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1. Introduction

In this note we discuss recent developments related to the asymptotic behavior, as
t →∞, of solutions u = u(x, t) of the Cauchy problem

(CP)

{
ut + H(x,Du) = 0 in Ω× (0,∞),

u|t=0 = u0,

where Ω ⊂ Rn is an open set, H ∈ C(Ω×Rn,R) is the Hamiltonian, u ∈ C(Ω×
[0,∞),R) is the unknown, ut = ∂u/∂t, Du = (∂u/∂x1, ..., ∂u/∂xn), and u0 ∈
C(Ω,R). In fact, we will be concerned in this note only with the cases where
Ω = Rn or Ω is the n-dimensional torus Tn := Rn/Zn.

Investigations on the asymptotic behavior of solutions u(x, t) of (CP) as t →∞
go back to Kruzkov [30], Lions [31], and Barles [1]. An interesting feature of
the recent developments concerning the asymptotic behavior of solutions is the
interaction with weak KAM theory introduced by Fathi [15, 17] (see also [18, 19,
11, 14]). The large-time behavior of solution of (CP) is closely related to the
“stationary” equation:

H(x,Dv) = c in Ω, where c is a constant.

Weak KAM theory is a useful tool to study the structure of solutions of this
“stationary” equation.

∗Supported in part by Grant-in-Aids for Scientific Research, No. 18204009, JSPS.
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We will write H[v] for H(x,Dv(x)) for notational simplicity and hence the
above PDE can be written simply as H[v] = c.

Hamilton-Jacobi equations arise in calculus of variations (mechanics, geometric
optics, geometry), optimal control, differential games, etc. They are called Bellman
equations in optimal control and Isaacs equations in differential games, where they
appear as dynamic programming equations. Basic references on these topics are
books by Lions[31], Fleming-Soner[20] and Bardi-Capuzzo Dolcetta [2].

The right notion of weak solution for Hamilton-Jacob equations is that of vis-
cosity solution introduced by Crandall-Lions [7]. This notion is based on the maxi-
mum principle while the notion of distribution by Schwartz is based on integration
by parts. However, when we treat (CP) with greater generality, we will consider
another notion (see (5) below) of solution based on the variational formula for
solutions of (CP).

2. Additive eigenvalue problem

We begin with a formal expansion of the solution u of (CP). Consider the asymp-
totic expansion of the form

u(x, t) = a0(x)t + a1(x) + a2(x)t−1 + · · · as t →∞.

Plugging this expression into (CP), we get

a0(x) +
−a1(x)

t2
+ · · ·+ H(x, Da0(x)t + Da1(x) + Da2(x)t−1 + · · · ) = 0.

This suggests that {
a0(x) ≡ a0 for a constant a0,

a0 + H(x,Da1(x)) = 0,

and we are led to the additive eigenvalue problem for H. The problem is to find a
pair (c, v) ∈ R× C(Ω) such that

H[v] = c in Ω.

Given such a pair (c, v), we call c and v an (additive) eigenvalue and an (additive)
eigenfunction for H, respectively.

Remark that if (c, v) is a solution of the additive eigenvalue problem for H,
then the function u(x, t) := v(x)− ct is a solution of ut +H[u] = 0, and conversely,
if a solution u of (CP) has the form u(x, t) = v(x) − ct, with (c, v) ∈ R × C(Ω),
then (c, v) is a solution of the additive eigenvalue problem for H. We call the
function v(x)− ct an asymptotic solution for ut + H[u] = 0 if (c, v) is a solution of
the additive eigenvalue problem for H.

Additive eigenvalue problems arise in ergodic control problems, where one seeks
to minimize the long-time average of cost

lim
T→∞

1
T

∫ T

0

f(X(t), α(t)) d t,
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where α : [0,∞) → A is a control, A is the control region, X : [0, ∞) → Rn

describes the state of the system under considerations which is the solution of the
state equation

Ẋ(t) = g(X(t), α(t)), X(0) = x ∈ Rn,

with a given function g : Rn × A → Rn, and f : Rn × A → R represents the
running cost of the system. Such an ergodic control problem is closely related to
the problem of finding the limit

lim
t→∞

1
t
u(x, t)

for the solution of

ut + H[u] = 0 in Ω× (0,∞), u|t=0 = 0,

where
H(x, p) = sup

a∈A
(−g(x, a) · p− f(x, a)).

Additive eigenvalue problems play an important role in homogenization for
Hamilton-Jacobi equations, where they are referred to as cell problems. In this
theory one is concerned with the macroscopic effects of small scale oscillating
phenomena.

As an example, consider the Hamilton-Jacobi equation

λuε(x) + H(x, x/ε, Duε(x)) = 0 in Ω,

where λ > 0 is a given constant and ε > 0 is a small parameter to be sent to zero.
Here the Hamiltonian H(x, y, p) is Zn-periodic in the variable y.

The basic scheme in periodic homogenization is (i) to solve the additive eigen-
value problem for G(y, q) := H(x, y, p + q) with fixed (x, p), i.e., to find a (c, v) ∈
R× C(Tn) such that

H(x, y, p + Dyv(y)) = c for y ∈ Tn,

(ii) to define the so-called effective Hamiltonian H̄ ∈ C(Rn × Rn) by setting
H̄(x, p) = c, and (iii) to solve the Hamilton-Jacobi equation

λū + H̄(x,Dū(x)) = 0 in Ω,

in order to find the limit function ū(x) := limε→0+ uε(x).
In this article we often identify any Zn-periodic function f on Rn with the

function f̄ on Tn defined by f̄(x + Zn) = f(x) for x ∈ Rn.
Some of basic references on homogenization of Hamilton-Jacobi equations are:

Lions-Papanicolaou-Varadhan [32], Evans [12, 13] (perturbed test functions method),
Ishii [26], Lions-Souganidis [33] (almost periodic homogenization), Souganidis [41],
Rezakhanlou-Tarver [39], Lions-Souganidis [34] (random homogenization).
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3. Convex Hamilton-Jacobi equations

We assume throughout this paper that

(A1) H is continuous and convex,

That is, H ∈ C(Ω×Rn) and H(x, p) is convex in p ∈ Rn for every x ∈ Ω. If H is
convex in this sense, we call PDE H[u] = 0 or ut + H[u] = 0 a convex Hamilton-
Jacobi equation. We are here concerned with viscosity solutions (resp., viscosity
subsolutions, viscosity supersolutions) of Hamilton-Jacobi equations and call them
simply solutions (resp., subsolutions, supersolutions). We use the following nota-
tion:

S−H ≡S−H(Ω) := {u subsolution of H[u] = 0 in Ω},
S+

H ≡S+
H(Ω) := {u supersolution of H[u] = 0 in Ω},

SH ≡SH(Ω) := S−H ∩ S+
H .

