7→ e−λtL(η(t),−v(t))
is not integrable on [0, ∞), then∫ ∞

0

e−λt[L(η(t),−v(t)) + l(t)g(η(t))]dt = ∞.

The above lemma is well-known (see [17]), for instance, if L is uniformly continuous
on Ω × Rn. Also, in [12, Theorem 5.1] or [14, Theorem 5.5], a similar formula has been
established, in the generality of the above lemma, for solutions of the initial-boundary
value problem for Hamilton-Jacobi equations with the Neumann type boundary condi-
tions, the proof of which can be easily adapted to the case of the above lemma. However,
for completeness and the reader’s convenience, we give a proof after the following lemma.

Lemma 5. For the solution uλ of (3) and any x ∈ Ω, there exists (η, v, l) ∈ SP(x) such
that

uλ(x) =

∫ ∞

0

e−λt[L(η(t),−v(t)) + l(t)g(η(t))]dt.
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Proof. We prove the lemma as a corollary of [12, Theorem 7.3]. Set G(x, p) = H(x, p) +
λuλ(x). Then G is a continuous, convex, coercive Hamiltonian and its Lagrangian is
given by L(x, ξ) − λuλ(x). Fix any x ∈ Ω. Thanks to [12, Theorem 7.3], there exists
(η, v, l) ∈ SP(x) such that

uλ(x) =

∫ t

0

[L(η(s),−v(s)) + l(s)g(η(s))− λuλ(η(s))]ds+ uλ(η(t)) for all t > 0.

Differentiating this, we get

0 = L(η(t),−v(t)) + l(t)g(η(t))− λuλ(η(t)) +
d

dt
uλ(η(t)) a.e t > 0,

and furthermore, multiplying this by e−λt and integrating over [0, T ], with T > 0,

(13) 0 =

∫ T

0

e−λt[L(η(t),−v(t)) + l(t)g(η(t))]dt+ e−λTuλ(η(T ))− uλ(x).

Sending T → ∞ yields the desired identity. □
Proof of Lemma 4. In view of Lemma 5, we only need to prove that, for any x ∈ Ω and
(η, v, l) ∈ SP(x), the following inequality holds:

(14) uλ(x) ≤
∫ ∞

0

e−λt[L(η(r),−v(r)) + l(r)g(η(r))]dt.

We prove this based on [12, Theorem 5.1]. Fix any x ∈ Ω and (η, v, l) ∈ SP(x). We
may assume that the function t 7→ e−λtL(η(t),−v(t)) is integrable on [0, ∞). According
to [12, Theorem 5.1], with Hamiltonian H(x, p) replaced by H(x, p) + λuλ(x), we have

(15) uλ(x) ≤
∫ t

0

[L(η(r),−v(r)) + l(r)g(η(r))− λuλ(η(r))]dr + uλ(η(t)) for all t > 0.

We set

f(t) := −uλ(x) +
∫ t

0

[L(η(r),−v(r)) + l(r)g(η(r))− λuλ(η(r))]dr for t ≥ 0,

and observe by using (15) that for a.e. t > 0,

d

dt
f(t) = L(η(t),−v(t)) + l(t)g(η(t))− λuλ(η(t))

≤ L(η(t),−v(t)) + l(t)g(η(t)) + λf(t),

and, hence,
d

dt

(
e−λtf(t)

)
≤ eλt[L(η(t),−v(t)) + l(t)g(η(t))].

Integrating this over [0, T ], with T > 0, we get

e−λTf(T )− f(0) ≤
∫ T

0

eλt[L(η(t),−v(t)) + l(t)g(η(t))]dt.

This combined with (15) yields

uλ(x) ≤
∫ T

0

eλt[L(η(t),−v(t)) + l(t)g(η(t))]dt+ e−λTuλ(η(T )),

which shows after sending T → ∞ that

uλ(x) ≤
∫ ∞

0

eλt[L(η(t),−v(t)) + l(t)g(η(t))]dt.
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Thus, (14) holds. □

Lemma 6. Assume that cH = 0. For each λ > 0 let uλ ∈ Lip (Ω) be the solution of (3).
Then the family {uλ}λ∈(0,1) is uniformly bounded and equi-Lipschitz continuous on Ω.

The observations in the above lemma should have be done when establishing Theorem 1
in the approach described briefly after the statement of Theorem 1. But, for completeness,
we give a proof of the above lemma.

