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§1 Introduction. We are concerned here with the asymptotic behavior, as e '\, 0, of 
the solution u~ of the Hamilton-Jacobi equation 

(1) u(x) + H(x,zje,Du(x)) = 0 (x E aN), 

where e is a positive constant. The effect on solutions of the limiting process as e '\. 0 
should be mild in the sense that the Hamiltonian H(x,xje,p) stays bounded as e '\. 0. 
This effect is called the homogenization. Equation ( 1) appears as a fundamental equa
tion in optimal control under oscillatory circumstances or as an equation describing a 
sort of distance functions in the space where the Riemannian metric is oscillatory. 

In this paper, we will study the almost periodic homogenization of Hamilton-Jacobi 
equations. That is, we will assume that the Hamiltonian H(x,y,p) is almost p~riodic in 
y. There are many references concerning the homogenization of Hamilton-Jacobi equa
tions. However, as far as Hamilton-Jacobi equations are concerned, most of references 
deal with the periodic homogenization, i.e., the case where the function H ( x, y, p) is 
periodic in y. See for this [1, 3, 5, 8, 9, 10]. 

As is well-known, equation (1) does not have a classical solution in general, and we 
adapt the notion of viscosity solution as weak solutions of (1) that we are concerned 
with. We will simply refer viscosity subsolutions, viscosity supersolutions; and viscosity 
solutions as subsolutions, supersolutions, and solutions, respectively. 

§2 Main results. We begin with our assumptions on the Hamiltonian H. 

(AO) HE C(RN x aN x aN). 

(Al) 

(A2) 

(A3) 

lim inf{H(x,y,p) I x,y,p E aN, IPI ~ R} = oo. 
R-oo 

For each R > 0 there is a function WR E C([O, oo)), with wR(O) = 0, such that 

IH(x, y,p)- H(x, y, q)l :5 WR(IP- ql) (x, yEaN ,p, q E B(O, R)). 

sup{IH(x,y,p)ll x,y E RN,p E B(O,R)} < oo. 

(A4) For each R > 0 the family {H(·, · + z, ·) I z E aN} of functions is relatively 
compact in BUC(B(O, R) x aN x B(O, R)). 

Throughout this paper we assume that (AO)-(A4) hold. The main results are stated 
as follows. 

Theorem 1. Let e > 0. There is a unique solution u E BUC(RN) of (1). Moreover u 
is Lipschitz continuous on RN. 
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Theorem 2. Let x, p E R N. There is a unique constant ..\ E R such that for each 
6 > 0 there is a solution wE BUC(RN) of 

(2) H(x,y,p+ Dw(y)) ~ ..\ + 6 (y ERN), 

and 

{3) H(x, y,p + Dw(y)) ~ ..\- 6 (y ERN). 

According to this theorem, we can define the effective Hamiltonian H: RN x RN-+ 
R by setting H(x,p) =..\,where ..\is the constant given by Theorem 2. The determi
nation of the constant..\ by the inequalities (2) and (3), with arbitrary 6 > 0, has been 
inroduced by [2). 

Theorem 3. We have 

inf H(x,y,p) ~ H(x,p) ~ sup H(x,y,p) (x,p eRN). 
ueRN yERN 

This theorem says that the coerciveness (Al) of H as well as property (A3) is 
inherited to H. 

Theorem 4. H E C(RN x RN). Moreover for each R > 0 there is a function 
'YR E C([O, oo)), with 'YR(O) = O, such that for all x ERN and p, q E B{O, R), 

(4) IH(x,p)- H(x, q)l :5 'YR(IP- ql). 

Theorem 5. Letue E BUC(RN) be the solution of(l) and u E BUC(RN) the solution 
of 

(5) u(x) + H(x,Du(x)) = 0 (x eRN). 

Then ue(x)-+ u(x) locally uniformly on RN as e \. 0. 

We should remark that, thanks to Theorems 3 and 4, there is a. unique bounded 
solution of (5) and it is Lipschitz continuous in RN. 

§3 Proof of the main results. In this section we present a. proof of the theorems 
stated in the previous section. We begin with the following general proposition. 

Proposition 6. Let G E C(RN x R N) satisfy the condition: for each R > 0 there is 
a function VR E C{[O,oo)), with VR(O) = O, such that 

IG(x,p)- G(x,q)l :5 vR(Ip- ql) (x ERN, p,q E B(O,R)). 

