HAMILTON-JACOBI EQUATIONS AND VISCOSITY SOLUTIONS

Hitoshi Ishii

Tsuda University (Waseda University)

Mini-Course at Nanjing University on Web. April-May, 2021

Hamilton-Jacobi equations and optimal control

Existence, uniqueness and stability of viscosity solutions I

Existence, uniqueness and stability of viscosity solutions II

Existence, uniqueness and stability of viscosity solutions III

Homogenization of Hamilton-Jacobi equations I

Homogenization of Hamilton-Jacobi equations II

Long-time behavior of solutions I

Long-time behavior of solutions II

Vanishing discount problem for Hamilton-Jacobi equations I

Vanishing discount problem for Hamilton-Jacobi equations II

Hamilton-Jacobi equations and optimal control

Example 1

Consider the eikonal equation

$$|u'(x)| = 1$$
 in $(-1,1)$,

with boundary condition u(-1) = u(1) = 0. No C^1 solution. This is a *Hamilton-Jacobi equation*.

This appears in geometric optics and describes the wave front. In the above case, the light sources are located at $x=\pm 1$ and the speed of light is assumed to be one.

The right solution should be

$$u(x)=1-|x|=\min\{x-1,1-x\}=\operatorname{dist}(x,\{\pm 1\}).$$
 The set $\{x:u(x)=a\}$ is the set of points where the light arrives after time a coming from $\{\pm 1\}.$

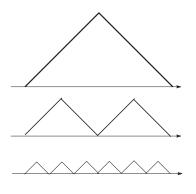
In view of the theory of differential equations, this gives a big problem.

No classical solution, but \exists a right solution.

What is a good generalised (weak) solution?

People tried to find a good notion of generalized solutions in the class of Lipschitz functions which satisfy the given equation in the almost everywhere sense.

$$|u'(x)| = 1$$
 a.e. $(-1,1)$ and $u(-1) = u(1) = 0$.



Some a.e. solutions

 \bullet Semi-concave a.e. solutions: Kruzkov (after entropy solutions for conservation laws by Oleinik, Douglis) \longrightarrow No downward pointing corner.

The existence of solutions can be a problem in general.

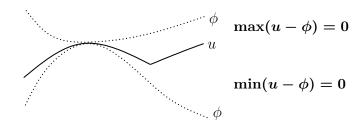
• Viscosity solutions: Crandall-Lions, Crandall-Evans-Lions Based on the maximum principle: if $u, \phi \in C^1$ and $u - \phi$ takes a maximum (or minimum) at x, then $u'(x) = \phi'(x)$.

Definition 2 (Preliminary)

 $u\in C(-1,1)$ is a (viscosity) subsolution of |u'|=1 (or $|u'|\le 1$) in (-1,1) if, whenever $\phi\in C^1(-1,1)$ and $(u-\phi)(\hat x)=\max(u-\phi)$, we have

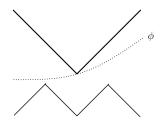
$$|\phi'(\hat{x})| \leq 1.$$

For the definition of (viscosity) supersolution, we replace (\mathbf{max}, \leq) by (\mathbf{min}, \geq) . (Viscosity) solution is defined as a function which has both sub and super solution properties.



Let $u=\operatorname{dist}(x,\{\pm 1\})$ and $\phi\in C^1(-1,1)$. Assume that $\max(u-\phi)=(u-\phi)(\hat{x})$ for some \hat{x} . If $\hat{x}\neq 0$, then $u'(\hat{x})=\phi'(\hat{x})$ and $|\phi'(\hat{x})|=|u'(\hat{x})|=1$. If $\hat{x}=0$, then $|\phi'(\hat{x})|\leq 1$.

Instead, if $\min(u-\phi)=(u-\phi)(\hat{x})$, then $\hat{x}\neq 0$ and $|\phi'(\hat{x})|=1$.