Proof. Since cH = 0, by Theorem 1 there exists a solution u ∈ Lip (Ω of (1), with c = 0.
We choose a constant M > 0 so that ∥u∥∞,Ω ≤M and set u±M(x) := u(x)±M for x ∈ Ω.
Observe that if λ ∈ (0, 1), then u+M and u−M are a supersolution and subsolution of (3),
respectively. Hence, by comparison (see [2, Remark (i) of Theorem 1] or [7, Remark 2.2]),
we see that, for any λ ∈ (0, 1), u−M ≤ uλ ≤ u+M on Ω, which shows that ∥uλ∥∞,Ω ≤ 2M .
That is, the collection {uλ}λ∈(0, 1) is uniformly bounded on Ω.

Next we choose a constant K > 0 so that H(x, p) > 2M for all (x, p) ∈ Ω× (Rn \BK).
Let λ ∈ (0, 1). If (x, p) ∈ Ω × Rn satisfies λuλ(x) + H(x, p) ≤ 0, then H(x, p) ≤ 2M
and, hence, |p| ≤ K. This observation shows that uλ is a subsolution of |Duλ(x)| ≤ K
in Ω, which implies (see [14, Lemma 2.2]) that uλ is Lipschitz continuous on Ω with
a Lipschitz bound CΩK for some constant CΩ > 0, depending only on Ω. Thus, the
collection {uλ}λ∈(0, 1) is equi-Lipschitz continuous on Ω. □

We denote by U the set of all limit functions u obtained as

u(x) = lim
j→∞

uλj(x) uniformly on Ω,

where {λj}j∈N is a sequence of positive numbers λj converging to zero. Observe by Lemma
6 and the Ascoli-Arzela theorem that if cH = 0, then U ̸= ∅. Also, note by the stability
of the viscosity property under uniform convergence that every u ∈ U is a solution of (1),
with c = 0.

Lemma 7. For each A > 0 there exists a constant CA > 0 such that

L(x, ξ) ≥ A|ξ| − CA for all (x, ξ) ∈ Ω × Rn.

For a proof of Lemma 7 above, we refer to [11, Lemma 6.4] or [14, Lemma 5.1].

Lemma 8. There is a constant C > 0, depending only on Ω and γ, such that for any
x ∈ Ω and (η, v, l) ∈ SP(x),

|η̇(s)| ∨ l(s) ≤ C|v(s)| a.e. s ≥ 0.

See [11, Proposition 4.1] or [14, Proposition 5.2] for a proof of the above lemma.

Lemma 9. Let u ∈ C(Ω) be a subsolution of (1), with a given c ∈ R, and ε > 0 a
constant. Then there exists a function w ∈ C1(Ω) such that

(16)


H(x,Dw(x)) ≤ c+ ε in Ω,

γ(x) ·Dw(x) ≤ g(x) on ∂Ω,

∥u− w∥∞,Ω < ε.

See [14, Theorem 4.2] for a proof of the above lemma.
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Lemma 10. Assume that cH = 0. We have∫
Ω

u(x)µ̃1(dx) ≤ 0 for all u ∈ U and (µ1, µ2) ∈ M.

Proof. Fix any u ∈ U and (µ1, µ2) ∈ M, and choose {λj}j∈N so that 0 < λj < 1 for all j,
limj→∞ λj = 0 and

(17) u(x) = lim
j→∞

uλj(x) uniformly on Ω.

Fix ε > 0 and j ∈ N. We agree to write λ for λj for the moment. By applying Lemma 9
with the function λuλ(x) +H(x, p) in place of the function H(x, p), we obtain a function
w ∈ C1(Ω) such that

(18)


λuλ(x) +H(x,Dw(x)) ≤ ε in Ω,

γ(x) ·Dw(x) ≤ g(x) on ∂Ω,

∥uλ − w∥∞,Ω < ε.

Since H(x, p) ≥ ξ · p− L(x, ξ) for all x ∈ Ω and p, ξ ∈ Rn, we get from (18)

λuλ(x) ≤ ε+ L(x, ξ)−Dw(x) · ξ for all (x, ξ) ∈ Ω × Rn.

Integrating this with respect to µ1 and setting T = Ω × Rn, we get

λ

∫
Ω

uλ(x)µ̃1(dx) ≤ εµ1(T ) +

∫
T

L(x, ξ)µ1(dxdξ)−
∫
T

Dw(x) · ξ µ1(dxdξ).