According to the theory of semicontinuous viscosity solutions due to Barron–
Jensen [6] (see also [27]) we know that under the assumption that H(x, p) is convex
in p ∈ Rn, if S ⊂ S−H and u ∈ C(Ω) is given by u(x) := inf{v(x) | v ∈ S},
then u ∈ S−H . Classical observations similar to this are the following. For any
H ∈ C(Ω×Rn), which may not be convex in p, we have

S ⊂ S−H , u(x) = sup{v(x) | v ∈ S} for all x ∈ Ω, u ∈ C(Ω) =⇒ u ∈ S−H ,

S ⊂ S+
H , u(x) = inf{v(x) | v ∈ S} for all x ∈ Ω, u ∈ C(Ω) =⇒ u ∈ S+

H .

Hence, if H(x, p) is convex in p, then we have

S ⊂ SH , u(x) = sup{v(x) | v ∈ S} for all x ∈ Ω, u ∈ C(Ω) =⇒ u ∈ SH .

That is, the viscosity property is closed under the operation of taking pointwise
infimum.

The above general observation can be applied to showing the Hopf-Lax-Oleinik
formula for the solution of (CP) as in the next example.

Example 1 (Hopf-Lax-Oleinik). Let H ∈ C(Rn) be a convex function. Let L
denote the convex conjugate of H. That is, L(ξ) = supp∈Rn(ξ · p − H(p)). As
is well-known, L is a proper, lower semicontinuous, convex in Rn and satisfies
lim|ξ|→∞ L(ξ)/|ξ| = ∞. We assume that L ∈ C1(Rn), for simplicity, and consider
the function v(x, t) = tL((x− y)/t) on Rn× (0, ∞), where y ∈ Rn. Compute that

vt(x, t) = L

(
x− y

t

)
− x− y

t
·DL

(
x− y

t

)
, Dv(x, t) = DL

(
x− y

t

)
.

Observe by the convex duality that H(p) = p · ξ − L(ξ) if and only if p = DL(ξ),
and hence that H(DL(ξ)) = ξ ·DL(ξ)− L(ξ) for all ξ ∈ Rn. Therefore we have

H(Dv(x, t)) = H(DL(
x− y

t
)) =

x− y

t
·DL(

x− y

t
)− L

(
x− y

t

)
= −vt(x, t).
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That is, the function v is a classical solution of vt(x, t) + H(Dxv(x, t)) = 0. Fix
any u0 ∈ BUC(Rn), where BUC(Ω) denotes the space of all bounded, uniformly
continuous functions on Ω. Thus we see that the formula

u(x, t) = inf
y∈Rn

(
u0(y) + tL

(
x− y

t

))

gives a solution of ut + H(Du) = 0 in Rn × (0, ∞).

4. A result in Tn

Since the works of Namah-Roquejoffre [38] and Fathi [16], there has been much
interest in the large-time asymptotic behavior of the solution u of (CP). See for
this also [3, 4, 22, 10, 23, 24, 25, 28, 36, 37, 38, 40] and references therein. A typical
result obtained in this development is stated as in Theorem 1 below. In addition
to (A1), we need these hypotheses:

(A2) H is locally coercive, i.e., for any compact K ⊂ Ω,

lim
r→∞

inf{H(x, p) | (x, p) ∈ K ×Rn, |p| ≥ r} = ∞.

(A3) H(x, p) is strictly convex in p.

Theorem 1. Let Ω = Tn and u0 ∈ C(Tn). Assume that (A1) and (A2) hold.
(i) The additive eigenvalue problem for H has a solution (c, v) ∈ R × C(Tn).
Moreover the constant c is uniquely determined. (ii) The Cauchy problem (CP)
has a unique solution u ∈ C(Tn × [0, ∞)). (iii) Assume in addition that (A3)
holds. Then there exists an additive eigenfunction u∞ ∈ C(Tn) such that

lim
t→∞

max
x∈Tn

|u(x, t)− u∞(x) + ct| = 0.

We remark that assertion (i) of the theorem above is a classical result due to
Lions-Papanicolaou-Varadhan [32], assertion (ii) is a more classical result due to
Crandall-Lions [7], Crandall-Evans-Lions [8] and others, and assertion (iii) can be
found in Barles-Souganidis [4] and Davini-Siconolfi [10].

The following example shows that the convexity and coercivity of H are not
enough to assure that the solution u(x, t) of (CP) “converges” to an asymptotic
solution as t →∞.

Example 2 (Barles-Souganidis [4]). Consider the Cauchy problem

ut + |Du + 1| = 1 in R× (0,∞) and u(x, 0) = sin x.

Then u(x, t) := sin(x− t) is a classical solution and as t →∞,

u(x, t) 6→ v(x)− ct
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for any (c, v) ∈ R×C(R). Note that H(x, p) = |p+1|−1 is convex and coercive, but
not strictly convex. Finally, since sin x and H(x, p) = |p+1|−1 are 2π-periodic as
functions of x, the spatial domain Ω in the Cauchy problem above can be regarded
as one-dimensional torus R/2πZ as in Theorem 1, as far as 2π-periodic solutions
are concerned.

This example justifies somehow assumption (A3) in Theorem 1 (iii) although
it is far from necessary for convergence of the solution of (CP) to an asymptotic
solution as a general result in [4] indicates.

5. Weak KAM theory in terms of PDE

Analysis on the asymptotic behavior such as Theorem 1 (iii) is rather difficult
because of the complex structure of eigenfunctions for H. A first remark in this
regard is that if v is an eigenfunction for H, then so is v +a, with a ∈ R. Actually,
the complexity is far beyond this as the following example shows.

Example 3. Consider the eikonal equation |Du| = f(x) in R, where f ∈ C(R/2Z)
is the function defined by f(x) = min{x, 1−x} for x ∈ [0, 1] and = min{x−1, 2−x}
for x ∈ [1, 2]. Let u ∈ C(R/2Z) be the function given by

u(x) =





∫ x

0

f(t) d t for x ∈ [0, 1],
∫ 1

0

f(t) d t−
∫ x

1

f(t) d t ≡ 1
4
−

∫ x

1

f(t) d t for x ∈ [1, 2].

Then both u and −u are classical solutions of |Du| = f in R. Moreover, for any
c ∈ [0, 1/2], the function vc(x) = min{u(x), −u(x)+c} is a solution of |Du| = f in
R. The difference vc1 − vc2 for any c1, c2 ∈ [0, 1/2], with c1 6= c2, is not a constant
function.

graph of f

period

1

graph of u

1

graph of −u

1
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graph of vc

Weak KAM theory is a useful tool to study the structure of the space of additive
eigenfunctions. Here we give a quick review of Aubry sets from weak KAM theory
in terms of PDE, which we follow Fathi-Siconolfi [18, 19].