• For classical smooth solutions,

$$|u'|=1 \iff -|u'|=-1.$$

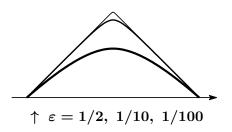
This is not true for viscosity solutions. For instance, $u=\operatorname{dist}(x,\{\pm 1\})$ (resp., $u=-\operatorname{dist}(x,\{\pm 1\})$) is a viscosity solution to |u'|=1 (resp., -|u'|=-1), but not to -|u'|=-1 (resp., |u'|=1).

• The vanishing viscosity method: when "right" solutions may have singularities, a classical argument to pick up a "right" solution (physically meaning solution) is to introduce an artificial viscosity to the equation. In our example, we consider

$$-\varepsilon u''(x)+|u'|=1 \quad \text{in } (-1,1), \quad \text{and} \quad u(\pm 1)=0, \quad \text{with } \varepsilon>0.$$

This has a C^2 solution

$$u_{arepsilon}(x) = 1 + arepsilon e^{-rac{1}{arepsilon}} - |x| - arepsilon e^{-rac{|x|}{arepsilon}}.$$



$$\operatorname{dist}\left(x,\{\pm 1\}\right) = \lim_{arepsilon o 0^+} u_{arepsilon}(x);$$
 "viscosity" solution.

page:1.6

Given two functions $f:\mathbb{R}^n imes \mathsf{C} o \mathbb{R}$ and $g:\mathbb{R}^n imes \mathsf{C} o \mathbb{R}^n$,

$$\dot{X}(t) = g(X(t), \alpha(t)), \quad X(0) = x,$$
 $J(x, \alpha) = \int_0^\infty e^{-\lambda t} f(X(t), \alpha(t)) dt$

Here, X(t) is the solution of the Cauchy problem for the ODE given by g, $J(x,\alpha)$ is the cost functional, which gives the criteria for the choice of the control α . The constant $\lambda>0$ is the so-called discount factor, and the effect of the running cost f is decreasing with the factor $e^{-\lambda t}$ as the time proceeds.

We assume that C is a compact subset of \mathbb{R}^m , the functions f,g are continuous on $\mathbb{R}^n \times \mathsf{C}$, and there exists a constant C>0 such that for all $x,y\in\mathbb{R}^n$, $c\in\mathsf{C}$,

$$|f(x,c)| \lor |g(x,c)| \le C,$$

 $|f(x,c) - f(y,c)| \lor |g(x,c) - g(y,c)| \le C|x - y|.$

The set of all measurable functions $\alpha:[0,\infty)\to \mathbb{C}$ is denoted by \mathcal{C} . For any $\alpha\in\mathcal{C}$, the Cauchy problem

$$\dot{X}(t) = g(X(t), lpha(t)), \ \ X(0) = x \in \mathbb{R}^n$$

has a unique solution X(t)=X(t;x,lpha), and the cost functional J(x,lpha) is well defined.

The value function V on \mathbb{R}^n is defined by

$$V(x) = \inf_{\alpha \in \mathcal{C}} J(x, \alpha).$$

Note:

$$|J(x,lpha)| \leq \int_0^\infty e^{-\lambda t} |f(X(t),lpha(t))| dt \leq C/\lambda,$$

and

$$|V(x)| \leq C/\lambda$$
.

page:1.8

$$|X(t;x,lpha)-X(t;y,lpha)|\leq |x-y|e^{Ct},$$

we have

$$|J(x, \alpha) - J(y, \alpha)| \le \int_0^T e^{-\lambda t + Ct} C|x - y| dt + 2C \int_T^\infty e^{-\lambda t} dt$$

 $\le O(|x - y| e^{CT} + e^{-\lambda T}) \ \ \forall T > 0.$

If we choose T>0 so that $|x-y|e^{CT}=e^{-\lambda T}$ (i.e., $e^T = |x - y|^{-1/(C + \lambda)}$), the O term becomes $O(|x-y|^{\lambda/(C+\lambda)})$. The value function V is in $\mathrm{BUC}(\mathbb{R}^n)$. Optimal control theory:

- Find $\alpha \in \mathcal{C}$ such that $V(x) = J(x, \alpha)$. optimal control!
- Find the value of V.

page:1.9

Bellman equation The Bellman equation should characterize the value function $oldsymbol{V}$.