Furthermore, using the second equality and inequality, respectively, of (6) and (18), we
get

λ

∫
Ω

uλ(x)µ̃1(dx) ≤ εµ1(T ) +

∫
T

L(x, ξ)µ1(dxdξ) +

∫
∂Ω

γ(x) ·Dw(x)µ2(dx)

≤ εµ1(T ) +

∫
T

L(x, ξ)µ1(dxdξ) +

∫
∂Ω

g(x)µ2(dx).

Now, this combined with the first inequality of (6) yields

λ

∫
Ω

uλ(x)µ̃1(dx) ≤ εµ1(T ),

which implies that ∫
Ω

uλ(x)µ̃1(dx) ≤ 0 for all λ = λj, j ∈ N.

Sending j → ∞, we get the desired inequality∫
Ω

u(x)µ̃1(dx) ≤ 0. □

Lemma 11. Assume that cH = 0. Let w ∈ C(Ω) be a subsolution of (1), u ∈ U and
x ∈ Ω. Then there exists (µ1, µ2) ∈ M such that

(19) u(x) ≥ w(x)−
∫
Ω

w(y)µ̃1(dy).
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Proof. We choose {λj}j∈N so that 0 < λj < 1 for all j ∈ N, limj→∞ λj = 0 and

u(x) = lim
j→∞

uλj(x) uniformly on Ω.

Thanks to Lemma 6, we may choose a Lipschitz bound M > 0 for the functions uλ, with
λ ∈ (0, 1), so that |uλ(x)| ≤M for all x ∈ Ω and λ ∈ (0, 1).
Fix any x ∈ Ω and j ∈ N, and write λ for λj. By Lemma 5, there exists (η, v, l) =

(ηj, vj, lj) ∈ SP(x) such that

(20) uλ(x) =

∫ ∞

0

e−λt[L(η(t),−v(t)) + l(t)g(η(t))]dt.

From this, in view of the dynamic programming principle (or the proof of Lemma 5), we
see that

(21) uλ(x) =

∫ t

0

e−λs[L(η(s),−v(s)) + l(s)g(η(s))]ds+ e−λtuλ(η(t)) for all t > 0.

Next, observe that the function uλ ◦ η is Lipschitz continuous with M∥η̇∥L∞(0,∞) as a
Lipschitz bound and, hence,∣∣∣ d

dt
uλ ◦ η(t)

∣∣∣ ≤M∥η̇∥L∞(0,∞) a.e. t > 0.

Using this and differentiating (21) in t, we get

0 = e−λt
[
L(η(t),−v(t)) + l(t)g(η(t))− λuλ(η(t)) +

d

dt
uλ ◦ η(t)

]
a.e. t > 0.

That is, we have

0 = L(η(t),−v(t)) + l(t)g(η(t))− λuλ(η(t)) +
d

dt
uλ ◦ η(t) a.e. t > 0,

and hence,

0 ≥ L(η(t),−v(t))− l(t)∥g∥∞,∂Ω − ∥uλ∥∞,Ω −M∥η̇∥L∞(0,∞) a.e. t > 0.

Furthermore, using Lemma 8, we obtain

0 ≥ L(η(t),−v(t))− C∥g∥∞,∂Ω∥v∥L∞(0,∞) −M − CM∥v∥L∞(0,∞) a.e. t > 0.

Here C is the constant from Lemma 8. We now use Lemma 7, with A = 1+C(∥g∥∞,∂Ω +
M), to get

A|v(t)| ≤ CA +M + (A− 1)∥v∥L∞(0,∞) a.e. t > 0,

where CA is the constant from Lemma 7, with the above choice of A. Hence, we get

(22) ∥v∥L∞(0,∞) ≤ C1,

where C1 = CA +M , and furthermore, by Lemma 8,

(23) l(t) ∨ |η̇(t)| ≤ CC1 a.e. t > 0.

Now, we are going to take the limit as λ = λj and j → ∞, and recall that (η, v, l) =
(ηj, vj, lj) depends on j. For each j we define the functionals Fj and Gj on BUC(Ω×Rn)
and on C(∂Ω), respectively, by

Fj(ϕ) = λj

∫ ∞

0

e−λjtϕ(η(t),−v(t))dt and Gj(ψ) = λj

∫ ∞

0

e−λjtlj(t)ψ(ηj(t))dt.
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It is clear that {
|Fj(ϕ)| ≤ ∥ϕ∥∞,Ω×Rn for all ϕ ∈ BUC(Ω × Rn),

|Gj(ψ)| ≤ CC1∥ψ∥∞,∂Ω for all ψ ∈ C(∂Ω).