In what follows (except in Theorem 3 and Proposition 4), we assume that H
satisfies (A1) and (A2) and that S−H 6= ∅. If, instead, S−H−c 6= ∅ for some c > 0, we
may reduce to the case where c = 0 by replacing H by H − c. Define the function
dH on Ω× Ω by

dH(x, y) = sup{w(x)− w(y) | w ∈ S−H(Ω)}.
By the assumption that c = 0, we have S−H(Ω) 6= ∅, which implies that dH(x, y) >
−∞ for all x, y ∈ Ω. The coercivity assumption guarantees that the function dH

is a locally Lipschitz function. By definition, dH(·, y) is the maximum subsolution
of H[u] = 0 in Ω among those satisfying u(y) = 0. Here are some basic properties
of dH :

dH(y, y) = 0 for all y ∈ Ω,

dH(·, y) ∈ S−H(Ω) for all y ∈ Ω,

dH(·, y) ∈ SH(Ω \ {y}) for all y ∈ Ω,

dH(x, y) ≤ dH(x, z) + dH(z, y) for all x, y, z ∈ Ω.

We have the formula for dH :

dH(x, y) = inf
{∫ t

0

L[η] d s
∣∣ t > 0, η ∈ AC([0, t], Ω), η(t) = x, η(0) = y

}
,

where L denotes the Lagrangian of H, i.e., L(x, ξ) = supξ∈Rn(ξ · p − H(x, p)),
AC([0, t],Ω) denotes the space of all absolutely continuous curves η : [0, t] → Ω,
and L[η] is an abbreviated notation for L(η(s), η̇(s)).

The (projected) Aubry set AH ⊂ Ω is defined as

AH := {y ∈ Ω | dH(·, y) ∈ SH(Ω)}.
A characterization of the Aubry set is given by the following: any point y ∈ Ω is
in AH if and only if

inf
{∫ t

0

L[η] d s
∣∣ t ≥ ε, η ∈ AC([0, t]), η(0) = η(t) = y

}
= 0, (1)

where ε is an arbitrary fixed positive constant.
Let Ω = Tn. One of main observations related to Aubry sets is this.

Theorem 2 (representation of solutions). If u is a solution of H[u] = 0 in Tn,
then

u(x) = inf{u(y) + dH(x, y) | y ∈ AH} for all x ∈ Tn.
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This theorem says that any solution u of H[u] = 0 in Tn is determined by its
restriction u|AH

to AH .
In the following two propositions we do not necessarily assume that AH 6= ∅.

Theorem 3. Under the hypotheses and notation of Theorem 1 (iii), we have for
any x ∈ Ω,

u∞(x) = inf{u0(y) + dH−c(x, y) + dH−c(y, z) | y ∈ Ω, z ∈ AH−c}. (2)

The above result is due to Davini-Siconolfi [10] (see also [21]). The formula in
the above theorem is interpreted as follows (see [23]).

Proposition 4. Under the hypotheses of the above theorem, we have

u∞(x) = inf{v(x) | v ∈ SH−c, v ≥ u−0 in Ω} for x ∈ Ω, (3)

where u−0 is the maximum subsolution of H[u] = c “below” u0, i.e.,

u−0 (x) := sup{v(x) | v ∈ S−H−c, v ≥ u0 in Ω} for x ∈ Ω. (4)

Indeed, it is not hard to see that the function: x 7→ inf{u0(y)+dH−c(x, y) | y ∈
Ω} is the maximum subsolution of H[u] = c below u0 and also from Theorem 2 that
the function: x 7→ inf{u−0 (z) + dH−c(x, z) | z ∈ AH−c} is the minimum solution of
H[u] = c in Ω above u−0 . Consequently, from (2) we get

u∞(x) = inf{inf{u0(y) + dH−c(x, y) | y ∈ Ω}+ dH−c(y, z) | z ∈ AH−c}
= inf{u−0 (y) + dH−c(y, z) | z ∈ AH−c}
= inf{v(x) | v ∈ SH−c, v ≥ u−0 in Ω}.

We note (see [25]) that the formula (3) is valid for Ω = Rn as well under the
assumptions (A1), (A2), (A4), and (A5). (See below for (A4) and (A5).)

Now, we discuss the case where Ω = Rn. The following representation theorem
of solutions of H = 0 is taken from Ishii-Mitake [29] (see also [25, Section 3]).

Theorem 5. Let u ∈ SH(Rn). Then

u(x) =min{wA(x), w∞(x)},

where

wA(x) := inf{u(y) + dH(x, y) | y ∈ AH},
w∞(x) := inf{d(x) + c | d ∈ D∞, c ∈ C(u, d)},

D∞ :={φ ∈ SH(Rn) | ∃yj ∈ Rn such that |yj | → ∞,

φ(yj) + dH(·, yj) → φ in C(Rn)},
C(u, d) :={c ∈ (−∞,∞] | u ≤ d + c in Rn}.
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This theorem asserts that any u ∈ SH(Rn) is “factorized” as the minimum of
two functions wA and w∞, and the function wA depends only on the restriction
u|AH

to AH and the function w∞ depends only on the behavior of u as |x| → ∞.
Contrary to the situation of Theorem 1 (i), uniqueness of additive eigenvalues

in unbounded domains Ω does not hold: indeed, if we set

cH = inf{a ∈ R |∈ S−H−a 6= ∅},

then for any b ≥ cH there exists a solution v of H[v] = b in Ω. See, for instance,
Barles-Roquejoffre [3].

When Ω = R, we have

dH(x, y) = max{d+(x)− d+(y), d−(x)− d−(y)},

where

d+(x) := lim
y→∞

(dH(x, y)− dH(0, y)),

d−(x) := lim
y→−∞

(dH(x, y)− dH(0, y)).

Thus, any solution of H[u] = 0 in R has a representation

u(x) = min{d−(x) + c−, d+(x) + c+},

where c± are constants possibly being +∞.

6. One-dimensional case

We wish to find sufficient conditions for (H, u0) and Ω = Rn so that the solution
u(x, t) of (CP) “converges” to an asymptotic solution v(x)− ct. For simplicity of
presentation, we consider the case where c = 0, which can be attained by replacing
H by H − c if necessary. We introduce a new condition on H.

(A4) For φ ∈ SH there exist a constant C > 0 and a function ψ ∈ SH−C such
that lim|x|→∞(φ− ψ)(x) = ∞.

Let Ω = Rn and assume that (A1), (A2), and (A4) hold. These hypotheses
do not guarantee the unique solvability of (CP) in the sense of viscosity solutions.
We thus regard the function

u(x, t) = inf
{∫ t

0

L[η] d s + u0(η(0))
∣∣ η ∈ AC([0, t], Ω), η(t) = x

}
(5)

on Rn × [0, ∞) as the unique solution of (CP). An important remark here is that
this function u may take the value −∞. That is, u(x, t) ∈ [−∞, ∞) in general.



