A CLASS OF INTEGRAL EQUATIONS AND APPROXIMATION
OF p-LAPLACE EQUATIONS

HITOSHI ISHII AND GOU NAKAMURA

ABSTRACT. Let 2 C R™ be a bounded domain, and let 1 < p < oo and o < p.
We study the nonlinear singular integral equation

Mul(x) = fo() in©
with the boundary condition u = go on 9%, where fo € C(Q) and go € C(99)

are given functions and M is the singular integral operator given by

Mu)(z) = P"”/ P9 @+ 2) — u(@) P2 (u(e + 2) — u(2)) dz,
B(0,p(z)) |2["T°

with some choice of p € C(Q) having the property, 0 < p(z) < dist (z, OQ).
We establish the solvability (well-posedness) of this Dirichlet problem and

the convergence uniform on 2, as ¢ — p, of the solution us of the Dirichlet
problem to the solution u of the Dirichlet problem for the p-Laplace equation
vApu = fo in Q with the Dirichlet condition u = go on 0%, where the factor
v is a positive constant (see (7.2)).

1. INTRODUCTION

Let © be a bounded domain of R" and p € C(Q) a given function satisfying
Ao dist (z,00) < p(x) < dist (x, 0Q),

where 0 < g < 1 is a fixed constant.
Let p > 1 and ¢ < p. We introduce the nonlinear singular integral operator
M = M, given formally by

Mgl(@) =pov. [ G+ 2) - o) K () ds
B(0,p(x))
for bounded measurable functions ¢ on €2, where G is the function on R given by
G(x) = |z[P~2x and the kernel K = K,, is given by
K(z):‘d%ﬂr7 with g = p, :=p —o.

Y

The symbol “p.v.” stands for the principal value of the integral. That is,

M[g](xz) = lim G(d(x + z) — Pp(x))K(2)dz if the limit exists.
T0F Jr<)zl<o(@)
The constant o will be often regarded as a parameter to be sent to p.
We deal with the integral equation

(1.1) Mlul(z) = fo(x) inQ,
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where fp is a given continuous, real-valued function on 2 and u represents the
unknown function on 2. Associated with (1.1) is the boundary condition

(1.2) u(z) = go(z) for z € 09,

where gg is a given continuous function on 952.

Our primary purpose is to investigate the solvability of the Dirichlet problem
(1.1) and (1.2), and the secondary interest here is to study the asymptotic behavior
of solutions u, of (1.1)—(1.2) as ¢ — p.

In the next section, we establish some basic estimates of the singular integral
operator M. In view of application to the asymptotic analysis as ¢ — p, it is
important to obtain estimates of the operators M = M, which are independent of
o in a range close to p.

The notion of solution of (1.1) in this paper is an adaptation of viscosity solutions
of differential equations and it is defined as follows. We begin by introducing the
spaces T,(9) of test functions. We set 7,(2) = C?(Q) for p > 2. For 1 < p < 2
let 7,(2) denote the space of functions ¢ € C?(f2) having the property: for each
compact R C € there exist a neighborhood V' C 2 of R and constants 8 > 1/(p—1)
and A > 0 such that for any y € R, if D¢ vanishes at y, then

lp(z) — d(y)| < Az —y|P+t forall z e V.
We call any bounded function u in  a (viscosity) subsolution of (1.1) if we have
M [u"|(z) = fo(x)

whenever (z,¢) € Q x 7,(Q) and u* — ¢ has a maximum at x. Here the operator
M is defined by

M™[v)(z) = lim sup/ G(x + z) —v(x))K(z)dz
0—0+ Jé<|z|<p(x)

and u* denotes the upper semicontinuous envelope of w. Similarly, we call any

bounded function u a (viscosity) supersolution of (1.1) if we have

M~ [u.](x) < folx)

whenever (z,¢) € Q x 7,() and u, — ¢ has a minimum at z, where the operator
M~ is defined by

M~ [](x) = limin / Glo(@ + 2) — v(@) K (2) dz
0=0+ Js<|z|<p(x)

and u, denotes the lower semicontinuous envelope of u. Finally, we call any bounded

function v in Q a (viscosity) solution of (1.1) if it is both a subsolution and a

supersolution of (1.1).

In Section 3 we prove the stability of solutions of (1.1) under certain limiting
processes and under taking the pointwise supremum or infimum. Also, in Section
3 the Perron method is established for the integral equation (1.1). In Section 4 we
establish a comparison theorem between sub and supersolutions of (1.1). In Section
5, we build sub and supersolutions which attain the boundary condition (1.2) and
prove the existence of a continuous solution of (1.1)—(1.2).

In Section 6, we recall basic results concerning weak solutions in VVlicp (Q) of the
inhomogeneous p-Laplace equation

(1.3) Apu(z) = folz) in Q,
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and formulate comparison results for (1.3), where we mostly follow the argument
of [12].

In Section 7 we are concerned with the asymptotic behavior of solutions u, of
(1.1)-(1.2), and we show that under appropriate hypotheses, u, converges uniformly
to the solution u of the Dirichlet problem

vApu(z) = fo(z) in Q,

where v is an appropriate positive constant (see (7.2) for the precise value of v),
with the Dirichlet condition (1.2).

In section 8, we give a few comments on possible generalizations or variants of
the results presented in the preceding sections.

Recently, while this paper was in preparation, Andreu-Mazdén-Rossi-Toledo [1, 2]
have studied problems similar to ours. In [1] they study the evolution equation

(1.4) ug(x,t) = Mplu(-,t)](z) in Q x (0, T).

Here the unknown function w is defined on 2 x (0, T'), 0 < T < oo, u; denotes the
derivative of u with respect to the time variable ¢t and the operator Mp is given by

(15) mmwww=l}xmm—¢m»ﬂx—Mdy
+

[ Glantw) - o)t~ )y,
Q\Q

where the function J is a nonnegative continuous radial function on R™ with com-
pact support, 2; := Q + suppJ and gy is a given function on R™ belonging to
LP(R™). In [1] they have established, among others, the solvability in the space

C([o, T, L' () nWh((0, T), L1(9),

of the Cauchy problem for (1.4) with initial data uy € LP(£2) and, under some ad-
ditional assumptions on J and gg, the convergence in the space C([0, T, L?(Q2)), as
¢ — 0+, of the solution u. of the Cauchy problem for (1.4), with the kernel function
J(x) replaced by J, . (z) := CpJ(x/e)/e" TP with C), := (1/2) [ J(x)|z,|P d, to the
solution u of the initial-boundary value problem for

(1.6) wi(z,t) = Apu(z,t) for (z,t) € Q x (0,00)

with the Dirichlet boundary condition u = gg on 92 x (0, T') and the initial data
u(+,0) = up. In [2], they have treated the evolution equation similar to (1.4), but
with Mp replaced by the operator My defined by

memzécww—amwu—w@,

and have obtained solvability and convergence results similar to the above, where
the limit problem is the initial-boundary problem for (1.6) with the Neumann
boundary condition du/dn = 0, with n denoting the outer unit normal vectors
at points on 0f2.

In [1] they treat the evolution problem while we study here the stationary prob-
lem, and the operator Mp in [1] is different from our M. Beyond these apparent
differences, there are two important differences between [1] and ours. One is of
the qualitative property between the operators M and Mp: the kernel K, of M is
singular at the origin while the kernel J of Mp is continuous. Indeed, it is not clear
if the Cauchy problem for (1.4), with singular kernel J is solvable or not, while it
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seems difficult to solve the Dirichlet problem for (1.1) with a continuous kernel K.
The second is that the results [1, 2] are formulated in the L? framework while the
viscosity solutions approach is taken here.

We refer the reader to [1, 2] and the references therein for some applications
of nonlocal diffusion equations like (1.1), (1.4), or (1.4) with My in place of Mp.
For the viscosity solutions approach to integro-differential equations with singular
kernels, we refer to the article [4]. We refer to [3, 6] for regularity results for integro-
differential equations. We refer to [9, 10] and the references therein for analysis of
nonlocal Hamilton-Jacobi equations describing dislocation dynamics.

Before closing the introduction we introduce a few of notation used below: aAb :=
min{a, b}, aVb := max{a, b}, ax :=aV0fora,b € R and ||ul|c,0 := sup,cq |u(z)]|
for real-valued function u on Q. We write intB for the interior of the set B in a
topological space.

2. ESTIMATES OF OPERATORS M¥*

We note that for any bounded measurable function ¢ on 2 and for any = € €, if
0 < ¢ < p(z), then

M*g)(z) = M [8](x) + / G(d(x + 2) — $(@)) K (2) d,

6<]z|<p(x)
where
My [¢)(x) = lim sup/ Gz + z) — ¢(x))K(z) dz.
e—0+ <|z|<d

In this section, we fix x € R™, § > 0 and v a bounded measurable function on
the ball B(x, §), and establish some upper bounds of Mj [u](z).

We note that the function G has the properties: (i) G(a) < G(b) if a < b and
(ii) G(ab) = G(a)G(b) for all a,b € R.

The following lemma (see, e.g., [8, Exercise 6.65]) will be useful when carrying
out our computations and can be checked easily.

Lemma 2.1. Let p; >0 fori=1,...,n and let f: (0, 1] — [0, 00) be a continuous
function which satisfies the integrability condition at the origin:

1
/ f(t)tp1+p2+"‘+pn_1 dt < oo.
Set © = {z = (z1,...,2n) € B(0, 1) | 2; > 0 for all i}. Then

2p1—1 2pa—1 _
/fm1—|—x2 ) Lo R e s

— F(pl)l—‘(pQ) ) / f tp1+172+ +pn—1 dt
2T(p1 +p2 + - +pn

where T' denotes the gamma function, i.e., T'(t) = fo e Txi~ldr.

Theorem 2.2. Assume that p > 2 and that there are a vector ¢ € R™ and a
constant C' > 0 such that

(2.1) u(z +2) —u(z) < q-z2+Clz[*>  for all z € B(0, ).
Then there is a constant C; > 0, depending only on n, such that
M;‘ [u](x) < C1C(|q| + 6C)P~26P77.
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A warning here is that M [u](z) can be —oco in the above theorem. Also, we
remark that if we replace (2.1) by the inequality

u(z +2) —u(x) > q-2—Clz[* forall z € B(0,0)
in the above theorem, we have the following conclusion:

Mj [u)(z) = =C1C(lq| +6C)P 26777,

where
M; [u)(z) := lim inf / Glu(w + 2) — u(2) K (2) dz.
e—0— e<|z|<é
This result follows from the above theorem applied to v := —u. Indeed, we have

v(x+ 2) —v(z) < —q- 2+ C|z]?
for all z € B(0,d). Hence, as a consequence of Theorem 2.2, we obtain
My [v)(z) < C1C(|g| + 8C)P~2677°,
while we obviously have
My [u](2) = =M [v](2).
Combining these yields the desired conclusion.