By (22), we see that the supports of the functionals Fj are contained in the compact set
Ω ×BC1 . Thus, we may choose an increasing sequence {jk}k∈N ⊂ N such that

µ1 = lim
k→∞

Fjk and µ2 = lim
k→∞

Gjk ,

in the weak convergence of measures, for some finite Borel measures µ1 and µ2 on Ω×Rn

and on ∂Ω, respectively. Furthermore, if ϕ(x, ξ) ≡ 1, then Fj(ϕ) = 1 and, hence, µ1(ϕ) =
1, which ensures that µ1 is a probability measure.
We fix any ε > 0. Thanks to Lemma 9, we may choose a function z ∈ Lip (Ω) so that

(24)


H(x,Dz(x)) ≤ ε in Ω,

γ(x) ·Dz(x) ≤ g(x) on ∂Ω,

∥z − w∥∞,Ω < ε.

From (20), using (24), we obtain

uλj(x) =

∫ ∞

0

e−λjt[L(ηj(t),−vj(t)) + lj(t)g(ηj(t))]dt

≥
∫ ∞

0

e−λjt[(−vj(t)) ·Dz(ηj(t))−H(ηj(t), Dz(ηj(t))) + lj(t)g(ηj(t))]dt

≥
∫ ∞

0

e−λjt[(−vj(t)) ·Dz(ηj(t))− ε+ lj(t)γ(ηj(t)) ·Dz(ηj(t))]dt

= −λ−1
j ε−

∫ ∞

0

e−λjtDz(ηj(t)) · η̇j(t)dt

= −λ−1
j ε+ z(x)− λj

∫ ∞

0

e−λjtz(ηj(t))dt.

Here, noting that z depends on ε and sending ε→ 0, we get

uλj(x) ≥ w(x)− λj

∫ ∞

0

e−λjtw(ηj(t))dt,

and then we send j → ∞ along the subsequence jk, to obtain

u(x) ≥ w(x)−
∫
Ω

w(y)µ̃1(dy).

It remains to show that (µ1, µ2) is a Mather measure. We may choose a sequence
{Lm}m∈N of functions Lm ∈ BUC(Ω × Rn) such that{

Lm(x, ξ) ≤ Lm+1(x, ξ) for all (m,x, ξ) ∈ N×Ω × Rn,

L(x, ξ) = lim
m→∞

Lm(x, ξ) pointwise on Ω × Rn.

For any j,m ∈ N, by (20), we get

λju
λj(x) ≥ λj

∫ ∞

0

e−λjt[Lm(ηj(t),−vj(t)) + lj(t)g(ηj(t))]dt.
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Hence, sending j → ∞ along the subsequence j = jk, we get

0 ≥
∫
Ω×Rn

Lm(x, ξ)µ1(dxdξ) +

∫
∂Ω

g(x)µ2(dx).

By the monotone convergence theorem, in the limit as m→ ∞, we get∫
Ω×Rn

L(x, ξ)µ1(dxdξ) +

∫
∂Ω

g(x)µ2(dx) ≤ 0.

Next, let ϕ ∈ C1(Ω) and observe that for any j ∈ N,

−ϕ(x) =

∫ ∞

0

d

dt

(
e−λjtϕ(ηj(t))

)
dt

= −λj
∫ ∞

0

e−λjtϕ(ηj(t))dt+

∫ ∞

0

e−λjtDϕ(ηj(t)) · η̇j(t)dt

= −λj
∫ ∞

0

e−λjtϕ(ηj(t))dt+

∫ ∞

0

e−λjtDϕ(ηj(t)) · (vj(t)− lj(t)γ(ηj(t)))dt.

Multiplying the above by λj and sending j → ∞ along the subsequence j = jk, we get∫
Ω×Rn

Dϕ(x) · ξ µ1(dxdξ) +

∫
∂Ω

γ(x) ·Dϕ(x)µ2(dx) = 0.