10 Hitoshi ISHII

It is easily seen that if H(x, p) = H0(p) − f(x), with H0, f ∈ C(Rn), and H0

is uniformly continuous in Rn, then H satisfies (A4). Also, if H ∈ BUC(Rn ×
B(0, R)) for any R > 0 and H is globally coercive, i.e.,

lim
r→∞

inf{H(x, p) | x ∈ Rn, |p| ≥ r} = ∞, (6)

then H satisfies (A4). Here and henceforth we denote by B(a, r) the closed ball of
Rn with center at a and radius r ≥ 0.

We now follow arguments in [24, 25]. As in (4), we set

u−0 (x) = sup{v(x) | v ∈ S−H , v ≤ u0 in Rn} for x ∈ Rn.

Clearly we have u−0 ≤ u0 in Rn. As before, we have

u−0 (x) = inf{u0(y) + dH(x, y) | y ∈ Rn} for x ∈ Rn. (7)

Proposition 6. If u−0 (x0) = −∞ for some x0 ∈ Rn, then u−0 (x) ≡ −∞ and

lim inf
t→∞

u(x, t) = −∞ for all x ∈ Rn,

where u is the solution of (CP).

To continue, we need to assume that

u−0 (x) > −∞ for x ∈ Rn, (8)

and set

u∞(x) = inf{w(x) | w ∈ SH , w ≥ u−0 in Rn} for x ∈ Rn.

It is clear that u∞ ≥ u−0 in Rn.

Proposition 7. If u∞(x0) = ∞ for some x0 ∈ Rn, then u∞(x) ≡ ∞ and

lim
t→∞

u(x, t) = ∞ for x ∈ Rn.

Thus, in order to get an asymptotic solution v ∈ SH for the solution of (CP),
we have to assume that

(A5) −∞ < u−0 (x) ≤ u∞(x) < ∞ for all x ∈ Rn.

This condition can be stated equivalently as

{φ ∈ S−H | φ ≤ u0 in Rn} 6= ∅ and {φ ∈ SH | φ ≥ u−0 in Rn} 6= ∅.
Any curve γ ∈ C((−∞, 0]) is said to be extremal for φ ∈ SH if it satisfies the

conditions: γ ∈ AC([−t, 0]) for all t > 0 and
∫ b

a

L[γ] d s = φ(γ(b))− φ(γ(a)) for a, b ≤ 0. (9)

The main role of assumption (A4) is to guarantee the existence of extremal
curves. Indeed, we have (see [25]):
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Proposition 8. Assume that (A1), (A2), and (A4) hold. For any φ ∈ SH and
x ∈ Rn, there is an extremal curve γ such that γ(0) = x.

We denote by Ex(φ) the set of such extremal curves γ and set E(φ) =
⋃

x∈Rn E(φ).
We recall (see e.g. [28]) that for any ψ ∈ S−H and η ∈ AC([a, b]), with a < b,

ψ(γ(b))− ψ(γ(a)) ≤
∫ b

a

L[γ] d s. (10)

Thus, for any γ ∈ E(φ), with φ ∈ SH , and any a < b ≤ 0, we have
∫ b

a

L[γ] d s = inf
{∫ b

a

L[η] d s
∣∣ η ∈ AC(a, b]), η(t) = γ(t) at t = a, b

}
.

Every curve γ ∈ E(φ), with φ ∈ SH , is “extremal” in this sense.
Let φ ∈ SH , ψ ∈ S−H , and γ ∈ E(φ). Combining (9) and (10) yield

(φ− ψ)(γ(a)) ≤ (φ− ψ)(γ(b)) for all a ≤ b ≤ 0. (11)

That is, the fucntion: t 7→ (φ− ψ)(γ(−t)) is non-increasing on [0, ∞).
We now assume that n = 1 and explain the main result in Ichihara-Ishii [23].

Fix any y ∈ R and choose an extremal curve γ ∈ Ey(u∞).

Theorem 9. Assume in addition to the hypotheses (A1), (A2) and (A4) that (A5)
holds. Then we have

u(y, t) → u∞(y) as t →∞
provided one of the following five conditions is satisfied:

γ((−∞, 0]) is bounded. (12){
sup γ((−∞, 0]) = ∞,
limx→∞(u0(x)− u−0 (x)) = 0.

(13)
{

sup γ((−∞, 0]) = ∞,
lim infx→∞(u0(x)− u−0 (x)) > 0.

(14)
{

inf γ((−∞, 0]) = −∞,
limx→−∞(u0(x)− u−0 (x)) = 0.

(15)
{

inf γ((−∞, 0]) = −∞,
lim infx→−∞(u0(x)− u−0 (x)) > 0.

(16)

In other words, the convergence of u(y, t) to u∞(y), as t →∞, holds except in
either of the following two cases:





sup γ((−∞, 0]) = ∞,
lim infx→∞(u0(x)− u−0 (x)) = 0,
lim supx→∞(u0(x)− u−0 (x)) > 0,

(17)





inf γ((−∞, 0]) = −∞,
lim infx→−∞(u0(x)− u−0 (x)) = 0,
lim supx→−∞(u0(x)− u−0 (x)) > 0.

(18)
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Let us recall some examples from the literature.

First of all we go back to Example 2, where H(x, p) ≡ H(p) = |p + 1| − 1 and
u0(x) = sin x. The corresponding Lagrangian L is given by L(ξ) = δ[−1, 1](ξ)−ξ+1,
where δ[−1, 1] denotes the indicator function of the interval [−1, 1], i.e., δ[−1, 1](ξ) =
0 if ξ ∈ [−1, 1] and = ∞ otherwise. The minimum of L is attained at ξ = 1, which
implies that if γ is an extremal curve on (−∞, 0], then γ̇(s) = 1 a.e. s ∈ (−∞, 0].
Therefore, we have inf γ((−∞, 0]) = −∞. Since {p | H(p) ≤ 0} = [−2, 0], we
may check easily that

dH(x, y) =
{

0 for x ≥ y,
−2(x− y) for x ≤ y.

d−(x) ≡ 0, d+(x) = −2x for x ∈ R.

It is now easy to see that

u−0 (x) = inf{u0(y) + dH(x, y) | y ∈ R} ≡ −1, u∞(x) ≡ −1.

Hence condition (18) is valid in this example.

Example 4 (Lions-Souganidis [35]). Let f(x) = 2+cos x+cos
√

2x and H(x, p) =
|p|2−f(x)2. Note that f is quasi-periodic, infR f = 0 and f(x) > 0 for all x ∈ R.