Another important remark is that Theorem 2.2 readily shows that under the
assumptions of Theorem 2.2 we have M [u](z) = M; [u](z). Indeed, under the
assumptions of Theorem 2.2, we see that

M [u](z) < C10(|q| +C)P~2eP77  for any 0 < & < 6,
from which one deduces easily that M [u](z) < M; [u](z). That is, under the
assumptions of Theorem 2.2, the following identity holds:
(2:2) Mu](x) = M*[u)(2) = M [u](a).

In what follows we denote by o, the surface area of (n — 1)-dimensional unit
sphere, i.e.,
_or(1/2)n 22

Op

© T'(n/2) T(n/2)
Proof. 1t is enough to show that the assertion of Theorem 2.2 is valid for = 0 and
d = 1. Indeed, if we define the function us on B(0,1) by us(z) = u(z + dz), then
we have

us(2) —us(0) < 6q- 2+ 62C|z|* for all z € B(0,1).
If we assume in addition that the assertion of Theorem 2.2 holds true for z = 0 and
0 =1, then we get
(2.3) M us)(0) < C182C(S|q| + 62°C)P~2 = C1C(|q| + 6C)P—26P.
On the other hand, one observes that

M [us](0) = lim sup /<| - Gu(x +02) —u(x))K(z)dz

e—0+

_Jimsup / Glule +y) — (@)K (y/5)5~" dy = 6° M [u] ().
e—=0+ Je<|z|<6

Combining this with (2.3) ensures that
M [u)(z) < Ci(lg| + 6C)P~2677°.
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We may thus assume that z = 0 and § = 1. Fix any 0 < e < 1. Let z € R™ be
such that € < |z] < 1. Observe that
G(u(z) —u(0)) < G(g- 2+ Cl2]*) < G(q-2) + G'(q- 2 + 0C|2[*)C]=?
for some 0 = 0(z) € (0, 1), where G'(t) := dG(t)/ dt, and
G'(q-2+0C|2*) < (p = 1) (lallz| + Cl=*)"~* < (p = 1) (la] + C)P~2[zP 2.

By symmetry, we have

/ . 1G’(q-z)K(z)dz:O.

Hence, we get

/< <1 G(u(z) —u(0))K () dz
= /<| |<1(G(q 2)+C(p—1)(|q] + C)P22]P) K (z) dz

— uC(lg| + C)r? / 2P~ dz

e<|z|<1
1
— uC(lgl + o)p—%n/ P10 dr < 00 C(lg] + O,
g
which completes the proof. ([

Theorem 2.3. Assume that 1 < p < 2 and there are a vector g € R™ \ {0} and a
constant C > 0 such that u(z + z) — u(z) < q- z + C|z|* for all z € B(0, §). Then
there is a constant C7 > 0, depending only on p and n, such that

M [ul(x) < C1Clql=267~".
For the proof of the above theorem, we need the following lemma.
Lemma 2.4. Suppose that n > 2. Let 0 < a <1 and e € R™ be a unit vector. Set
S(a)={z eR" | |z| =1, |e-z| < a}.

Let |S(a)| denote the (n — 1)-dimensional surface measure of S(a). Then we have
|S(a)| < mop_1a.

Proof. We begin with the formula from Advanced Calculus

sin"la
|S(a)| =201 / cos" 2 tdt.
0
Since sin"ta < wa/2, we immediately get
|S(a)| < 20,_1sin"(a) < wo,_1a.
|

Proof of Theorem 2.3. We first prove that the conclusion of Theorem 2.3 is valid
under the additional assumption that

(2.4) lq| > 48C.

As in the proof of the previous theorem, we may assume that z =0 and § = 1.
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In the case where n > 2, we make an orthogonal transformation if needed and
assume that ¢ = |g|ey, where e, € R” denotes the unit vector e, = (0, ...,0,1). We
write 2 = (2/,2,) € R"~! x R for generic z € R" in what follows.

Fixany 0 <e < 1. Set a:=C/|q| € (0,1/4], 0 ={z e R" |e < |z| < 1}, OF =
{z = (,2,) € O |2n] > 2a|2]?} and ©7 = {2z = (¢, 2,) € O | |z,] < 2alz|?}.
Setting

= /@ Glu(z) — u(0))K (=) dz,
.

Im:= G(u(z) — u(0))K(z)dz,
[Sha

I~ = G(u(z) — u(0))K(z)dz,
o
we observe that 7 = It + 1~ and

. /@ Gluz) — u(0)K(:)d= < /@ Gllalzn)G(L+ al2f?/2) K () d

Lo [P+ o= DI+ APl K ()

where A(z) is a real-valued function on ©7F satisfying |A(z)| < 1/2. Here we have
used that a|z|?/|z,| < 1/2 for 2 € ©F. Hence we get

S ey R e F e
o+
Applying Lemma 2.1, we obtain
1
It < Cg|q|p71a,u/ £ At = 20, |g|P e = 2C,C|q|P 2,
0

where

o _ 27— UT(1/2)" ' T((p ~ 1)/2)
? T((p+n—2)/2) '

Now, we compute

@5) 17 <l [ Gl alsP)K (s <l [ GlBalsK() d:

<lgl""'p / 2?7270 e < g / 2P0 de.
o

For z = (2/,2,) € ©7, since a < 1/4, we have |z,| < 2a|z]? < 2a|2'|?> + @, and
|2,| < 4a|2’|?. We now assume that p — o < 2. Since p—1—n — o < 0, we get

/ ‘Z|p—1—n—0' dz S / |Z/|p—1—n—0' dz
(She (She

4alz’|?
’u/ |Z|p_1_"_gdz§u/ > dz//o |Z/|p—1—n—adzn
- 2'<

< 4a,u/ |2/ [PTI=o" Ay = dao, ;.
|z"|<1

and

We next treat the other case, i.e., the case where p — o > 2. Let S(t) denote the
portion of the unit sphere defined by Lemma 2.4, with e = e, for t € (0, 1). Since
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|z < 2alz]? for z € ©7, we see that ©~ C {ty | y € S(2a), 0 < ¢t < 1}. Thus,
using Lemma 2.4, we find that

1
,u/ |z~ dz < ,u|S(2a)|/ P20 dt < 2ﬂan_1ua <Ano,_1a.
e- 0 p—1l-o
Thus we get I~ < 470, _1]q|P~2 in view of (2.5) and
(2.6) I < C3C|qP2,

where C3 = 2C5 + 47o,,_1.

Next we consider the case where n = 1. We follow the above argument for higher
dimensions. Noting that C|z|/|q| < 1/2 for all z € (-1, 1), we compute that for
any 0 < e < 1 and for some function A(z) € (—=1/2, 1/2),

%)K(z) dz

= /6<|z|<1 Glez) (1 +(p =D+ q

1
<27P(p—1) Clq\”‘Qﬂ/ 2P~ 77 dz < 2°7P(p — 1) ClglP 2
g

This together with (2.6) guarantees that the conclusion of the theorem holds under
condition (2.4).

Now, we turn to the general case. We may assume that + = 0 and 6 = 1. If
lg| > 4C, then we are done. Thus, we may assume that |g| < 4C.

We set 7 :=|q|/(4C) € (0, 1) and observe that condition (2.4), with r in place
of ¢, is satisfied. We apply what we have proved above, to see that

M} u](0) < C3C|q|P~2rP~7 < C5C|q[P~>.

Also, we have

/< \<1G(U(Z) —u(0))K(z)dz g/ (G(lqll2)) + G(C2]%) K (2) dz,

r<|z|<1
/ GlallzN) K (2) dz < IQI”*lr’lﬂ/ 2P0 dz
relst r<|zl<1
S O‘n‘q|p_1’l"_1 = 40-n0|q|;0—27
and
/ G(C|2]*)K (2)dz < cpflrp*m/ 2P
r<|z|<1 <]z <1

< anC(Cr)p_2 < 40nC|q|p_2.

Combining these, we get
I < (C3+80,)C|qlP2,
which completes the proof. ([l

Now let 1 <p<2and 8> 1/(p—1). Let ¢ € C*(R") be the function given by
#(x) = |2|P*1. We note that for all 2,y € R",

Dé(x) = (B+ 1)z and [D*¢(x)y -yl < BB+ 1)z [y[*.
Lemma 2.5. We have
M;r [0](0) < oy, 5B+ (p—1)—0o
We remark that (+1)(p—1)—0 >p—0 > 0.
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Proof. Observe that for any z € R”,
G((2) = $(0)) K (2) = G(|2|"T1) K (2) = p|z| FHDE=D=n=,

Hence, we get for any 0 < € < 4,

6
/ G((b(z) - ¢(O))K(Z) dZ :Un/l// 7«(34-1)(17—1)—0—1 dZ
e<|z|<éd

€
Int SBFD (-1~
f+p—1) -0

=
Thus
M6+ [0](0) < 0,6 PTHE-1=0o
O
Theorem 2.6. There is a constant C7 > 0 depending only on B, p and n such that
for any x € B(0,9),
M [9](x) < C1 6P HDE=De,

Proof. Fix any x € B(0,0). In view of Lemma 2.5, if x = 0, then we have nothing
to prove, and hence we may assume that = # 0. Observe that for any z € B(0, |z|)
and for some 0 = 0(z) € (0, 1),

ﬂ(ﬂ;’ 1) |l‘ + 9Z|ﬁ—l|z|2

6z +2) = ¢(x) <(B+ V2l 22+
<(B+ Dl 2+ BB+ 1)2° 22} 2,
Using Theorem 2.3, we get
Mig([8](2) < C225723(5 + 1P~z BV @D

where Cs is a constant depending only on p and n.
Next, setting

1= [ Gt - o) K ()
|z|<|z|<6
we have
(2.7) M [g](x) < Co2°728(8 + 1)P~1P+DE-1—o L [,

Observe that G(¢(x + z) — ¢(x)) < G(p(z + 2)) < G(¢(2%)) for z € R™ \ B(0, |z|)

and

1< 2(5+1)(p—1>u/ 12| BHDE=D=n=0 4, < 9B+D =1 §B+D D=0
|z|<|z|<d

This combined with (2.7) completes the proof. O

We close this section with the following remark. Theorems 2.2, 2.3 and 2.6
guarantee that identity (2.2) holds true for every € Q and u € 7,,.
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3. STABILITY PROPERTIES AND THE PERRON METHOD

In this section we establish some stability properties of subsolutions of (1.1) as
well as the Perron method. Analogous stability properties are valid for supersolu-
tions of (1.1), but we leave the details to the reader.