Hence, (µ1, µ2) is a Mather measure. This completes the proof. □
Proof of Theorem 2. We first assume that cH = 0, and will come back to the general case.
As noted after Lemma 6, the set U is non-empty.
To prove the desired uniform convergence, we need only to show that U is a singleton.

Let u,w ∈ U and x ∈ Ω. By Lemma 11, there is a Mather measure (µ1, µ2) ∈ M such
that

u(x) ≥ w(x)−
∫
Ω

w(y)µ̃1(dy).

Hence, by Lemma 10, we get

u(x) ≥ w(x).

Since x ∈ Ω is arbitrary, we see that u(x) ≥ w(x) for all x ∈ Ω. Also, by symmetry, we
have w(x) ≥ u(x) for all x ∈ Ω. Thus, we conclude that u = w, which shows that U is a
singleton.

Next, we consider the general case. We set H̃(x, p) = H(x, p) − cH and ũλ(x) =

uλ(x)+λ−1cH , and note that the critical value for (1), with H replaced by H̃, is zero and

that ũλ is the unique solution of (3), with H replaced by H̃. The previous argument now
yields

u(x) = lim
λ→0

ũλ(x) uniformly on Ω

for some solution u ∈ Lip (Ω) of (1), with c = cH , and the proof is complete. □

3. Proof of Theorem 3

In this section, except otherwise stated, we assume that cH = 0, and let S− denotes
the set of all subsolutions w ∈ C(Ω) of (1), with c = 0.
Let d be the function on Ω ×Ω defined by

d(x, y) = sup{w(x)− w(y) : w ∈ S−}.
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We recall that, since S− is equi-Lipschitz (see e.g. [14, Lemma 4.1]), d is Lipschitz
continuous on Ω×Ω, and the function x 7→ d(x, y) is in S− for any y ∈ Ω. Furthermore,
we have (see e.g. [14, Proposition 5.4])

(25) d(x, y) = inf
t>0

pt(x, y) for all x, y ∈ Ω,

and

(26) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Ω.

It is obvious that, if w ∈ S−,

(27) w(x)− w(y) ≤ d(x, y) ≤ pt(x, y) for all x, y ∈ Ω, t > 0.

Now, we consider the initial-boundary value problem

(28)

{
∂tu(x, t) +H(x,Dxu(x, t)) = 0 in Ω × (0, ∞),

γ(x) ·Dxu(x, t) = g(x) on ∂Ω × (0, ∞),

(29) u(x, 0) = f(x) for x ∈ Ω,

where f ∈ C(Ω) is a given initial data. According to [12, Theorem 5.1] or [14, Theorem
3.3], there exists a unique solution u ∈ BUC(Ω × [0, ∞)) of (28), (29), the solution u is
given by

(30) u(x, t) = inf
y∈Ω

(pt(x, y) + f(y)) for all (x, t) ∈ Ω × (0, ∞),

and moreover, u ∈ Lip (Ω × [0, ∞)) if f ∈ Lip (Ω).
We introduce a function q on Ω ×Ω × [0, ∞) defined by

(31) q(x, y, t) = inf
z∈Ω

(pt(x, z) + d(z, y)) if t > 0,

and q(x, y, 0) = d(x, y). We note that, for any y ∈ Ω, the function (x, t) 7→ q(x, y, t) is a
solution of (28) with the initial function x 7→ d(x, y).
We need the following lemma for the proof of Theorem 3.

Lemma 12. We have: p ∈ Lip (Ω ×Ω), q ∈ Lip (Ω ×Ω × [0, ∞)),

d(x, y) ≤ q(x, y, t) ≤ min{p(x, y), pt(x, y)} for all x, y ∈ Ω, t ≥ 0,

and
p(x, y) = lim

t→∞
q(x, y, t) uniformly on Ω ×Ω.

Furthermore, for any y ∈ Ω, the function x 7→ p(x, y) is a solution of (1), with c = 0.

The following lemma is needed for the proof of the above lemma.

Lemma 13. The function q is Lipschitz continuous on Ω × Ω × [0, ∞) and, for any
x, y ∈ Ω, the function t 7→ q(x, y, t) is nondecreasing on [0, ∞).