O

y

x

y = 2 + c o s x + c o s
√

2x

The Cauchy problem (CP) with the current H and with u0(x) ≡ 0 has a unique
solution u ∈ C(R× [0,∞)) satisfying u ≥ 0 in R× [0, ∞). It is easy to see that

dH(x, y) =
∣∣∣
∫ x

y

f(t) d t
∣∣∣,

d−(x) =
∫ x

0

f(t) d t = 2x + sin x +
1√
2

sin
√

2x,

d+(x) =− d−(x).
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O

y

y = d
−
(x)

x

It is not hard to check that u−0 (x) ≡ 0 and u∞(x) ≡ ∞. By Proposition 7,
we conclude that limt→∞ u(x, t) = ∞ for all x ∈ R. On the other hand, since
infR f = 0, we see easily that SH−c = ∅ for any c < 0, which assures that there
is no asymptotic solution v(x) − ct, with c < 0. Thus, the solution u does not
converge to any asymptotic solution.

By Theorem 1 (iii), we know that if H satisfies (A1)-(A3) with Ω = R and
the functions H(·, p) and u0 ∈ C(R) are Z-periodic, then the convergence of the
solution u of (CP) to an asymptotic solution holds. However, the above example
shows that, in this assertion, the periodicity of H(·, p) cannot be replaced by the
quasi-periodicity of H(·, p).

Example 5 (Barles-Souganidis [4]). Consider the Cauchy problem (CP), with
H(p) = |p|2/2 − p. The Lagrangian of H is given by L(ξ) = (ξ + 1)2/2. Since L
attains its minimum value zero at ξ = −1, we see that any extremal curve γ ∈
C((−∞, 0]) satisfies γ̇(s) = −1 a.e. s ∈ (−∞, 0). Hence we have γ((−∞, 0]) = ∞
for any extremal curve γ ∈ C((−∞, 0]). If the initial data u0 ∈ C(R) is periodic,
then Theorem 1 (iii) guarantees that the solution u of (CP) converges to the
asymptotic solution u∞ as t → ∞. We will see in Theorem 11 below that the
same convergence assertion is valid if u0 is almost periodic. Here we examine the
asymptotic behavior of the solution u of (CP) with initial data u0 which “oscillates
slowly” at +∞. We first recall the Hopf-Lax-Oleinik formula

u(x, t) = inf
y∈R

(
u0(y) + tL

(x− y

t

))
= inf

y∈R

(
u0(y) +

1
2t
|x− y + t|2

)
.

In particular, we have

u(0, t) = inf
y∈R

(
u0(y) +

1
2t
|y − t|2

)
.

We assume that 0 ≤ u0(x) ≤ 1 for all x ∈ R, and observe that 0 ≤ u(x, t) ≤ 1
for all (x, t), that if u0(t) = 0 for some t > 0, then u(0, t) = 0, and that if
u0(x) = 0 for all x ∈ [t − √

2t, t +
√

2t] and for some t > 0, then u(0, t) = 1.
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We choose two increasing sequences {sk}, {tk} ⊂ (0, ∞) so that sk +1 ≤ tk−
√

2tk
and tk +

√
2tk ≤ sk+1 − 1 for all k ∈ N. For instance, the sequences tk = (2k)2

and sk = tk − 1−√2tk, k ∈ N, have the required properties. We define u0 by

u0(x) = min{1, dist(x, {sk | k ∈ N})}. (19)

O

y

x
s1 t1 t2s2

slo w ly o sc illa to ry u0

For this initial data u0 the solution u of (CP) has the oscillatory property: u(0, sk) =
0 and u(0, tk) = 1 for all k ∈ N. In particular, u does not converge any asymptotic
solution. Thus, roughly speaking, if the data u0 oscillates slowly at +∞, the solu-
tion of (CP) may reflect the oscillatory behavior of u0 and may not converge to any
asymptotic solution. Considerations similar to the above show that the solution
of (CP) satisfying the initial condition u|t=0 = −u0 converges to −1 uniformly on
R as t → ∞. Finally, noting that H(p) ≤ 0 if and only if 0 ≤ p ≤ 2, we observe
that dH is given by

dH(x, y) =

{
0 if x ≤ y,

2(x− y) if x > y,

that u−0 (x) ≡ 0 by (7), and that u∞(x) ≡ 0, from which we see that (17) holds.

7. Some results in Rn

In this section we discuss some results on the asymptotic behavior of solutions of
(CP) in the case where Ω = Rn.
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We begin with a result obtained in [28] and introduce the following assumption.

(A6) There exist functions φi ∈ C(Rn) and σi ∈ C(Rn), with i = 0, 1, such that

H[φi] ≤ −σi in Rn,

lim
|x|→∞

σi(x) = ∞,

lim
|x|→∞

(φ0 − φ1)(x) = ∞.

We next introduce the function spaces Φ0, Ψ0 as

Φ0 ={f ∈ C(Rn) | inf
Rn

(f − φ0) > −∞},
Ψ0 =

{
g ∈ C(Rn × [0,∞))

∣∣ inf
Rn×[0,T ]

(g − φ0) > −∞ for all T > 0
}
.

Theorem 10. Assume that (A1), (A2) and (A6) hold. Let u0 ∈ Φ0. (i) The
additive eigenvalue problem for H has a solution (c, v) ∈ R × Φ0. The additive
eigenvalue c is uniquely determined. (ii) There exists a unique solution u ∈ Ψ0 of
the Cauchy problem (CP). (iii) Assume in addition that (A3) holds. Then there
exists a function u∞ ∈ Φ0 ∩ SH−c for which

u(·, t) + ct− u∞ → 0 in C(Rn) as t →∞.

Some remarks on this result are in order: the additive eigenvalue c is unique
since additive eigenfunctions are sought in Φ0 and it is given by

c = inf{a ∈ R | S−H−a 6= ∅}.

In other words, for the constant c defined by the formula above, we have

SH−a ∩ Φ0 6= ∅ if and only if a = c

and
SH−a 6= ∅ if and only if a ≥ c.

In what follows we assume that φ0, φ1 ∈ S−H−c, which can be realized by modi-
fying φi, i = 0, 1, appropriately (see [28] for the details). The functions φ0, φ1 have
a kind of role of Lyapunov functions for underlying dynamical systems. Indeed,
for any v ∈ SH−c ∩ Φ0 and extremal curve γ ∈ C((−∞, 0]), which satisfies by
definition ∫ 0

−t

(L[γ]− c) d s = v(γ(0))− v(γ(−t)) for all t > 0,

we have the monotonicity (11), with v and φ1 in place of φ and ψ, respectively, from
which we may deduce that {γ(−t) | t ≥ 0} is bounded in Rn and furthermore that
the Aubry set AH−c is a nonempty compact set. Theorem 10 thus gives a sufficient
condition in higher dimensions that any extremal curves γ for v ∈ SH−c∩Φ0 satisfy
(12) in Theorem 9.
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For any v ∈ SH−c ∩ Φ0, we have

v(x) = inf{v(y) + dH−c(x, y) | y ∈ AH−c} for all x ∈ Rn.