Lemma 3.1. Let 6 >0, {zr} C Q and z¢ € Q. Let {u} be a sequence of bounded
measurable functions on Q and u a bounded measurable function on Q. Assume
that {ug} is uniformly bounded on Q and (xg, up(zr)) — (2o, u(zg)) as k — oo.
Moreover assume that

(3.1) lim sup{ux(y) |y € B(z,7-H)NQ, k>j} <u(z) forallzeq.
J—00
Then
lim sup/ G(uk(xp + 2) — up(zg))K(2)dz
k—oo  JB(0, p(xk))\B(0, )

<

/ G(u(zo + 2) —u(zo))K(z) dz.
B(O,p(mo))\B(O,&)

Proof. Set

Fu(2) _{ G(u(xg + 2) —ug(zy)) for z € B(0, p(xo)) N B(0, p(zx)),
k 0 for z € B(0, p(xo)) \ B(0, p(xk)),

I :/ fr(2)K(z)dz.
B(0, p(x0))\B(0,9)

Choose a constant C' > 0 so that |ug(z)] < C for all (z,k) € Q x N, and note that
|f(2)|K(2) < G(2C)K(z) for all z € B(0, p(zo)) and all k£ € N. By the continuity
of p, we find that

lim sup/ G(uk(xp + 2z) — up(zr)) K (2) dz = limsup I,.
k—oo JB(0, p(zx))\B(0,0) k—oo
By the Fatou lemma, we have
limsup I, < / limsup fi(2) K(2) dz.
k—oo B(0, p(20))\B(0,8) k—o0

Since G is continuous and nondecreasing in R, using (3.1), we see that for any
z € intB(0, p(xo)),
lim sup fx(2) < G(u(zg + z) — u(xo)).
k—o0

Thus we obtain

limsup I, <

/ Glu(zo + 2) — ulwo)) K (2) dz,
k—o00 B(0, p(z0))\B(0, §)

which completes the proof. ([l

Theorem 3.2. Let {uy} be a sequence of bounded measurable functions on 2 and
u a bounded measurable function on Q. Let ¢ € T, and let {x} C  be a sequence
converging to a point xq € Q. Assume that for each k € N the function up—¢ attains
a mazimum at xy, the sequence {uy} is uniformly bounded on Q, ug(zy) — u(xo)
as k — oo and

lim sup{ux(y) |y € B(z,57)NQ, k>j} <u(x) foralxcQ.
j—oo
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Then
lim sup M [ug](zx) < M [u](z0).

k—o0

A useful remark concerning the above theorem is that the global maximum
assumption can be replaced by the following “uniform” local maximum condition:
there exists a constant r > 0, independent of k, such that uy — ¢ attains a maximum
over B(zg, ) NAQ.

Proof. Fix an r € (0, p(z0)/2). By selecting a subsequence if necessary, we may
assume that z; € B(xzg, r) for all & € N. Noting that B(zy, r) C B(xo,2r) C Q,
we choose a constant C' > 0 so that
bz + 2) — d(x1) < Dd(xy) - 2+ Clz|* for all z € B(0, r).
Then we have
ug(zp + 2) — ug(ry) < Do(xg) - 2+ C|z|?  for all z € B(O, 7).

We first treat the case where p > 2. By Theorem 2.2, there is a constant C7 > 0,
independent of k, such that for any 0 < § < r and any k € N,

(3.2) M [ug](zx) < CLC(ID(xy)| + 6C)P~26777.
Thus, we have

M*[ug](zx) <CLC(|Dd(wy)| + 6C)P 2627
+ / G(ug(xg + 2) — up(zg)) K (2) dz.
B(0, p(zx))\B(0, 9)

We now apply Lemma 3.1 to the second term on the right hand side of the above
inequality, to get

lim sup M T ug](xy) <C1C(|Dg(x0)| + 6C)P~25P~7
k—oo

+ / G(u(zo + 2z) — u(xo)) K (z) dz,
B(0, p(20))\B(0, )

from which we conclude that

lim sup M+ [ug] () < M [u] (o).

k—oo

Next, we consider the case where 1 < p < 2. We follow the above argument with
some modifications. In the case where D¢(xg) # 0, we may assume by selecting a
subsequence if needed that infxey |[Do(xk)| > 0, and instead of (3.2), by applying
Theorem 2.3, we get

M fug](zx) < Cr D@ (ay)[P~267°.
In the case where D¢(xo) = 0, we may replace the test function ¢ by the function
$(a) = Alx — zo7*,
where A is a sufficiently large constant, and using Theorem 2.6, we get
M [ug](zr) < My [¢](zy) < AC§BHNP=1=0 if |10 — 20| < 6

in place of (3.2), where C is a constant depending only on p, 8 and n. Then the
rest of argument is the same as the previous case. (Il
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Theorem 3.3. Let Sy be a nonempty set of subsolutions of (1.1). Assume that
the family Sy is uniformly bounded on Q. Define the bounded function u on ) by
u(x) = sup{v(z) | v € So}. Then u is a subsolution of (1.1).

Proof. Let g € Q and ¢ € 7,(2), and assume that u* — ¢ attains a strict maximum
at zg. By the definition of u*, there are sequences {zx} C B(zg, r), where r > 0
is chosen so that B(zg, r) C Q, and {vx} C Sp such that vi(xg) — u*(zg) and
xp — %o as k — oo. By the definition of u, we have v;; < u* in Q.

For each k € N let y € B(xg, ) be a maximum point, over B(zg, r), of the
function vj, — ¢. Observe as usual that

(u" = §)(wo) = lim (s — 8)(ax) < Hninf(vf. — ) ()
< limsup(vf, — 9)(3) < limsup(u” = 9)(e) < (u” = ¢)(a0)

This shows that v} (yx) — ©*(x0) and (u* — ¢)(yx) — (v* — ¢)(z0) as k — oco. It is
now easy to deduce that yr — xg as k — oco. Passing to a subsequence if necessary,
we may assume that y, € intB(zg, r) for all k. Since vy, is a subsolution of (1.1),
we have M T [vf](yx) > f(yx) for all k € N. Since v; < u*, we see that for all x € ,

lim sup{vi(y) | k>4, y € B(z, 7)) NQ} < u*(z).
j—oo

We may now invoke Theorem 3.2, to conclude that M™[u*](x0) > fo(zo), which
completes the proof. O

Theorem 3.4. Let {ur} be a sequence of subsolutions of (1.1). Assume that the
collection {ug} is uniformly bounded on Q. Define the bounded function u on £ by

u(z) = lim sup{uy(y) |y € B(z, ;") NQ, k> j}.
Jj—o0

Then u is a subsolution of (1.1).

Proof. First of all, we remark that u € USC(Q). Next, let 29 € Q and ¢ € 7,(Q2).
Assume that v — ¢ attains a strict maximum at xq. By the definition of u, there are
sequences {k;} C N diverging to infinity and {z;} C Q such that uy, (z;) — u(xo)
and z; — xg as j — oo. Here we also assume by passing to a subsequence if
necessary that {z;} C B(zo, r), where r > 0 is chosen so that B(xzg, r) C Q.

Set v; = uy, for j € N. For each j € N let y; € B(xg, r) be a maximum point,
over B(zg, r), of vj — ¢. We observe that

(33) (= 0)wo) = lim (v; — &)z < liminf (v} — 6)(y).

By selecting a subsequence if necessary, we may assume that y; — y as j — oo for
some y € B(z, r). By the definition of u, we see that
limsup(vj — ¢)(y;) = liin supvj (y5) — ¢(y) < uly) — o(y).
j—o0 —00
This together with (3.3) guarantees that y = xo. That is, the sequence {y;} con-
verges to xo. Also, it follows that v} (y;) — u(wo) as j — oo.
For sufficiently large j, we have y; € intB(zg, 7) and M*[vf](y;) > fo(y)-
Applying Theorem 3.2, we find that M [u](z¢) > fo(zo). This finishes the proof.
O
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To formulate a basic existence result (Perron method) for (1.1), we let g~ €
LSC(R?) and g™ € USC(Q) be a subsolution and a supersolution of (1.1), respec-
tively. Assume furthermore that g% are bounded in Q and g~ < g7 in Q. Set

(3.4) u(x) = sup{v(x) | v is a subsolution of (1.1), g~ <v < g™ in Q}.
Note that u is bounded in 2.
Theorem 3.5. The function u given by (3.4) is a solution of (1.1).

Proof. We note by Theorem 3.4 that u* is a subsolution of (1.1). We thus need to
show that u, is a supersolution of (1.1).

Let g € Q and ¢ € 7,(2). Assume that u, — ¢ attains a strict minimum at xo,
with minimum value zero. We intend to show that the inequality

(3.5) M~ [u](zo) < fo(o)
holds.

It is clear by the definition of u that ¢g= < u < g7 in Q. Consequently we
have g~ < u, < g, in Q. Consider first the case where u.(z¢) = g%, (zo). Then,

since u, < g%, in §, it follows that g%, — ¢ attains a minimum at zo. As g* is a
supersolution of (1.1), we have

(3.6) M~ [g%](x0) < fo(wo)-
But, since u, < g%, in Q and g%, (7) = u«(z0), we see that
M~ [g*)(wo) = M~ [u] (o),

from which together with (3.6) we conclude that (3.5) holds.

Next we assume that u.(x¢) < g% (z0). We deduce by the semicontinuity of g7,
that g%, > ¢+¢ in a neighborhood of z for some constant ¢ € (0, 1). Furthermore,
we may assume, by modifying ¢ on a set away from the point x if necessary, that
gh(z) > ¢(z) + ¢ for all z € Q.