Let ..\, p. E R. Suppose that there are a bounded, Lipschitz continuous solution v of 
G(x,Dv(x)) ~ ..\ in RN and a bounded solution w of G(x,Dw(x)) ~ J.' in RN. Then 
fJ 5: ).. 
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Proof. We argue by contradiction. Thus we suppose that p. > A. Let v and w be 
as above. Set L = IIDvlloo· Let e E (0, 1), and define the function u E C(RN) by 
u(x) = v(x)- e(lxl2 + 1)112 • Then we have IIDulloo :5 L + 1, and hence u is a solution 
of 

G(x,Du(x)) :5 .A+ IIL+l(e) (x ERN). 

Now fixe E (0, 1) so that A+ IIL+l(e) < !J. Let a> 0 and consider the function 

u(x)- w(y)- alx- yl2 

on RN X RN. This function attains a maximum at a point (xchYa) ERN X RN, and 
we have 

and 
G(ya,2a(xa- Ya)) ~ !J. 

Sending a -+ oo, we see that for some x,p E RN, !J :5 G(x,p) :5 A+ VL+ 1(e). This 
contradiction proves our proposition. 0 

Proof of Theorem 1. Let A= sup{IH(x,y,O)I I x,y E RN}. Then the functions 
u(x) :=A and v(x) := -A are a supersolution and a subsolution of (1), respectively. 
Thus, using Perron's method, we see that there is a solution u : RN -+ R of (1), which is 
upper semi continuous, such that lu( x) I :5 A for all x E R N. It follows from assumption 
(A1) that u is Lipschitz continuous on aN. By the standard comparison results, we see 
that (1) has only one bounded solution. 0 

The proof above yields the following theorem. 

Theorem 7. Let x, p E aN, and Q > 0. Then there is a unique solution Va E 
BUC(RN) of 

(6) ava(Y) + H(x,y,p+ Dva(Y)) = 0 (y ERN). 

The following theorem is the key observation in establishing the existence part of 
Theorem 2. 

Theorem 8. Let x, p E R N, and for each a > 0, v0 be the bounded solution of (6). 
Then, as a-+ 0, 

sup lava(Y)- ava(O)I-+ 0. 
reRN 

Proof. We argue by contradiction. Thus we suppose that there were 6 > 0 and 
sequences {a;} C (O,oo) and {yj} C RN such that laiva1(y;)-ajVaJ(O)I ~ 6 (j EN). 
By assumption (A4) we may assume that there is a function G E C(RN x RN) such 
that as j-+ oo, H(x,y + YiJP)-+ G(y,p) uniformly on RN x B(O,R) for all R > 0. 

In view of (Al), there is a constant R > 0 such that li>l+ IIDvalloo :5 R for all a> 0. 
H j, k are large enough, then 

IH(x,y + y;,p)- H(x,y + Yk,P)I::;; 6/2 (y e RN,p e B(o,R)). 
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We may assume by relabeling the sequence {y;} if necessary that this inequality holds 
for all j,k EN. 

Now, for the function w;(Y) := Vai (y + Y;- Yl), we have 

0 = a;w;(y) + H(x, y + Y;- Yb p + Dw;(y)) 

~ a;w;(y) + H(x, y,p + Dw;(y))- 6/2. 

Using a comparison theorem, we obtain a;w;(y)-6/2 :5 OljVai (y) for ally E aN' j EN. 
That is, a;va,;(Y+Y; -yi) :5 a;va1(y)+6/2. Therefore we have 

a;vai(y;) :5 a;va1(yl) + 6/2 :5 a;vai (0) + 6/2 + a;RIYII· 

An argument similar to the above yields 

a;va,; (Y;) ;::: a;vai (yl)- 6/2- a;RIYII· 

Thus we have la;vaJ(y;)- a;va,;(O)I < 6 if j is large enough. This is a contradiction, 
which completes the proof. D 

Proof of Theorem 2. Let a> 0 and Va E BUC(aN) be the solution of (6). As in the 
previous proof, there is a constant R > 0 such that lfil + IIDvQIIoo :5 R for all a > 0. 
Hence, by ( 6) we see that the set {a: ;va1 ( 0) I a: > 0} C R is bounded. Choose a sequence 
a; '\. 0 so that a:;vaJ (0) -to -..\ for some..\ E R as j -to oo. Fix o > 0. According to 
Theorem 3, there is a j EN such that la:;va1(y) +..\I :5o for ally E aN. Then the 
function w := Va,; satisfies (2) and (3) in the viscosity sense. The uniqueness of..\ is an 
immediate consequence of Proposition 6. D 

Proof of Theorem 9. Note that v := 0 is a solution of 

H(x,y,p+Dv(y)):5 sup H(x,y,P) (yeRN). 
reRN 

Therefore, using Proposition 6, we have H(x,p) ::; SUPueRN H(x,y,p). Similarly we 
have H(x,p) ~ infyeRN H(x, y,:P). D 

Proof of Theorem 4. We first check that (4) holds for some 'YR E C([O, oo)) satisfying 
'YR(O) = 0. 