This representation assertion differs from Theorem 5 in that the “factor” w∞
is missing in the formula above. In fact, the restriction v ∈ Φ0 suppresses the
influence of v from infinity points. To be more precise, let v ∈ SH−c ∩ Φ0 and
let D∞ and w∞ denote respectively the subset of SH−c and the function on Rn

defined as in Theorem 5, with dH replaced by dH−c. Then w∞(x) = ∞ for all
x ∈ Rn. That is, we have supRn(v − d) = ∞ for all d ∈ D∞. To check this, we
argue by contradiction. Fix d ∈ D∞ and suppose that supRn(v − d) < ∞. We
choose a constant a ∈ R so that v ≤ d + a in Rn. Also, we choose a sequence
{yk} ⊂ Rn such that

|yk| → ∞ and d(yk) + dH−c(·, yk) → d in C(Rn) as k →∞.

We may moreover assume that |d(yk)+dH−c(0, yk)−d(0)| ≤ 1 for all k ∈ N. Since
v ∈ Φ0, there is a constant C0 > 0 such that v ≥ φ0−C0 in Rn. Combining these,
we observe that

d(0) ≥ d(yk) + dH−c(0, yk)− 1 ≥ v(yk)− a + φ1(0)− φ1(yk)− 1
≥ φ0(yk)− φ1(yk)− C0 − a + φ1(0)− 1 →∞ as k →∞.

This is a contradiction, which proves that w∞(x) = ∞ for all x ∈ Rn.
Prior to [28], Fujita-Ishii-Loreti [21] studied a similar situation for the Hamilton-

Jacobi equation ut + αx · Du + H(Du) = f(x), where α > 0 and H has the su-
perlinear growth, lim|p|→∞H(p)/|p| = ∞. A result similar to the results above
has been obtained by Barles-Roquejoffre [3, Theorem 4.1] which generalizes to the
unbounded case the previous result due to Namah-Roquejoffre [38, Theorem 1].

A very simple example to which Theorem 10 applies is the equation ut+|Du|2 =
|x| in Rn. Then a possible choice of (φi, σi) is the following.

φ1(x) = −|x|, σ1(x) = |x| − 1, φ0(x) = −1
2
|x|, σ0(x) = |x| − 1

4
.

We now discuss the generalization of Theorem 1 (iii) obtained in Ichihara-Ishii
[23]. We consider the Cauchy problem (CP) for Ω = Rn. Assume that H satisfies
all the assumptions in Theorem 1 (iii). That is, H satisfies (A1)-(A3) and H(x, p) is
Zn-periodic in x. Let c be the additive eigenvalue given by Theorem 1 (i). In other
words, c is the unique constant such that there exists a function v ∈ SH−c(Rn)
which is Zn-periodic. Under these hypotheses we have:

Theorem 11. Assume that u0 is almost periodic in Rn. (i) There exists a unique
solution u of (CP) such that u ∈ BUC(Rn× [0, T ]) for all T > 0. (ii) There exists
an almost periodic solution u∞ of H[u∞] = c in Rn for which u(·, t)−u∞+ct → 0
in C(Rn) as t →∞.

Theorem 1 deals with Hamilton-Jacobi equations on the n-dimensional torus
Ω which is compact and hence can be regarded as an n-dimensional generalization
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of Theorem 9 in case (12). On the other hand, if we view Theorem 1 in the
periodic setting with Ω = Rn, then it (and also Theorem 11) may deal with the
n-dimensional situations of Theorem 9 where cases (12) and/or (13) holds. To see
this, as in Example 5 let us consider the Hamiltonian H(p) := |p|2/2 − p and the
domain Ω := R. Arguments similar to Example 5, if u0 ∈ C(R) is almost periodic
and is not constant, then we see that

u−0 (x) ≡ inf
R

u0 and u∞(x) ≡ inf
R

u0

and that (17) holds.
Example 5 tells us that for the function u0 defined by (19), the solution u of

(CP), with u0 as its initial data, does not converge to any asymptotic solution,
while the solution v of (CP), with −u0 as its initial data, does converge to the
asymptotic solution v∞(x) ≡ −1.

Motivated by this observation, we introduce the notion of semi-almost peri-
odicities in what follows. We begin by recalling the definition of almost peri-
odicity. A function f ∈ C(Rn) is called almost periodic if for any sequence
{yj} ⊂ Rn there exist a subsequence {zj} of {yj} and a function g ∈ C(Rn)
such that f(x + zj) → g(x) uniformly on Rn as j → ∞. A function f ∈ C(Rn)
is called lower (resp. upper) semi-almost periodic if for any sequence {yj} ⊂ Rn

and any ε > 0, there exist a subsequence {zj} of {yj} and a function g ∈ C(Rn)
such that f(· + zj) → g in C(Rn) as j → ∞ and f(x + zj) + ε > g(x) (resp.
f(x + zj) − ε < g(x)) for all (x, j) ∈ Rn ×N. Remark that if u0 is the function
defined by (19), then the function −u0 is lower semi-almost periodic.

Theorem 12. Assume in addition to (A1)–(A3) that u0 is lower semi-almost
periodic. Let c be the unique constant given by Theorem 1. Then we have: (i) There
exists a unique solution u of (CP) such that u ∈ BUC(Rn × [0, T ]) for all T > 0.
(ii) There exists a solution u∞ of H[u∞] = c in Rn for which u(·, t)−u∞+ ct → 0
in C(Rn) as t →∞.

See [23] for the proof of the theorem above and further generalizations.

8. General criteria.

Throughout this section we let Ω = Rn and assume that H satisfies (A1), (A2),
(A4) and (A5). Let u0 ∈ C(Rn) and u be the solution of (CP) defined as in Section
6. Let u∞ and u−0 be the functions on Rn defined by (2) and (3), respectively.
Following [25], we discuss three general criteria for the pointwise convergence of

u(x, t) → u∞(x) as t →∞. (20)

As stated in Proposition 4, we have

lim inf
t→∞

u(x, t) = u∞(x) for all x ∈ Rn. (21)
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We remark also that the pointwise convergence (20) for all x ∈ Rn implies the
locally uniform convergence

u(·, t) → u∞ in C(Rn) as t →∞. (22)

We fix any z ∈ Rn and consider the pointwise convergence

u(z, t) → u∞(z) as t →∞. (23)

We fix any γ ∈ Ez(u∞) and introduce the first criterion

(C1) lim
t→∞

(u0 − u∞)(γ(−t)) = 0.

An interesting obervation in [25] is that limt→∞(u∞ − u−0 )(γ(−t)) = 0. Hence
condition (C1) is equivalent to the condition

lim
t→∞

(u0 − u−0 )(γ(−t)) = 0.

Theorem 13. Assume that (C1) holds. Then the convergence (23) holds.