Define

up =uV (¢>—|—%) in Q.
Note that (ug)«(z0) = ¢(x0)+1/k > u.(x) and therefore ux, £ u. Since p+e < g+
in Q, we see that g~ < uy, < g% for sufficiently large k, say, k > j, for some j € N.

In what follows we are concerned only with u; having k > j. Since up £ v and
g~ < wup < gt on Q, by the definition of u, we find that w, is not a subsolution of
(1.1). Thus, for each k there are a point z; € Q and a function ¢, € 7,(2) such
that xj, is a maximum point of u} — v and the inequality
(3.7) M* [ug)(zr) < folar)
holds.

Set ¢y () = ¢(x) + 1 for x € Q and Vi, = {z € Q | ¢p(z) > u*(x)}. Note that
V. is an open subset of  and ux = ¢ on V.

We claim that x; € Vj. Indeed, if this were not the case, then we would have
dr(zr) < u*(zr) and therefore u; (x) = u*(ar) V ¢r(zr) = v*(zx).

Now, since uj > u* in 2, we see that xj is a maximum point of u* — ;. Hence
we have M [u*](zy) > fo(xk). Since uj(zx) = u*(zx) and uf > u* in 2, we have
M*[u*](zg) < M*[ui](zy). From these we obtain M™*[u}](zy) > fo(zk), which
contradicts (3.7). Thus we have zj € Vj.

As noted above, Vj is an open subset of Q0 and ug = ¢ on Vj. Therefore,
(ug)«(xg) = ¢p(zx). By the definition of ug, we have ur > ¢ on Q and hence
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(ug)« > ¢ on Q. Thus, (uk)« — ¢ takes a minimum at zx. Also, since u, < (ug)s <
ux + 1/k in Q, we find that, as k — 0o, (ux)+ — us uniformly on Q and x — .
Hence, applying Theorem 3.2, we obtain

likm inf M~ [(ug)s](zr) > M~ [us](z0)-
Combining this with (3.7) yields fo(xo) > M~ [us](z0), which finishes the proof. O

4. COMPARISON THEOREM
In this section we prove the following comparison theorem.

Theorem 4.1. Let \g = 1. Let u € USC(Q) and v € LSC(Q) be a subsolution
and a supersolution of (1.1), respectively. Assume that u < v on 02 and u and v
are bounded on Q. Then u < v in .

Proof. We argue by contradiction, and thus suppose that m := supg(u—v) > 0 and
will show a contradiction. We fix a constant C' > 0 so that [jul gV [[v]|, g < C.
Since G is strictly increasing, we can choose a nondecreasing positive function -y on
(0, m) so that

G(t+s) > G(t)+~(s) forall|t|<2C,0<s<m.

For o > 0 we consider the function ®, on Q x Q defined by

Do (2, y) = u(z) — v(y) — alz —y|”,

where 3 > max{1, 1/(p —1)}. For each a > 0, let (74,%,) € Q x Q be a maximum
point of ®,. As usual in viscosity solutions theory, we observe that there are a
sequence {ay}, diverging to infinity, and a point zo € Q for which z,, — w0,
Yo — To, U(Tq, ) — u(zg) and v(ya, ) — v(zg) as j — oco. Also, it is easy to see
that (u — v)(zg) = m. Since maxgo(u —v) < 0 by assumption, we have z( € 2.

For notational simplicity, we write x; and yi for z,, and y,,, respectively.
Passing to a subsequence if necessary, we may assume that xy, y, € €2 for all £ € N.
Hence, by the definition of sub and supersolutions of (1.1), we have M [u](zy) >
fo(zk) and fo(yr) > M~ [v](yk) for all k € N. As a remark after Theorem 2.2, we
see from Theorems 2.2, 2.3 and 2.6 that Mt [u](zy) = M~ [u](x) for all € N.

Since p(zg) = dist (xg,9Q) and m > 0, by the upper semicontinuity of v — v,
we can choose a point £ € intB(xg, p(zo)) so that (u—v)(§) < m/2. Then, in view
of the semicontinuity of u and v, we can choose an 0 < r < dist (£, dB(zo, p(x0)))
so that u(z) —v(y) < m/2 for all x,y € B(&, r). Setting pr, = p(xr) A p(yx) and
passing to a subsequence if necessary, we may assume that

B(¢,r) C B(xg, pr) N B(yk, pr) for all k € N,
which can be stated as
B(§ — zp,r)UB(§ — yg,7) C B(0,px) for k e N.
Again, passing to a subsequence if needed, we may assume that
B(& — g, 7/2) C B(§ —x, 1) N B —yg, r) for ke N.
Note that for z € B(§ — xg, r/2),
Tkt 2y 2 € B 1)

and
u(zy +2) —v(ye +2) <

SE
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Since u(zx) — v(yk) > m, we have
w(xy + 2) —u(rr) < v(ye +2) —v(yr) — % for z € B(§ — xo, 1/2).

Note also that B(§ — zg) C B(0, py) for k € N.
We have

D(xk,yk) > Pl + 2,y +2) for all z € B(0, pi), k €N,
and hence
u(zy) — v(yk) > u(xg + 2) —v(yg +2) for all z € B(0, px), k € N.
We set n = & — x¢. Using the above observations, we compute that

(4.1)  folwr) <M~ [u](z)

<liminf

e—-0+ /B(o,pk>\<B<n,r/2>UB<o,s>>

" /B(n»rm) Glular + 2) — u(w)) K (2) dz

Gv(yr +2) —v(yx)) K(2) dz

+/ G(2C)K(z)dz
pre<|z|<p(zk)

<lim inf Gv(yr + 2) —v(yr)) K(z) dz
e=0+ JB(0, p)\(B(n, 7/2)UB(0, ))

+ / Glolye +2) — vlye) — m/2)K () dz
B(n,r/2)
G(2CYK(z)dz
+/pk<zl<p(zk) ( ) ( )

G(v(yk + 2) — v(yx)) K (2) dz

< lim inf

e—=0+ /B<o, pe)\B(0, €)

A (m)2) / K(z)dz + / G20VK (2) d=

B(n,r/2) pr<|zl<p(zr)
M) —2m/2) [ K
B(n,r/2)
+ 2/ G(2C)K(z)d=z
pr<|z|<p(zr)Vp(yr)

< folyr) —~(m/2) / K(2)dz

B(n,7/2)

+2 / G0V K () d=.
pr<l|z|<p(zr)Vo(yr)

Sending k£ — oo yields
’y(m/2)/ K(z)dz <0,
B(n,r/2)

which is a contradiction. O

Remark 4.1. In the (linear) case where p = 2, the same conclusion as the above
theorem is valid without assuming Ao = 1.
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Proof of Remark 4.1. Let p =2 and 0 < A\p < 1. As in the proof of the previous
theorem, we suppose that m := maxg(u — v) > 0 and will show a contradiction.
Weset I' = {z € Q| (u —v)(x) = m}. Obviously, the set I' is a nonempty closed
subset of 2 and there are a point 2o € I" and a ball B(&,r), with r > 0, such that

B(&,7) C intB(zg, plxo)) \ T

Here we may assume by choosing r > 0 small enough that u(z) — v(y) < my for all
x,y € B(, r) and some constant mgy < m.

Let ¢ > 0, and note that the function u(z) — v(z) — €|z — zo|? has a strict
maximum at * = xg, and, introducing the function

Vo (2,y) = u(z) — v(y) — elz — zo* — alz —y/?

on Q x Q, we find that there are a sequence {ay,} diverging to infinity and sequences
{z1} and {y} converging to zo such that ¥,, attains a maximum at (x, yx).

Selecting a subsequence if necessary, we may assume that z,yx & B(&,r) and
B(&,r) C B(ag, p(xr)) N Blyk, pyx)) for all k& € N. Setting n = £ — xy, we may
assume that for all k£ € N,

(zx + B(n,7/2)) U (yx + B(n,7/2)) C B(E, 7).
As u and v are sub and supersolutions of (1.1), respectively, we get
M*[u)(zr) = M~ [u](zx) = fo(zr) and M~ [v](yr) = M*[0](ye) < folyr)-
Since
Vo, (T, yk) > Vo, (xr + 2,yk + 2) for all z € B(0, p(zk) A p(yr)), k €N,
we have

(i + 2) — u(ze) So(y +2) — vle) + & (2ox = 0) - = +]212)
for all z € B(0, p(zx) A p(yk)), k € N.

Hence, computing similarly to (4.1), we get

folax) <folw) = 3(m = mo) | K@ [ Ge0K R

+€/ |2|> K (2) dz,
B(0, p(wk))

Ni = (B(zk, plx)) U By, p(yx))) \ (B(zk, p(zx) N B(yk, p(yr))),

from which we obtain a contradiction in the limit as k — oo if € > 0 is sufficiently
small. (]

where

5. EXISTENCE OF CONTINUOUS SOLUTIONS

In this section we establish an existence result for the Dirichlet problem for
(1.1)—(1.2). We need the following additional hypotheses on 2 and fj.

(H1) The set § satisfies the uniform exterior sphere condition. That is, there
is an R > 0 and, for each z € 01, a point y € R™ such that

B(y, R)NQ = {z}.
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(H2) There exist constants g € (0, 1) and Cp > 0 such that
[ fo(x)] < Co (Ao dist (z,02))°P™D=7  for all z € Q.

Remark 5.1. (i) Although we are mainly concerned with bounded fj, but assump-
tion (H2), with eo(p — 1) — o < 0, allows f to blow up at points of the boundary
09Q. (ii) Fix a bounded function f; on Q and constants p > 1 and 0 < o¢ < p.
We may choose constants g9 € (0, 1) and Cy > 0 so that go(p — 1) — 09 < 0 and
|fo(z)| < Co(Nodist (z,00))°P=D=9 for x € Q. Then, for any oy < o < p,
we have | fo(z)] < Cy (Ao dist (z, 99))* P77 for all 2 € Q and for some constant
C7 > 0 independent of 0. This remark is important when we discuss the asymptotic
behavior of of the solution u, of (1.1)—(1.2) as o — p.

Henceforth in this section, we assume that the above hypotheses are valid, and
we fix R >0, g9 € (0, 1) and Cp > 0 taken from (H1)-(H2).
The main result in this section is stated as follows.

Theorem 5.1. Assume that \o = 1 if p # 2. Then there exists a unique solution
u € C(Q) of (1.1)-(1.2).