To this end, we fix R > 0. In view of Theorem 3, we have 

IH(x,p)l :5 M (x E aN,p E B(O,R)), 

where M = sup{IH(x,y,p)l I x,y,p E RN, IPI :5 R}. According to (Al), there is a 
constant L > 0 such that 

(7) H(x,y,p) > M + 1 (x,y,p ERN, IPI ~ L). 

By {A2), there is a function w E C{[O,oo)), with w(O) = 0, such that for all x,z E 
B(O, R), y E RN, and p, q E B(O, L + 2R), 

(8) IH(x, y,p)- H(z, y, q)l :5 w(lx- zl + IP- ql). 
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Now, let p,q E B(O,R) and :cERN. Fix o E (0,1), and choose v E BUC(RN) so 
that v is a solution of 

{9) H(:c,y,p+ Dv(y)) :5 H(x,p) + o (y ERN). 

We see from (7) that IIDvllco ~ L + R and hence llq + Dvllco :5 L + 2R. From (8) we 
see that v is a. solution of 

H(x,y,q + Dv(y)) ~ H(:c,p) +w(IP- ql) + o (y eRN). 

By the definition of H(x,q), there is a solution wE BUC(RN) of 

H(x,y,q + Dw(y)) ~ H(:c,q)- o (y ERN). 

Hence, we conclude in view of Proposition 6 that 

H(x,p) +w(IP- ql) + o ~ H(x,q)- o. 
This shows that H(x, q)-H(x,p) ~ w(lp-ql). Similarly we infer that H(:c,p)-H(x, q) ~ 
w(IP- ql). These guarantee that ( 4) holds with 'YR = w. 

Next, we select a function v E C([O, oo)) satisfying v(O) = 0 so that for all x, z E 
B{O,R), yEaN, and p E B(O,R+ L), 

IH(z,y,p)- H(z,y,p)l ~ v(lx- zl). 

An argument parallel to the above yields that for all x,z,p E B(O,R), 

IH(z,p)- H(z,p)l :5 v(lx- zl). 

Thus we see that HE C(RN x RN). 0 

Proof of Theorem 5. As we have seen in the proof of Theorem 1, we have 

lluelloo :5 A:= sup{IH(x, y, 0)11 x, y ERN} (e > 0). 

Select L > 0 so that H(x,y,p) >A for all x,y,p E aN satisfying IPI > L. Then we have 
sup11 >o IIDu«llco :5 L. Hence the family {tee I e > 0} is relatively compact in C(RN). 

Fix any sequence e j '\. 0 so that u«j ( x) ~ v( x) locally uniformly on R N as j ~ oo. 
We intend to show that v is a solution of (5). Once this is done, since vis a bounded 
function, by the uniqueness of bounded solutions of (5), we conclude that v = u, which 
implies that, as e ~ 0, u«(x) ~ u(x) locally uniformly on aN. 

Let cp e C1(RN) and assume that v- t.p has a strict maximum at£:. For simplicity 
we write u; for u«i. It follows that u;- t.p has a maximum at some z; and x; ~ ii: as 
j ~ oo. Define cp; E C1(aN) by cp;(x) = cp(z) + {1/j)lx- z;l2 , so that u;- cp; has a 
strict maximum at :c;. 

Fix 6 E (0, 1) and let w 6 E BUC(RN) be a. solution of 

H(x,y, Dcp(ii:) + Dw6(y)) ~ H(ii:,Dcp(ii:))- S (y ERN). 

Consider the function: u;(z)- t.p;(Y)- e;w6(y/e;)- alx- yl2 on RN x RN, and let 
(x0 , y0 ) E R 2N be one of its maximum points, the existence of which is obviously 
ensured. 
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Now, we have 
u;(za) + H(za, Xa/ej 1 2a(xa- Ya)) ~ 0, 

H(x,ya/e:;,D«p(x)- D«p;(Ya) + 2a(xa- Ya)) ~ H(x,D<p(x))- 6. 

Since IIDuilloo ~Land hence 2alxa- Yal ~ L, sending a--+ oo along a sequence, we 
have 

u;(x;) + H(xitx;/e:;,p;) ~ 0, 

H(x,x;/e:i,D~P(x)- D«p(x;) + P;) ~ H(x,Dcp(x))- 6 

for some PiE B(O, L). Subtracting one of these from the other and sending j--+ oo, we 
get 

u(x) + H(x,Dcp(x)) ~ 6, 

from which we see that v is a subsolution of (5). 
Arguing in a Way similar to the above, we deduce that vis a supersolution of (5) as 

well. 0 
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