Proof. By the definition of extremal curves, we see that

u(z, t) ≤
∫ 0

−t

L[γ] d s + u0(γ(−t))

= u∞(z)− u∞(γ(−t)) + u0(γ(−t)) for all t > 0.

This together with (C1) and (21) yields

lim sup
t→∞

u(z, t) ≤ u∞(z) + lim
t→∞

(u0 − u∞)(γ(−t)) = u∞(z) = lim inf
t→∞

u(z, t),

which shows (23).

The theorem above can be applied to the cases (13) and (15) of Theorem 9.
Indeed, in the case when (13) is satisfied, we have

lim
t→∞

γ(−t) = ∞,

and hence limt→∞(u0 − u−0 )(γ(−t)) = 0. That is, (C1) holds. Similarly, in the
case when (15) is satisfied, we see that (C1) holds.

We consider the following situation similar to that of [3, Theorem 4.2]. That
is, we assume that there are a constant δ > 0 and a function ψ ∈ C(Rn) such that
H[ψ] ≤ −δ in Rn. Moreover let φ0 ∈ SH and assume that

lim
|x|→∞

(u0 − φ0)(x) = 0. (24)

The main conclusion of [3, Theorem 4.2] is then that (22) holds and u∞ = φ0.
This conclusion is valid in the current situation.
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We show just that (C1) holds for all z ∈ Rn and hence (22) holds by Theo-
rem 13. Note that the existence of ψ ∈ SH+δ, with δ > 0, implies that AH = ∅.
Therefore, limt→∞ |γ(−t)| = ∞ for any γ ∈ E(φ) and any φ ∈ SH . There is
a constant C0 > 0 such that supRn |u0 − φ0| ≤ C0. From this we see that
φ0 + C0 ≥ u0 ≥ u−0 ≥ φ0 − C0 in Rn. Hence, u−0 ≤ u∞ ≤ φ0 + C0 in Rn.
Consequently, we get supRn |u−0 − φ0| ≤ C0 and supRn |u∞ − φ0| ≤ C0 .

Now let γ ∈ E(u∞). By (10) and (9), we obtain

φ(γ(0))− ψ(γ(−t)) ≤
∫ 0

−t

(L[γ]− δ) d s

=u∞(γ(0))− u∞(γ(−t))− δt for all t ≥ 0.

This shows that limt→∞(ψ−u∞)(γ(−t)) = ∞. Moreover, since supRn |φ0−u∞| <
∞, we see that limt→∞(ψ − φ0)(γ(−t)) = ∞.

Next we fix any ε > 0 and choose Aε > 0 so large that

ψε(x) := min{ψ(x)−Aε, φ0(x)− ε} ≤ u0(x) for all x ∈ Rn.

This is possible because lim|x|→∞(u0 − φ0)(x) = 0. Observe that ψε ∈ S−H and
hence that ψε ≤ u−0 in Rn. Then, recalling that limt→∞(ψ − φ0)(γ(−t)) = ∞, we
observe that ψε(γ(−t)) = φ0(γ(−t))− ε if t is sufficiently large and that

lim sup
t→∞

(u0 − u−0 )(γ(−t)) ≤ lim sup
t→∞

(u0 − ψε)(γ(−t))

= lim
t→∞

(u0 − φ0)(γ(−t)) + ε = ε.

Since u0 ≥ u−0 in Rn and ε > 0 is arbitrary, we now conclude that limt→∞(u0 −
u−0 )(γ(−t)) = 0, that is, (C1) holds.

Next we introduce the second criterion.

(C2) For each ε > 0 there exists a τ > 0 such that for any t > 0 and for some
η ∈ AC([−t, 0]),

η(−t) = η(0) = γ(−τ) and
∫ 0

−t

L[η] d s < ε.

Theorem 14. Under the assumption (C2), the convergence (23) holds.

Proof. Fix any ε > 0 and let τ > 0 be the constant from assumption (C2). Set
y = γ(−τ) and choose a σ > 0 in view of (21) so that u(y, σ) < u∞(y) + ε. Fix
any t > 0. By (C2), we may choose an η ∈ AC([−t, 0]) such that η(−t) = η(0) = y
and ∫ 0

−t

L[η] d s < ε.
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Now, using the dynamic programming principle, we compute that

u(z, τ + σ + t) ≤
∫ 0

−τ

L[γ] d s + u(γ(−τ), t + σ)

≤ u∞(z)− u∞(y) +
∫ 0

−t

L[η] d s + u(η(−t), σ)

< u∞(z)− u∞(y) + ε + u(y, σ)
< u∞(z)− u∞(y) + u∞(y) + 2ε = u∞(z) + 2ε.

Consequently we obtain

lim sup
t→∞

u(z, t) ≤ u∞(z) = lim inf
t→∞

u(z, t),

which concludes the proof.

Motivated by the main results in [38, 22], we formulate a proposition as follows.

Theorem 15. Assume in addition to (A1) (A2) and (A4) that there are two
functions φ0, φ1 ∈ S−H such that

lim
|x|→∞

(φ0 − φ1)(x) = ∞ and inf
Rn

(u0 − φ0) > −∞. (25)

Assume moreover that

AH 6= ∅ and L(x, 0) = 0 for all x ∈ AH . (26)

Then the convergence (22) holds.

In the above theorem we do not need to assume (A5). Indeed, (A5) holds as a
consequence of the hypotheses of Theorem 15. We remark that any point x ∈ AH

which satisfies the second condition of (26) is said to be an equilibrium.

Proof. We may assume by adding a constant to φ0 that u0 ≥ φ0 in Rn. We then
have φ0 ≤ u−0 ≤ u0 in Rn. Fix a y ∈ AH and observe that u∞ ≤ u−0 (y) + dH(·, y)
in Rn. Hence, (A5) is valid.

Fix any γ ∈ Ez(u∞), with z ∈ Rn, and recall the monotonicity (11), with φ and
ψ replaced by u∞ and φ1, resepectively. Since u∞ ≥ φ0 in Rn, this monotonicity
and (25) enssure that γ(−t) ∈ B(0, R) for all t ≥ 0 and some R > 0. This together
with (1) implies that AH 6= ∅ and dist(γ(−t),AH) → 0 as t → ∞. Fix any t > 0
and choose a point y ∈ AH so that |γ(−t) − y| = dist(γ(−t),AH). (Recall that
AH is a closed subset of Rn.) There are constants δR > 0 and CR > 0 (see
e.g. [28]) so that L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R) × B(0, δR). Let r > 0, set
ρ = dist(γ(−t),AH) and ξ = δR(y−γ(−t))/ρ, and define the curve η ∈ AC([−r, 0])
by

η(s) =





γ(−t)− sξ for s ∈ [−ρ/δR, 0],
y for s ∈ [−r + ρ/δR, −ρ/δR],
γ(−t) + (s + r)ξ for s ∈ [−r, −r + ρ/δR]
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if δRr > 2ρ and η(s) = γ(−t) if δRr ≤ 2ρ. It is easy to see that

∫ 0

−r

L[η] d s ≤ 2CR

δR
ρ =

2CR

δR
dist(γ(−t),AH).