Proof. In view of the Perron method (Theorem 3.5) and the comparison theorem
(Theorem 4.1 and Remark 4.1), we need only to show that there exist a subsolution
¥~ € LSC(Q) and a supersolution ¢ € USC(Q) of (1.1) such that ¢y~ < T in Q
and ¥~ = T on 99, which is exactly what the next theorem guarantees. O

Theorem 5.2. There exist functions = € USC(Q) and 1~ € LSC(Q) such that
Wt (resp., ™) is a supersolution (resp., subsolution) of (1.1), ¥~ < ¥t on Q and
W = go on O). Moreover, the functions ¥* can be chosen independently of o.

Remark 5.2. The hypotheses of Theorem 4.1 exclude the case where 0 < A\g < 1
and p # 2. But, even in this case, the proof of Theorem 5.1 ensures the existence of
a solution u of (1.1)-(1.2) which is continuous at points of the boundary O£, that
is,

lim u(z) =go(y) fory e 09,
Q3x—y

and may not be continuous in €.
The above theorem is an easy consequence of the following lemma.

Lemma 5.3. Let g € C%(Q). Then there is a function ¢ € C(Q) such that ¥ is
a supersolution of (1.1), g < on Q and 1 = g on ). The choice of 1 does not
depends on o.

Assuming the above lemma as true for the moment, we prove Theorem 5.2 as
follows.

Proof of Theorem 5.2. We extend the domain of definition of go to € so that the
resulting function, denoted again by go, is continuous on (2. For any 0 <& <1 we
choose a function g. € C*() so that [|g- — goll,, 5 < & We apply Lemma 5.3 with

g = €+ g, to find a supersolution ¥} € C(Q) of (1.1) such that ¥F > e+ g. on Q
and ¥ = ¢ + g. on 99Q. Here the choice of 1 is independent of 0. Now, we set
YT (z) =inf{yF () |0 <e <1} forzeQ.

This function 9T is upper semicontinuous on €2, is a supersolution of (1.1) due to
Theorem 3.3 and satisfies the conditions that gy < %™ on Q and go = ¥+ on 9.
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Next we apply Lemma 5.3 with — fp and € — g, in place of fy and g, respectively,
to obtain a supersolution ¢. of

Mlul(z) = —fo in Q.

Setting ¢ = —¢., we observe that - is a subsolution of (1.1) and satisfies the
conditions that ¢ > —e + g. on Q and ¢y = —e + g. on 0. As before, setting

Y (x) =sup{y- (z) |0 <e <1} forz €,

we get a subsolution ¢~ € LSC(Q) of (1.1), the choice of which is independent
of o, having the properties: =~ < go on Q and ¥y~ = go on 9Q. Noting that
P~ < go <Yt on Q, we conclude the proof. O

In this section we put d(x) = dist (z,9Q) for x € Q and
Qs ={zeQ|dx)>d} ford>0.
To prove Lemma 5.3, we need the following lemma.
Lemma 5.4. Let € € (0, 1). Define the function ¢. € C(Q) by ¢.(x) = d(z)°.

Then there are constants 6 = 6..r, C = Cr > 0, v = v..r > 0 and, for each

x € O\ Qs, a unit vector e = e, € R™ such that for any z € B(0, d(x)),
ed(z)*~! (e 2+ CJ2[?),
1 € - Ye S .
(5 ) ¢ (x + Z) ¢ (-T) { €d($)8_1 (e .z —Wd(x)_l\z|2) lf |€ . Zl 2 |Z|/2

Now, assuming Lemma 5.4 as true, we give the proof of Lemma 5.3.

Proof of Lemma 5.3. In this proof we write € for g¢ for notational simplicity. Let
¢e, Cr, 7 = Ve,r and 0 = 6. r be as in Lemma 5.4. Fix a constant C > Cr V 1 so
that

CoV gl V I Dgllsce V [D?gllsc < C.

Here, to be sure, we write | D?g||o0.q := sup{|D?g(z)¢ - £| |z € Q, £ € B(0, 1)}.
It is easy to see that there is a quadratic function 1y € C?(R™) such that

Yo(z 4 2) — Yo(z) < Diho(z) - 2 — |2|* for all 2,z € R"

and
diam () + 1 < |Dyyg(z)| < 3diam (Q) +1 for all z € Q.

We may moreover assume that 9 > 0 on Q. We fix such a function 1.
Now, we fix €  and set gy = Dipo(z) and

Yo ={z € B(0, p(x)) | lqo - 2| = lqol|2[/2}

Note that X is symmetric, i.e., =Xy = Xy and the volume of ¥y is comparable
to that of B(0, p(x)), i.e., |Xo| = 7,|B(0, p(z))| for some constant 7,, € (0, 1). We
observe that for some 6 € (0, 1),

G(o(z + 2) —ho(z)) = Glqo - 2) — G'(qo - 2 — 0]z]*) 2
- { G(qo - 2) for all z € B(0, p(x))
| Glgo-2)—(p—1)|qo -z — 0z]*|P~2|z|P for all z € Xo.

Let z € ¥ and 0 € (0, 1), and observe that if p > 2, then

_ _ —_ -2 _ —_
0 2 = Ol2P[77% = 2277|272 lgo — 20|77 = 2277
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and if p < 2, then
g0 2 — 0122172 2|2P2lgo| + [2][P~2 = (4diam () + 172z 2.
Here we have used the condition that diam (2) +1 < |go| < 3diam (Q) + 1. Setting
(p—1)22 ifp>2,
- { (p—1)(4diam (Q) + 1)P~2  ifp <2,
we have for z € X,
G(sho(x + 2) = o(x)) < Glqo - 2) — bylz[*,

and obtain

Mwams/ Glqo - 2)K(2) dz

B(0, p(2))\%0

+/2 (G(qo cz) — bp|z|p)K(z) dz

=— bpu/ |z|P~" 77 dz = —byThonp(x)PC.

o
Thus, noting that p = £(p— 1)+ (1—¢)p+e and setting by = byT,0, (Ngd/2) 1~ +e,
we get
(5.2) M{tho](z) < —bop(x)*P~D=7 for all z € Q5/2.
Let A > 1 be a constant to be fixed later on, and set
v(z) = g(x) + Ap.(z) for x € Q.

Fix z € Q\ Q5 and let e € R™ be a unit vector which satisfies (5.1). We set ¥ =
{2 € B(0, p()) | le-2| > |21/2}, q1 = Dy(a) +ed(x)* Ae and 71 = yed(x)*2A/2.
We may assume by replacing v and § by smaller positive numbers if needed that
§ < 4y < 1. We now assume that 4C < e6° ' A. Then we have C' < ve§° 24 and

€ edwyrac LATA
Hence, by (5.1), we have for any z € %,
v(+z) —o(z) < gz = mlzl?
Observe also that for any z € X,
S O E P
021 2 () Ale 2| - el > IO

lq1 - 2| < ed(x)* P Alz| + C|z| < 2ed(x)* 1 Alz|.
Hence, for any z € ¥ and 6 € (0, 1), if p > 2, then

ed(r)*1Alz| )P*2

Glar-2=0nleP) = (= Dlar- == oml=P[ = (- 1) (=

and if 1 < p < 2, then
Gl 2= 0ml2?) > (p— 1) (2ed(w)™ 1 AL2])" .
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Thus, setting

(p—1)877 ifp>2
Cp = _ .
(p—1)2r—2 if p<2,
we get
G(r+2z) —v(zr) <G(q1-2) — ¢ (s:d(a:)gflA)p_2 71|z|P for z € X,

and consequently
(5.3) /EG(U(LE +2z) —v(z))K(z)dz < —¢, (gd(x)€71A)p—2 ”Yl,u/z 2P~ dz
1
= —§cp’y(€A)p_1d(x)_(l_s)p_srnanp(x)p_”

1 -
< ey (A TN pl)

Next, we give an estimate of the integral
I:= / G(z+z) —v(z))K(z)dz.
B(0, p(z))\%

We have v(x +2) —v(z) < q1 -2+ C(1 +ed(z)°"1A)|2|2 for 2 € B(0, p(z)). Noting
that
l1| vV C(1 + ed(x)* 1 A) < Q := 2ed(2x)* T AC

and arguing as in the proofs of Theorems 2.2 and 2.3, we find a constant C; > 0,
depending only on p and n, such that if p > 2, then

I <C1Q(Q + pl@) QP 2pla)r =" = CLP (1 + p(a))2pla)"~
< 277204 (26 AC)P T d(2) Em VP p(2)P= < Oy (4e AC)P p(z) e D= DHp—0
= CL (440 pla) 0D,
and if p < 2, then
I <CLQP 1 p(x)P~7 < C1(2eAC)P~ ()G VP p(2)P~2 < Oy (26 AC)P~ L p()= P~ D=0+,
Here we have used that p(z) < § < 1. From these and (5.3), we get
M*)(z) < (AP~ ((4C)p_1016 - %canony)\élfe)p%)p(m)e(”_l)_”.
Set ¢ = canan’y/\(()kE)ere/éL Replacing § > 0 by a smaller number if needed, we
may assume that (4C)P~1C16 < ¢p. Then we have
M [](z) < —co(eA)P L p(x)* P~ D=7 for all z € Q\ Q.
We now assume that cg(eA)P~1 > C, and then we get
(5.4) M*)(z) < —Cp(x)*P~ V=7 for all z € Q\ Q5.
At this stage, our requirement on A is that A > A, where
1
Ay == max {17 6:;76_117 é(%) o }

By (5.2), for any constant B > 0, we have
M[By)(z) < —Bp_lbop(x)s(p_l)_" for z € Qs /5.
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We fix B > 0 so that BP~1by > C, and we have
(5.5) M[By|(x) < —Cp(x)*P=D=7 for all x € Qy/s.
We set
L:= Bmﬁaxwo € (0, 00) and j.(t)=t° for t>0,
and observe that

sup v <O+ Aj.(5/2).
Q\Qs/2

infv > — O + Aj.(0).
Qs

Since jo(8) > j:(d/2), we may choose a constant Az > 0 so that
A3 (j=(0) — j=(6/2)) = L +2C.
We finally fix A = A; V As, and define the functions w, v € C(Q) by
w(x) =C+ Aje(6/2) + Bibo(),

v(z) if £ € Q\ Qy)0,
Y(x) =9 v(x) Aw(z) if 2€ Qs \ Qs,
w(x) if x € Qs.