$$\begin{aligned} \max_{c \in \mathbb{C}} (\lambda u(x) - g(x,c) \cdot Du(x) - f(x,c)) &= 0 \quad \text{in } \mathbb{R}^n. \\ (Du &= (\partial u/\partial x_1, \dots, \partial u/\partial x_n) \text{ gardient of } u.) \text{ If we write} \\ H(x,p,r) &= \max_{c \in \mathbb{C}} (\lambda r - g(x,c) \cdot p - f(x,c)) \\ &= \lambda r + \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c)), \end{aligned}$$

then the above equation reads H(x,Du(x),u(x))=0.

If $\mathsf{C}=\overline{B}_1(0)\subset\mathbb{R}^n$, g(x,c)=c, f(x,c)=1 and $\lambda=0$ (against to the tentative assumption), then

$$H(x,p,r) = H(p) = |p| - 1 \ (|Du(x)| - 1 = 0).$$

Similarly, if $\mathsf{C} = \overline{B}_1(0) \subset \mathbb{R}^n$, g(x,c) = g(x)c,

$$f(x,c)=f(x)$$
 and $\lambda=0$, then

$$H = |g(x)||p| - f(x) \ (|g(x)||p| - f(x) = 0).$$

Removing the compactness assumption on C, if $C=\mathbb{R}^n$, g=c, $f=|c|^2/2+1$, and $\lambda=0$, then

$$H = \frac{1}{2}|p|^2 - 1 \ (\frac{1}{2}|Du|^2 - 1 = 0).$$

A remark is: the Hamiltonians H(x,p,r) for Bellman equations are convex in p.

Assume that C = $\{c\}$ (a singleton). Write $f(x)=f(x,c),\,g(x)=g(x,c).$ Assume evrything are smooth. Then, for $\tau>0$,

$$\begin{split} V(x) &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + \int_\tau^\infty e^{-\lambda t} f(X(t)) dt \\ &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + e^{-\lambda \tau} \int_0^\infty e^{-\lambda t} f(X(t+\tau)) dt \\ &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + e^{-\lambda \tau} V(X(\tau)), \end{split}$$

page:1.11

and

$$\begin{split} 0 &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + e^{-\lambda \tau} V(X(\tau)) - V(X(0)) \\ &= \int_0^\tau \left(e^{-\lambda t} f(X(t)) + \frac{d}{dt} \left(e^{-\lambda t} V(X(t)) \right) \right) dt \\ &= \int_0^\tau e^{-\lambda t} \left(f(X(t)) - \lambda V(X(t)) + DV(X(t)) \cdot g(X(t)) \right) dt. \end{split}$$

It follows that

$$\lambda V(x) - g(x) \cdot DV(x) - f(x) = 0 \ \ \forall x \in \mathbb{R}^n.$$

If we start with this PDE, the formula of V is a consequence of the so-called characteristic method applied to this PDE.

page:1.12

EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY SOLUTIONS I

Consider the first-order PDE

(1)
$$F(x,Du(x),u(x))=0 \text{ in } \Omega\subset\mathbb{R}^n.$$

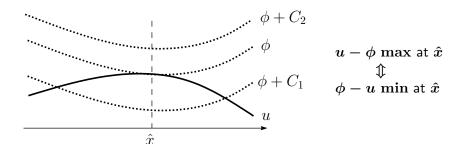
Definition 1

Let Ω be an open set $\subset \mathbb{R}^n$ and $F \in C(\Omega \times \mathbb{R}^n \times \mathbb{R}, \mathbb{R})$. Let $u \in C(\Omega, \mathbb{R})$. We call u a (viscosity) subsolution (resp., supseroslution) of (1) if for any $(\phi, x) \in C^1(\Omega, \mathbb{R}) \times \Omega$ such that $\max(u - \phi) = (u - \phi)(x)$ (resp., $\min(u - \phi) = (u - \phi)(x)$,

$$F(x,D\phi(x),u(x))\leq 0 \ \ (\text{resp.,} \ \ F(x,D\phi(x),u(x))\geq 0).$$

When u is both a (viscosity) sub and supersolution of (1), we call u a (voscosity) solution of (1).

page:2.1



u is tested from above by ϕ at \hat{x} ; ϕ is an upper tangent to u at \hat{x} ; u is touched from above by ϕ at \hat{x} ,...