It is now obvious that (C2) holds for all γ ∈ E(u∞). Thus, applying Theorem 14,
we conclude that the convergence (22) holds.

Under the hypotheses of the theorem above, we have

u∞(x) = inf{u−0 (y) + dH(x, y) | y ∈ AH} for all x ∈ Rn.

Here the term w∞ of Theorem 5 is missing, which is due to the assumption that
infRn(u0 − φ0) > −∞.

Condition (C2) covers another situation, where “nearly optimal” curves in the
formula (5) for the solution of (CP) exhibit a “switch-back” motion for large t. We
discuss just a simple example and refer to [25] for further generalities.

Let n = 1 and consider the case where the Hamiltonian H is given by H(x, p) :=
|p| − e−|x| and u0 is given by u0(x) = min{|x| − 2, 0}. It is clear that (A1), (A2),
and (A4) are satisfied. It is easy to see that dH(x, y) =

∣∣∣
∫ x

y
e−s d s

∣∣∣ for all x, y ∈ R.
By the formula

u−0 (x) = inf{u0(y) + dH(x, y) | y ∈ R},
we see that u−0 (x) = −e−|x| − 1 for x ∈ R. We define the functions d± ∈ SH as
before by d±(x) = limy→±∞(dH(x, y)−dH(0, y)), and observe that d±(x) = e∓x−1
for x ∈ R and by Theorem 5 that u∞(x) = e−|x|−1 for x ∈ R. We know now that
(A5) holds. Note that the Lagrangian L is given by L(x, ξ) = δ[−1,1](ξ) + e−|x|.

Given z ∈ R, we define the curve γ ∈ C((−∞, 0]) by γ(s) = z− sgn (z) s, where
sgn (z) = 1 for z ≥ 0 and = −1 for z < 0. Then, it is easy to see that γ ∈ Ez(u∞)
and |γ(−t)| → ∞ as t →∞. Fix any ε > 0 and choose a τ > 0 so that

2
∫ ∞

|γ(−τ)|
e−s d s < ε.

We define η ∈ AC([−t, 0]) for any fixed t > 0 by

η(s) :=





γ(−τ)− sgn (z) s for − t

2
≤ s ≤ 0,

γ(−τ) + sgn (z) (s + t) for − t ≤ s ≤ − t

2
,

and observe that η(0) = η(−t) = γ(−τ) and

∫ 0

−t

L[η] d s < 2
∫ ∞

|γ(−τ)|
e−s d s < ε,

so that condition (C2) is valid for the given γ. Now, Theorem 14 guarantees that
the convergence (22) holds.
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We remark that the curve η ∈ AC([−t, 0]) built here has a switch-back motion
in which the point η(−s), with s ∈ [0, t], moves toward ∞ or −∞ with a unit
speed up to the time t/2 and then moves back to the starting point. It is also
worth mentioning that condition (C1) does not hold in this case. Indeed, we have
limt→∞(u0 − u∞)(γ(−t)) = 1 > 0.

Similar switch-back motions appear in “nearly optimal” curves in (5) in the
cases (14) and (16) of Theorem 9.

The third criterion is the following.

(C3) For any ε > 0, there exists a τ > 0 and for each t ≥ τ , a σ(t) ∈ [0, τ ] such
that

u∞(γ(−t)) + ε > u(γ(−t), σ(t)).

Note that the above inequality is equivalent to the condition that there is an
η ∈ AC([−σ(t), 0]) such that η(0) = γ(−t) and

u∞(γ(−t)) + ε >

∫ 0

−σ(t)

L[η] d s + u0(η(−σ(t))).

In our next theorem, condition (C3) is used together with one of the conditions
(A7)± on H, which are certain strict convexity requirements on H. We set Q :=
{(x, p) ∈ R2n |H(x, p) = 0} and

S := {(x, ξ) ∈ R2n | (x, p) ∈ Q, ξ ∈ D−
2 H(x, p) for some p ∈ Rn},

where D−
2 H(x, p) stands for the subdifferential of H with respect to the p variable.

(A7)+ There exists a modulus ω satisfying ω(r) > 0 for r > 0 such that for all
(x, p) ∈ Q, ξ ∈ D−

2 H(x, p) and q ∈ Rn.

H(x, p + q) ≥ ξ · q + ω((ξ · q)+).

(A7)− There exists a modulus ω satisfying ω(r) > 0 for r > 0 such that for all
(x, p) ∈ Q, ξ ∈ D−

2 H(x, p) and q ∈ Rn,

H(x, p + q) ≥ ξ · q + ω((ξ · q)−).

Here r± := max{±r, 0} for r ∈ R.
Roughly speaking, (A7)+ (resp., (A7)−) means that H(x, · ) is strictly convex

“upward” (resp., “downward”) at the zero-level set of H uniformly in x ∈ Rn.
We note that condition (A7)+ has already been used in [4] to replace the strict
convexity of H(x, ·) in order to get the convergence (22). Condition (A7)− has
been introduced in [24, 25].

Theorem 16. Assume that (C3) and either (A7)+ or (A7)− are satisfied. Then
the convergence (23) holds.

We refer to [25] for a proof of the theorem above. A variant of Theorem
15 is given by the next proposition, which can be also regarded as a version of
Theorem 10 (iii) and where (A5) is not assumed to hold.
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Theorem 17. Assume that (A1), (A2), (A4) and either of (A7)+ or (A7)− hold
and that there are two functions φ0, φ1 ∈ S−H such that

lim
|x|→∞

(φ0 − φ1)(x) = ∞ and inf
Rn

(u0 − φ0) > −∞. (27)

Assume moreover that AH 6= ∅. Then the convergence (22) holds.

Proof. As in the proof of Theorem 15, we see that (A5) holds. It remains to show
that (C3) holds for any γ ∈ E(u∞). Fix γ ∈ Ez, with z ∈ Rn, and observe as
in Theorem 15 that there is a constant R > 0 such that γ(s) ∈ B(0, R) for all
s ≤ 0. Then we fix any ε > 0 and choose, in view of (2), a τy > 0 for each
y ∈ B(0, R) so that u∞(y) + ε > u(y, τy). Next, using the compactness of B(0, R)
and the continuity of u∞ and u, we deduce that there exists a τ > 0 such that
u∞(x) + ε > u(x, τx) for any x ∈ B(0, R) and some τx ∈ [0, τ ]. That is, (C3) is
valid for any γ ∈ E(u∞).

The assertion of Theorems 1, with (A3) replaced either by (A7)+ or (A7)−, is
valid, which can be proved similarly to the above proof by applying Theorem 16.
This remark applies to Theorems 11 and 12 as well.
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