It is easily checked that ¥ > g on Q and ¢ = g on 9Q and also that (z) =
v(x) Aw(x) on L.

It remains to check that v is a supersolution of (1.1). Let ¢ € 7,(Q) and y € Q,
and assume that ¢ — ¢ attains a minimum at y. We may assume that (¢—¢)(y) = 0,
so that ¥ > ¢ in 2. We divide our consideration into three cases. First, we consider
the case where y € Qs5/5 and ¥(y) = w(y). Since ¢ <1 =v Aw in Q, we see from
(5.5) that

M[g](y) < M[w](y) < fo(y)-

Next, consider the case where y € 5/, and ¢¥(y) # w(y). Then we have y €
Qs5/2 \ Qs and (y) = v(y). Hence, from (5.4), we get

M[¢)(y) < M*[o)(y) < fo(y).

The last case is where y € Q\ Q5/5. But then we have ¢(y) = ¢ (y) = v(y) and, as
in the previous case, we get

M[)(y) < M [v)(y) < fo(y),
which completes the proof. ([l
We need the following lemma for the proof of Lemma 5.4.

Lemma 5.5. Letr > 0,0 <e <1, and e € R" be a unit vector. Set x = (R+r)e.
Then there are positive constants c. g and 0. r, depending only on € and R, such
that for any z € B(0,r), if r < d. g, then

e—1
o1 (e
(|z+2[ = R)® — (lz] = R)® < 2R
57"5_1<e~z—c€737"_1|z|2) if le-z| > 2]
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Proof. We fix any z € B(0,r) and observe that for some 6 € (0, 1),
(I + 2| = R)® = (|z] = R)® <e(lz| = R)*"*(|z + 2| - |z)
e(l—¢)

(l + 02] = R)*2(|2 + 2| — [a]).

We set f(y) = |z + y| for y € R™ and compute that if © 4+ y # 0, then

Df) = Y and DP(y) = L (1 EEOE LT
|z +y| |z 4yl |z +yl
where I denotes the identity matrix of order n and v ® v := (v;v;)1<i j<n for
v = (v1,v2,...,v,). Hence, we have
|z + z| — |z <e-z+¢
- 2|z + 6z|

for some 6 € (0, 1). Thus, noting that R < |z + 0z| < R+ 2r for 6 € (0, 1), we get

£ £ e—1 |Z|2
(5.6)  (|lz+ 2| — R — (|z| — R) <er (e-z—!—ﬁ)

e(l—e¢) _
U9 rye=2(je 4 2 )
In particular, we have
2
(|2 + 2| — R)® — (|z| — R)* < 5r5_1<e o+ %)

We assume henceforth that |e- z| > |z|/2. Note that
2z 2| — [z > (R+7)l2| —rlz| = Rz,
and
(o + 2> = 2P _ _(R]z])?

(5.7) ot 2l = 1B0° = S e = @R+ 807

We choose ., g > 0 so that

1 R?

—<(l-g)2¢ % —~——

=09 Griaae
and set )
R

eri=(1—eg)2 8 ——

cori= (1 =22 oy

From (5.6) and (5.7), if r < 4. g, we get

(e + 2] = R)® — (Jz| — R)* < ere! (e sz — cE,Rr_1|z\2) ,
which completes the proof. O
Proof of Lemma 5.4. Let ¢ = c. r and § = 6. r be positive constants from Lemma
5.5. Fix any © € Q\ Q5. Set r := d(z) € (0, §] and select a point £ € I so that
7 = |§ —z|. By the uniform exterior sphere condition (H1), there is a point n € R"
such that B(n, R) NQ = {{}. By translation, we may assume that 7 = 0. Setting
e = x/|z|, we have z = (R+r)e and £ = Re. Note also that d(x)® = r* = (|z| — R)°.
Let z € B(0,r). Setting € = (z + z)/|x + z|, we observe that Re & €2,

d(z +z) <|lx +z— Re| = |z + z| — R,

and



INTEGRAL EQUATIONS 23

d(z +2)° —d(z)* < (Jz + 2| = R)" — (2| = R)".

Now, by virtue of Lemma 5.5, we see that

- 2|2
6ol + 2) — du(x) < er 1(€'Z+ﬁ)’

ers (e z—cr tz?) ifle-z| > =

7.
This completes the proof. ([

6. COMPARISON RESULTS FOR THE p-LAPLACE EQUATION

In this section we recall some of basic results on the inhomogeneous p-Laplace
equation

(6.1) Ayu = fo(xz) inQ

and formulate comparison results for (6.1). The results in this section are more or
less well-known (see [12]), and thus we give only a brief sketch of their proofs. We
refer to [12] for results and proofs similar to those in this section.

We are concerned with the Dirichlet problem for (6.1) with the Dirichlet condi-
tion (1.2), i.e., the condition u = go on 9. We may assume that go is a continuous
function on € and moreover gy € C?(9).

We call any function u € W,LP(Q) a weak solution of (6.1) if

—/ | Du(x)|P~2Du(x) - Dip(x) dx = / fo(@)yp(z)dx  for all ¥ € C5°(Q).
Q Q

Also we call any function u € WI})C’)(Q) a weak subsolution (resp., supersolution) of
(1.1) if

—/ | Du(z)|P~?Du(x) - Dy(z) da > / fo(x)v(x) dz,
Q Q

- w(@) P2 Du(z) - z)dx ) (x) do
(vesp., /Q\D ()|~ "Du(z) - Dp(z)d S/Qfo( J¢(z)da)

for all ¢ € C§°(Q2) with ¢ > 0.
In this paper, the Dirichlet condition (1.2) for weak solutions u of (6.1) is un-
derstood in the pointwise sense, i.e.,
i (0 o)) =0
Next, following [11, 14], we recall the definition of viscosity solutions of (6.1).
We call any bounded function u in Q a viscosity subsolution (resp., supersolution)
of (6.1) provided that for any (z,¢) € Q x 7,(Q) for which u* — ¢ (resp., u. — @)

attains a local maximum (resp., minimum) at x, we have

Apo(z) > fo(z)  (resp., Apg(x) < fo(x)) if Do(x) # 0,
and
0> fo(z) (resp., 0 < fo(z)) if De(z) =0.
We call any bounded function u on Q a wiscosity solution of (6.1) if it is both a
viscosity sub and supersolution of (6.1).

We assume throughout this section that the uniform exterior sphere condition
(H1) holds and that fy € C'(£2) is bounded on €.
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Theorem 6.1. Let u,v € Wi)cp(Q) be weak sub and supersolutions of (6.1), respec-
tively. Assume that

lim sup(u — v)(x) < 0.

z— 00
Then v <wv a.e. in €.

Proof. Fix any € > 0 and replace u by u —e. Then w := (u —v)4 € Wol’p(Q), and
we get

—/ (|Du|P"2Du — |Dv|P"2Dv) - (Du — Dv)dz > 0,
w>0
which implies that
/ (|Du|P~*Du — |Dv[P~?Dv) - (Du — Dv) dz = 0.
w>0

Observe (see [15, Lemma 1]) that there is a constant -, > 0 such that for all
a,beR”,

, , Ypla — 0P ifp>2,
e e ORCEDER S T S
(la] + [b])>—> '

Accordingly, if p > 2, then we have
/ |D(u — )P dz
w>0
< fyp_l/ (|Du|P~2Du — |Dv[P~*Dv) - (Du — Dv) =0,
w>0

and, if 1 < p < 2, then we have

/ |Du — Dv|P dz
w>0

. 2 P/2 (2-p)/2
(| iormean) ([ o+ perac)
w0 (Dl + 1DV

p/2
< <’yp1 />0 (|Du|P~2Du — |Dv|P~2Dv) - (Du — Dv) dx>

(2—p)/2
X (/ (|Du] + Dv|)pdx> 0.
w>0

Thus we find that w = 0 and hence u < v + € a.e. in £, which shows that u < v
a.e. in . O

Lemma 6.2. For each x € 02 and € > 0 there exist a weak supersolution 7/};,5 €
C>(Q) and a weak subsolution Vye € C>(Q) of (6.1) such that Yre < 9o < w;,fs
in Q and w;‘ﬁ(x) —e<go(z) <o, (x)+e.
Proof. Fix any x € 92 and € > 0. Let y € R™ and R > 0 be those from condition
(H1). Let C > 0 and o > 0 be constants to be selected later. We define the function
f e C=(R") by

f(z) = Qe —emel=ul?),

By a simple computation, we get

Apf(2) = (2aC)P~ e @ =DEv 12 _y1p=2 (n 4 p — 2 — 2a(p — 1)|z — y[?).
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We choose a > 0 so that 2a(p — 1)R% > n + p — 2 and then C > 0 so that
Apf(2) < fo(2) and e+ f(2) > go(z) forall z € Q.

The function f(z)+e¢ has the properties required of the function Q/JI . in the lemma.
The function ¢, . can be constructed in a similar way. O

We need the following well-known Holder gradient estimate for the solutions of
(6.1). We refer to [7, 13, 15] for this estimate.

Lemma 6.3. Let u € WP(Q) be a weak solution of (6.1). There is a constant

€ (0, 1), depending only on p and n, and for each ball B := B(z,2r) C Q a
constant C > 0, depending only on p, n, 7, ||ullco, 5 and || follco,B, Such that

|Du(z) — Du(z")| < Clz — 2'|*  for all z,2’ € B(xz,7).
The constant C can be chosen so that it is nondecreasing in ||ulloo, B and || follco,B-

Theorem 6.4. There is a unique weak solution u € W,-?(Q) N C(Q) of (6.1) and
(1.2).

Proof. We choose a sequence {gx} C C'(Q) such that, as k — 0o, gy — go uniformly
on Q and Dy, — Dgg locally uniformly in 2. For each k € N we consider the convex
minimization problem

(6.2) inf{I(v) | v € gr + WP ()},
where k£ € N and

I(v) = /Q (%‘D’UV) + fov) dz.

It is a standard observation that for each k € N, the minimization problem (6.2)
has a unique solution uy € gy + Wol’p(Q) and it is a weak solution of (6.1).