Proof. Observe that for any x, y, z ∈ Ω and t, s ∈ [0, ∞),

pt+s(x, z) + d(z, y) = inf
ξ∈Ω

(pt(x, ξ) + ps(ξ, z) + d(z, y))

≥ inf
ξ∈Ω

(pt(x, ξ) + d(ξ, y) = q(x, y, t),

and, hence,
q(x, y, t+ s) ≥ q(x, y, t) for all x, y ∈ Ω,
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which shows that the function t 7→ q(x, y, t) is nondecreasing on [0, ∞) for any x, y ∈ Ω.
Equation (28) for the function (x, t) 7→ q(x, y, t) and the monotonicity of t 7→ q(x, y, t)

yield, for any y ∈ Ω,

|∂tq(x, y, t)|+H(x,Dxq(x, y, t))

= ∂tq(x, y, t) +H(x,Dxq(x, y, t)) = 0 a.e. in Ω × [0, ∞).

Due to the coercivity of H, this ensures that the family of functions (x, t) 7→ q(x, y, t),
parametrized by y ∈ Ω, is equi-Lipschitz continuous on Ω × [0, ∞). Moreover, we note
by (31) that if C > 0 is a Lipschitz bound of d, then |q(x, y, t)− q(x, z, t)| ≤ C|y − z| for
all y, z ∈ Ω. Thus we deduce that q ∈ Lip (Ω ×Ω × [0, ∞)). □
Proof of Lemma 12. We first show that

(32) p(x, y) = lim
t→∞

q(x, y, t) for all x, y ∈ Ω.

To this end, we fix any y ∈ Ω and set u(x, t) = q(x, y, t) for (x, t) ∈ Ω × [0, ∞). Since
the function u is a solution of (28) with the initial function x 7→ d(x, y), we see that u
is bounded and Lipschitz continuous on Ω × [0, ∞). Recalling the monotonicity of the
function u(x, t) in t and using the Ascoli-Arzela theorem, we deduce that

(33) u∞(x) = lim
t→∞

u(x, t) uniformly on Ω,

for some function u∞ ∈ Lip (Ω). It follows that the function u∞ is a solution of (1), with
c = 0. By the monotonicity of the function u(x, t) in t, we get

(34) d(x, y) ≤ q(x, y, t) ≤ u∞(x) for all (x, t) ∈ Ω × [0, ∞).

Observe by (9) and (27) that for all x ∈ Ω and t, s ∈ [0, ∞),

pt+s(x, y) ≥ inf
z∈Ω

(pt(x, z) + d(z, y)) = q(x, y, t),

from which we get

(35) p(x, y) ≥ u∞(x) for all x ∈ Ω.

Now, we fix x ∈ Ω as well. Also, fix any T > 0 and ε > 0. The function u∞(x),
regarded as a function of (x, t), is a solution of (28), and, by (30), we get

u∞(x) = inf
z∈Ω

(pT (x, z) + u∞(z)) > −ε+ pT (x, zε) + u∞(zε)

for some ẑ ∈ Ω. Furthermore, by (34) and (25), we get

u∞(x) > −ε+ pT (x, ẑ) + d(ẑ, y) > −2ε+ pT (x, ẑ) + pτ (ẑ, y)

≥ −2ε+ inf
z∈Ω

(pT (x, z) + pτ (z, y)) = −2ε+ pT+τ (x, y)

for some τ > 0, which shows that

u∞(x) ≥ lim inf
t→∞

pt(x, y) = p(x, y).

This, (35) and (33) together ensure that

p(x, y) = u∞(x) = lim
t→∞

q(x, y, t).

Noting that the choice of x, y ∈ Ω above is arbitrary, we conclude that (32) holds.
By Lemma 13, we know that q ∈ Lip (Ω × Ω × [0, ∞)). Hence, we infer that, by the

Ascoli-Arzela theorem, the convergence (1) is indeed uniform on Ω×Ω and that the limit
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function p is Lipschitz continuous on Ω×Ω. Moreover, it is now clear that, for any y ∈ Ω,
the function x 7→ p(x, y) is a solution of (1), with c = 0. and that q(x, y, t) ≤ pt(x, y) and
d(x, y) ≤ q(x, y, t) ≤ p(x, y) for all x, y ∈ Ω and t ≥ 0. The proof is complete. □

Remark 3.1. It is worth noting that the above proof is easily modified to show that if
f ∈ C(Ω) (and cH = 0), then, for the solution u ∈ BUC(Ω × [0, ∞)) of (28), (29), we
have

lim inf
t→∞

u(x, t) = inf
y∈Ω

(p(x, y) + f(y)) for all x ∈ Ω.