According to Lemma 6.2, there are functions ¢* € C°°(Q) such that ¥+ (resp.,
™) is a weak supersolution (resp., subsolution) of (6.1) and ¢~ < gy < ¥F on € for
all kK € N. By an argument similar to the proof of Theorem 6.1, we see that ¥~ <
up < ¢t ace. in Q for all k € N. By Lemma 6.3, we may assume that uy € C(Q)
for all n and for some a € (0, 1) and that the sequence {uy,} is precompact in C1().
Thus, the sequence ux has a subsequence {uy, } such that (ux;, Dux,) — (u, Du)
locally uniformly in Q for some function u € CH*(Q) N WbP(Q) as j — oo. Tt is
easily seen that u is a weak solution of (6.1). We extend the domain of definition
of u up to 9N by setting u(z) = go(z) for all z € 9Q.

We now show that v € C(2). Fix any x € 92 and ¢ > 0. Let 1. € C>®(Q) be

T,
two functions from Lemma 6.2. If k € N is sufficiently large, then we have

Vpe(2) =26 < gr(2) < Ype(2) +2¢ forall z € Q.
By comparison, we see that if k is sufficiently large, then
Vae(2) — 26 <up(z) <Pt (2) +2¢ forall z€Q,
which obviously implies that u is continuous at x. Thus u is a continuous function

on §).
The uniqueness of weak solutions of (6.1) and (1.2) follows from Theorem 6.1. [

Theorem 6.5. Let u € W,'P(Q) N USC(Q) (resp., u € WEP(Q) N LSC(Q)) be a

loc loc
weak subsolution (resp., supersolution) of (6.1). Then it is a viscosity subsolution

(resp., supersolution) of (6.1).
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Proof. Note that w € Wli’cp(Q)ﬂ LSC(9) is a weak (resp., viscosity) supersolution of
(6.1) if and only if —w € Wlicp(Q) N USC(Q) is a weak (resp., viscosity) subsolution
of (6.1) with — fp in place of fy. Hence, we need only to prove the subsolution part
of the assertion.

Let U C Q be an open ball such that U C €2. Suppose that u is not a viscosity
subsolution of (6.1) in U. Then there is a function ¢ € 7,(U) N C(U) such that
u — ¢ attains a strict maximum over U at some point zg € U and

{ Apd(zo) < fo(zo) if Dé(xo) # 0,

0 < fo(wo) if Dg(xo) = 0.
By replacing the function ¢(z) by the function C|x — z0/**! with a sufficiently
large C > 0and a > 1/(p—1)if 1 < p < 2 and D¢(zg) = 0, we may assume
that |D¢|P~2D¢ € C1(U), and then it is easily checked that ¢ is a weak solution
of (6.1) in a neighborhood V' C U of zy. Adding a constant to u, we may assume
that (u—¢)(z¢) > 0 and maxgy (u— @) < 0. By the comparison theorem (Theorem
6.1), we find that u < ¢ in V, which is a contradiction. This guarantees that w is
a viscosity subsolution of (6.1). O

Proposition 6.6. Let fi, fo € C(Q) satisfy f1 > f2 on Q. Let u € USC(Q) (resp.,
v € LSC(Q)) be a viscosity subsolution (resp., supersolution) of (6.1) with fi (resp.,
f2) in place of fo. Assume that u < v on Q. Then u < v in Q.

Proof. We argue by contradiction, and thus assume that maxg(u —v) > 0. Fix a
B >1sothat 8> 1/(p—1), and set ¢(x) = |z|?+! for x € R™. For any a > 1 we
consider the function

u(z) —v(y) —ag(z —y) on QxQ

and choose a maximum point (4, ys) of it. Restricting our attention to sufficiently
large o, we may assume that z,,y, € . Setting

o = aD¢(xa - ya) = Ol(ﬁ + 1)|$a - ya|ﬁ_1(xa - ya),

noting that
0 < D%*¢(z) < (B4 1)8]x|° 1T for all z € R",

and using, for instance, [5, Theorem 3.2], we find an n x n real matrix X, such that
(qa, Xa) € j2’+u(a:a) and  (¢a, Xa) € jz’_v(ya).
Here we refer the reader to [5] for the definition of semijets 75 Note that for
every ¢ € T,(Q), if Dy (z) # 0, then
App(z) = |Dy ()P~ tr (| Dy ()P D*(2) + (p — 2)(Dy(x) © Dip(x)) D (x)) .
Now, by the viscosity property of v and v, we get
‘QQ|p_4 tr (|QQ|2X04 + (p - 2)((](1 ® QQ)XQ) > fl(xa)y
‘Qa|p74 tr (|Qa|2Xo< +(—2)(qa® Qa)on) < f2(Ya)
if either p > 2 or ¢, # 0, and
0 Z fl(wa) and 0 S f2(ya)

otherwise. From these, we see that fi(zs) < f2(ya). Sending a — 0, we conclude

that f1(zo) < fa(zo) for some zg € Q, but this contradicts our assumption that

f1 > fo on Q. O
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The following Theorem improves the previous proposition.

Theorem 6.7. Let u € USC(Q) and v € LSC(Q) be, respectively, viscosity sub
and supersolutions of (6.1). Assume that uw < v on Q. Then u < v in Q.

Proof. According to Theorem 6.4, there is a unique weak solution w € Wli)cp(Q) N
C(Q) of (6.1) and (1.2).

Now, we prove that u < w in Q. Fix any v € (0, 1), and let w., € W,-7(Q)NC(Q)
be the unique weak solution of (6.1), with fo — v in place of fy, and (1.2).

Since w., is a viscosity solution of (6.1) with fo — ~ in place of fy, applying
Proposition 6.6, we see that © < w, on Q.

Using Lemma 6.3, we deduce that there is a sequence ; — 0 such that as j — oo,
(wy,, Dw,;) — (wo, Dwy) locally uniformly in € for some weak solution wq of (6.1).

Let ¢ € C(Q), with z € dQ and ¢ € (0, 1), be those functions given by

Lemma 6.2 with fy — 1 in place of fy. By Theorem 6.1, we have
wy(2) <PT(2) = inf{e + o c(2) |2 €09, e € (0, 1)} for all z € Q.

Since T = go on 9N and ¥+ € USC(Q), we see that if we set wo(x) = go(z) for
x € 09, then wy € C(Q). Hence, by the uniqueness of weak solutions of (6.1) and
(1.2), we find that wg = w. This shows that u < w on Q.

An argument similar to the above yields the inequality w < v on Q. The proof
is now complete. (I

7. p-LAPLACE EQUATION IN THE LIMIT AS 0 — D

Throughout this section we assume that the uniform exterior sphere condition
(H1) is satisfied, fo € C(€) is bounded on © and 1/2 < ¢ < p. The last two
assumptions assure, in particular, that there are constants ¢ € (0, 1) and Cy > 0,
independent of ¢, such that

|fo(z)] < Co (Ao dist (z,00)*°P™DV77  for z € Q.

That is, condition (H2) is satisfied. Hence, according to Lemma 5.3, there are
functions * € C(Q), independent of &, such that ¥* = gg on 9Q, ¥~ < o+ in
Q and ¢t (resp., 1~) is a supersolution (resp., subsolution) of (1.1). By virtue
of Theorem 3.5, there is a solution u of (1.1) ( see also Theorem 5.1 and Remark
5.2) such that ¥~ < u < 9T in Q. We fix such a solution and denote it by u,.
According to Theorem 5.1, under the additional assumption that Ay = 1 if p # 2,
u, is a unique solution of the problem (1.1)—(1.2) and it is continuous on Q.
As the limit equation for (1.1), we introduce the p-Laplace equation

(7.1) vApu(z) = fo(z) for xz € Q.

with the factor v = v, ,, given by

n—1
(et
(7.2) y="r 1 2z) nfp? )
I'(5%)
By Theorem 6.4, the Dirichlet problem (7.1) and (1.2) has a unique weak solution
in W.2P(Q) N C(Q) which is also a unique viscosity solution of (7.1) and (1.2), by

loc

Theorems 6.5 and 6.7.
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Theorem 7.1. Letv € W'li’cpﬁC’(ﬁ) be the unique weak solution of (7.1) and (1.2).
Then

lim wu,(x) =v(x) wuniformly on Q.
o—p—
Proof. As usual in viscosity solutions theory, we introduce the half relaxed limits
+
u™ of u, by

ut(z) = _lir&_sup{ug(y) ly€ B(z,r)NQ, p—r<o<p} forze,

u” (z) :Tlir&inf{ug(y) ly€ B(z,r)NQ, p—r<o<p} forze

Observe that u™ € USC(Q), v~ € LSC(Q) and ¢~ < u~ < ut < ¢+ on Q. We
intend to show that u™ (resp., u™) is a viscosity subsolution (resp., supersolution)
of (7.1). Once this was done, Theorem 6.7 guarantees that u~ = u™ on Q and, as
o — p—, u, converges uniformly on Q to the unique viscosity solution of (7.1) and
(1.2) which is equal to v, thanks to Theorem 6.5. In fact, we prove here only that
ut is a viscosity subsolution of (7.1), and leave it to the reader to check that u™ is
a viscosity supersolution of (7.1).

Let ¢ € T,(€2), and assume that u™ — ¢ attains a strict maximum at z € Q. By
translation, we may assume that 2o = 0, and then set ¢ = D¢(0) and A = D?¢(0).
We choose a constant g € (0, 1/2) so that B(0,2dy) C Q. Fix a constant Cy > 0
so that (1/2)|D?¢(z)¢ - €| < C1|€]? for all z € B(0, 25p) and & € R™. It is easy to
find a sequence {0} C (1/2, p) converging to p such that for each k € N, u}, — ¢
attains a maximum over B(0,2dp) at some point x € B(0, dg), where z;, converges
to the origin. Note that My, [u}, |(xx) > fo(xr) for all & € N. We may assume that
8o < p(x) for all x € B(0,2d).

We first consider the case where ¢ = 0 and p # 2. Note that Ap¢(0) = 0 if
p > 2. Thus we need to show that fy(0) < 0. If 1 < p < 2, we may replace the test
function ¢ by a function C|z|?*1, with some constants C' > 0 and 3 > 1/(p — 1).
Applying Theorem 2.2 or Theorem 2.6, we see that there is a constant Cy > 0,
independent of o, such that for any 0 < 0 < §p and x € B(0,9), if p > 2, then

Malu (o) < Ca(IDo(on)| + 8207 + [ G =T az,
6<|z|<p(zk) |Z|
and if 1 < p < 2, then
* —1)—0o — g
Mo[ug, )(wy) < CpoPHDE= +/ G(CB)ﬁW dz,
o< |z|<p(zr) z

where C3 := || ||so,0 + | ||oc,2- From this observation, since My, [u}, ](xx) >
fo(zk), we find that fo(0) < 0, which was to be shown.

Next, we consider the case where ¢ # 0 and will show that f,(0) < vA,¢(0).
Fix any € € (0, 1). We may assume by reselecting d¢ if needed that

(A — D?*p(z))€- €| < el|¢)*  for all x € B(0,200) and & € R™.

We may also assume that |¢|/2 < |Da(z)| < 2|q| for all z € B(0,dg).
Fix any « € B(0,6y). For each z € B(0, §y) we can choose a constant 6(z) €
(0, 1) so that

Bat+2) = 0(@) = g - + S D26(x +0(2)2)z
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where ¢, := D¢(z), and note that
1
G(o(w +2) = 9(x)) < G(qu -2+ 5Az - 2),
where A, := A+¢el. Let 6 € (0, dg). We set Cy = C; + 1 and

Ws(z) = {z € B(0, 0) | Cal2|* < elgs - 2[}.

Let z € W5(z) and compute that

G(o(w +2) = 6(x)) <Gla, - 2)G(1+ éqj =)

~Gla ) (1+ GO A EET)

Az z
2

=Gz - 2) + (P = Dlgo - 2[P7*[1 + A(2) P72
for some A(z) € R satisfying

C 2
< Cal7| -

Az2)| < .
M) < 3, 7]

’Agzw

2qy - 2
Noting that if 1 < p < 2, then
(I+e)P 2 <L+ A2 < (1—e)P?
and if p > 2, then
L= PSP+ AP2< (A +e) 72
we find that
[T+ A(z) P2 —1)Acz - 2| < ‘(1 +e)P2 — (1 - 8)p72|C’4\z|2.
Setting 7. = ¢ + ‘(1 —e)P 2 - (1+ 6)70—2’ and B, = A 4 .1, we observe that
1+ A2)|P724.2-2 <B.z- 2,

(p—1)|gs - 2|P2Bez - 2

Go(w+2) — 6(r)) <Gla - 2) + 5 ,

and lim._.gv. = 0.
Now, we write ¢, = ¢./|g.| and reselect dy, if needed, so small that Cydg <
€lqz|/2. Observe that if z € B(0, §) \ W5(z), then

elge - 2| < Culz]* =Cu(|z — (G - 2)a° + (G - 2)?)
<Cy(|z = (Gu - 2)@ul® + 6|ax - 2|)
g
<Cilz — (@ - 21 + 3z 2|

That is, for any z € B(0, §) \ Ws(x), we have €|q,. - 2| < 2C4|z — (qz - 2)q=|*. Hence,
setting

Vs(z) = {z € B(0, 9) | elqs - 2| <2C4|z — (Gx - z)(jx|2},
we get B(0, ) C Ws(x) U V().
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Next we observe that
hiz)i= [ Glofe+2) ~ o) K(:)dz
W (x)
-1
S/ (Glgs - 2) + L|qz - 2[P2B.z - 2)K(2) dz
Ws () 2

-1
. gz - 2|P72(B.z - 2) K (2) dz.

2 Jws@
We make an orthogonal change of variables in the above integral. Indeed, for each

x € B(0,0), we introduce an orthogonal matrix U, of order n for which U,e, = g,
and compute as follows:

—1 _
L) <P | e Uy "2(BoUsy - Uny) K () dy
wpr

p—1 - _
L al Y [l K W) ay
j=17Ws"

y|<o

p—1 o _
Ll =Y () ay
j=1

# [ @l ).

8

where b;;(z) denotes the (i, j)-entry of the matrix U, ' B.U, and

Wi ={y = (¥, yn) € B(0, 0) | Culy|* < elqu|lynl},
Vi :={y = (¥, yn) € B(0,6) | elqallyn| < 2Culy/*}.

For 1 < j < n we compute
@)= [l K ) dy
lyl<o

—d?° / lynlP 2421y~ dy.
lyl<1

We use Lemma 2.1, to find that if j < n, then

por =T (3)0(3)" (2 / N 2 i
Jy () = ¢ dt = ,
1t r(z;2) : P
and
p—op(1\* "I ptl T
Jin(z) = LN . e )/ t727 7 dt = 206777,
r(=%) 0
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Next, we set Cs = 4C4/(|qle), so that |y,| < Cs|y'|? for y = (v, yn) € V. We
compute that for 1 < j < n,

Ty () = / lynlP 22K () dy

Vt5
Csly'|?
S2u/ /> dy’/ yh 2 dyn
ly’|<6 0
20ty 20 o1

/12p—n—o /I
y dy’ = .
p—1 /|y/|<1 | p—1D2p—1-0)

Similarly we get

o) = / P () dy
174

. , Csly’|?
§2u/ ly' [~ dy/ Y dyn
ly'|<é 0

+1
_2Cg 14 | /|2p+27n70d ’
T p+1 Y 4
p ly'|<1
200 0, 1 200 6, 1

D)@ +l-0)  (p+D2-1-0)
Furthermore, noting that
d(x+2) — ¢(x) < qp -2+ Cylz|* for z € B(0,6)
and
|@o| - [yn] + Caly* < 2lal + Co)lynl + Culy'|* < Csly'|* for y € V5,
where Cg := (2|q| + C4)C5 + C4, we compute that

I(x) := - )G(¢(l‘ +2) — o(x))K(2) dz

< / G(Iallynl + Caly2) K () dy
V5”

| Csly'|?
SQC{;_ /J'/ |y/|2p—2—n—a dy’/ dyn
ly'1<1 0

§2050é’_1u/ ly/|?P~" 7 dy

ly'|<1
<205Cé)710'n,1p,

- 2p—1-o0
We combine the above observations, to obtain
(7.3) lim sup/ G(od(x+ z) — ¢(x))K(2)dz
r—0+ Jr<|z|<§
n C [
92 7
< g "7y ; bjj(@) + (p — 2)bun(z) | + Bo1—o
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where C7 is a positive constant depending only on Ci, p, |¢|, € and n. Since
Jo(zr) < My, [u}, [(zr), we have

fo(zr) <lim sup/ G(d(xr + 2) — d(ag)) Ky, (2) dz
r—0+ Jr<|z|<§

+/ G(C3) Ky, (2)dz.
0<|z|<p(zr)

Here, as before, we have

lim / G(C3)Ky (2)dz = 0.
6<|z|<p(wk)

Tg—p—

Observe that

bjj(z) =tr (U;'B.U,) = tr B,
j=1
bnn(x) :nglBsten “en = BeQy - Q-
Now, from(7.3), we get

fo(0) < v(jglP"tr B + (p — 2)|q|P*Beq - q),

and, because of the arbitrariness of € > 0,

fo(0) < v (lalP~2A¢(0) + (p — 2)|a/P " D?*¢(0)q - q) = vA,$(0),
which is the desired inequality.
It remains to check the case where p = 2 and ¢ = 0. For each € > 0, selecting
do > 0 as in the previous case and setting A, = (a;;) := A + eI, we have for any
0<r<d<dand any x € B(0, dyp),

/r<|z<5 G(p(x + 2) — ¢(z))K(2)dz < /

1
(q,; cz4 Az z)K(z) dz
r<|z|<é 2

n

1
=- Z/ ajjzf-K(z) dz.
2 r<|z|<é

J=1

By applying Lemma 2.1, we find that for any 1 < j < n,
/ 27K (z)dz = 20677,
|z|<8

Hence we have

lim sup/ G(p(x + 2) — () K (2) dz < 6?77 tr A..
r—0+ Jr<|z|<§

Using this and arguing as in the previous case, we see easily that f(0) < vA@(0).
This completes the proof. (I

8. FINAL REMARKS

In this section we discuss a few possible extensions and variants of the formula-
tions and results presented in the previous sections.

Let ¢ € C(Q) be a given function satisfying infg ¢ > 0. We consider the integral
equation

(8.1) Myul(x) = e(x)u(z) + fol(z) in Q,
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together with the Dirichlet condition (1.2). The p-Laplace equation corresponding
to (8.1) is

(8.2) vApu(z) = c(z)u(z) + fo(z) in Q,

where v = v, ,, is the constant given by (7.2). Because of the new term “cu”, two
equations (8.1) and (8.2) are tractable. Indeed, for the Dirichlet problem for (8.1)-
(1.2), without the restriction that Ao = 1 if p # 2, a comparison assertion similar
to Theorem 4.1 and consequently the existence of a unique continuous solution as
in Theorem 5.1 hold true. Also, for the Dirichlet problem (8.2)-(1.2), a comparison
theorem for viscosity sub and supersolutions similar to Proposition 6.7, but with
f1 = f2, is valid. The same assertion as Theorem 7.1, with (8.1) and (8.2) in place
of (1.1) and (7.1) respectively, is valid.

A remark similar to the above applies to the evolution problem. The equations
are now

(83) My [u(-,t))(2) = wi(z,t) + fo(x,t) in Qr,
and
(8.4) vAyu(z,t) = ug(z,t) + fo(z,t) in Qr,

where 0 < T' < oo is a fixed constant, Qp := Q x (0, T'), u; := Ou/It and fy €
C(Qr) is a given function. The initial-boundary condition for (8.3) or (8.4) is of
the form

(8.5) u=go on the parabolic boundary, 9,Qr = Q x {0} U9Q x (0, T),

where go € C(9,Qr). With an obvious modification (see for instance [11]) of
the definition of spaces of test functions, we have well-posedness and convergence
results similar to those for (8.1) and (8.2). That is, the Cauchy-Dirichlet problems
for (8.3) and for (8.4) are well-posed in the space C(Qr) and the solution u, of the
problem (8.3) and (8.5) converges uniformly on Q, as ¢ — p— to the solution of
the problem (8.4) and (8.5).

It would be interesting to treat the Neumann boundary problem for (1.1) as in
[2], and we hope to come back to this issue in a future publication.

Another interesting question would be to seek for the possibility of replacing the
operator M, , in the well-posedness problem of Sections 3-5 or in the convergence
problem of Section 6 for (1.1), by the operator

M [¢](z) :=p.v. s G(o(x +2) — ¢(z)) Ko (2) dz,

where B(x), with -z € (), are given measurable subsets of R™ satistying the condition
that = + B(z) C Q for all x € Q.
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