In other words, if f ∈ C(Ω), then the function f∞ ∈ Lip (Ω) defined by

f∞(x) = inf
y∈Ω

(p(x, y) + f(y))

is the minimal solution of (1), with cH = 0, among those solutions ϕ satisfying ϕ ≥ f−

on Ω, where the function f− ∈ Lip (Ω) given by

f−(x) = inf
y∈Ω

(d(x, y) + f(y)),

and this function f− is the maximal one among those ψ ∈ S− satisfying ψ ≤ f on Ω. See
also [13, Proposition 4.1].

We continue to assume until the middle of the following proof that cH = 0.

Proof of Theorem 3. By (27), we have

u0(x) ≤ u0(y) + p(x, y) for all x, y ∈ Ω.

Let (µ1, µ2) ∈ M. We integrate the both sides of the above in y, then use Lemma 10, to
get

u0(x) ≤
∫
Ω

u0(y)µ̃1(dy) +

∫
Ω

p(x, y)µ̃1(dy) ≤
∫
Ω

p(x, y)µ̃1(dy) for all x ∈ Ω,

and conclude that

(36) u0(x) ≤ inf
(µ1,µ2)∈M

∫
Ω

p(x, y)µ̃1(dy) for all x ∈ Ω.

Next, fix x ∈ Ω. Let λ > 0 and uλ ∈ Lip (Ω) be the solution of (3). In view of Lemma
5, we may choose (η, v, l) = (ηλ, vλ, lλ) ∈ SP(x) so that

uλ(x) =

∫ ∞

0

e−λt[L(η(t),−v(t)) + l(t)g(η(t))]dt.

Similarly to the proof of Lemma 5, we deduce that for all t ≥ 0,

uλ(x) =

∫ t

0

[L(η(s),−v(s)) + l(s)g(η(s))− λuλ(η(s))]ds+ uλ(η(t))

≥ pt(x, η(t))− λ

∫ t

0

uλ(η(s))ds+ uλ(η(t))
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Moreover, multiplication by λe−λt and integration over [0, ∞) yield

uλ(x) ≥ λ

∫ ∞

0

eλtpt(x, η(t))dt+ λ

∫ ∞

0

d

dt

(
e−λt

∫ t

0

uλ(η(s))ds

)
dt

= λ

∫ ∞

0

eλtpt(x, η(t))dt

= λ

∫ t

0

e−λsps(x, η(s))ds+

∫ ∞

t

e−λsps(x, η(s))ds for all t > 0.

We fix any t > 0, and, using Lemmas and 12 and 13, we observe from the above that

(37) uλ(x) ≥ λ

∫ t

0

e−λsd(x, η(t))ds+ λ

∫ ∞

t

e−λsq(x, η(s), t)ds.

We argue exactly as in the proof of Lemma 11, to find a sequence {λj} ∈ (0, 1),
converging to zero, and a Mather measure (µ1, µ2) such that for any ψ ∈ C(Ω),∫

Ω

ψ(x)µ̃1(dx) = lim
j→∞

λj

∫ ∞

0

e−λjsψ(ηλj
(s))ds

Thus, sending λ→ 0 in (37) along the sequence {λj} and using Theorem 2, we get

u0(x) ≥
∫
Ω

q(x, y, t)µ̃1(dy).

Furthermore, sending t→ ∞ yields

u0(x) ≥
∫
Ω

p(x, y)µ̃1(dy).

Since x ∈ Ω is arbitrary in the above inequality, we combine this with (36), to conclude
the proof of Theorem 3 in the case when cH = 0.
Now, we consider the general case regarding cH . Given a Hamiltonian H, as above,

let L, cH and p be the corresponding Lagrangian, critical value and Peierls function,
respectively. Let M denote the corresponding set of Mather measures associated with

(1). Moreover, let u0 be the limit function given by (5). If we define the function H̃

on Ω × Rn by setting H̃(x, p) = H(x, p) − cH , then the critical value and Lagrangian,

corresponding to the Hamiltonian H̃, are zero and the function L(x, ξ)+ cH , respectively.
On the other hand, the Peierls function p, the set M of Mather measures, and the limit

function u0 do not change under the above replacement between H and H̃. Thus, by the
previous result for cH = 0, we get

u0(x) = min
(µ1,µ2)∈M

∫
Ω

p(x, y)µ̃1(dx) for all x ∈ Ω,

which completes the proof. □
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