- Subsolution for $u \in \mathrm{USC}(\Omega, \mathbb{R} \cup \{-\infty\})$; supersolution for $u \in \mathrm{LSC}(\Omega, \mathbb{R} \cup \{\infty\})$.
- $\phi \in C^{\infty}(\Omega)$.
- ightharpoonup max, min \longrightarrow strict max, strict min.

page:2.2

Remark 2

- 1) In general, when $oldsymbol{u}$ is a (viscosity) solution of
- F(x,Du,u)=0, u may not be a (viscosity) solution of
- -F(x,Du,u)=0. Reverse inequalities.
 - 2) In general, when u is a (viscosity) solution of

F(x,Du,u)=0, v:=-u may not be a (viscosity) solution of

F(x,-Dv,-v)=0. Testing from the reverse side.

3) Set v := -u. Then u is a (viscosity) solution of

F(x,Du,u)=0 if and only if v is a (viscosity) solution of

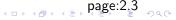
-F(x, -Dv, -v) = 0.

Let $\phi \in C^1$, $\psi := -\phi$, and $\hat{x} \in \Omega$.

$$(u - \phi)(\hat{x}) = \max(u - \phi) \iff (v + \phi)(\hat{x}) = \min(v + \phi)$$
$$\iff (v - \psi)(\hat{x}) = \min(v - \psi),$$

and

$$F(\hat{x}, D\phi(\hat{x}), u(\hat{x})) \le 0 \iff -F(\hat{x}, -D\psi(\hat{x}), -v(\hat{x})) \ge 0.$$



Theorem 1

The value function $oldsymbol{V}$ defined above is a viscosity solution of

(2)
$$\lambda u + \max_{c \in C} (-g(x,c) \cdot Du - f(x,c)) = 0$$
 in \mathbb{R}^n .

Theorem 2 (DPP)

Let $x \in \mathbb{R}^n$ and $au: \mathcal{C} \to [0,\infty]$ be a mapping. Then

$$V(x) = \inf_{lpha \in \mathcal{C}} \int_0^ au e^{-\lambda t} f(X(t), lpha(t)) dt + e^{-\lambda au} V(X(au)).$$

We write

$$H(x, p, r) = \lambda r + \max_{c \in C} (-g(x, c) \cdot p - f(x, c)).$$

Proof of Theorem 2:

$$\begin{split} J(x,\alpha) &= \int_0^\tau e^{-\lambda t} f(X(t),\alpha(t)) dt \\ &+ e^{-\lambda \tau} \int_0^\infty e^{-\lambda t} f(X(\tau+t),\alpha(\tau+t)) dt, \\ J(x,\alpha) &\geq V(x), \\ \int_0^\infty e^{-\lambda t} f(X(\tau+t),\alpha(\tau+t)) dt &= J(X(\tau),\alpha(\tau+\cdot)) \\ &\geq V(X(\tau)). \end{split}$$

Proof of Theorem 1: Since C is compact and f,g are continuous, H is continuous. We only check the supersolution property by a contradiction argument. Let $\phi \in C^1$ and $\min(V-\phi)=(V-\phi)(\hat{x})$ for some $\hat{x}\in\mathbb{R}^n$. Suppose that

$$H(\hat{x}, D\phi(\hat{x}), V(\hat{x})) < 0.$$

Replacing ϕ by $\phi + \min(V - \phi)$, we may assume that $\min(V - \phi) = 0$. That is, $V(\hat{x}) = \phi(\hat{x})$.

$$V(x) = \inf_{\alpha \in \mathcal{C}} \int_0^\tau e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} V(X(\tau)).$$

Proof Set

$$W(x) = \inf_{\alpha \in \mathcal{C}} \int_0^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} V(X(\tau)).$$

Choose $\alpha \in \mathcal{C}$ so that

$$V(x) \approx J(x, \alpha),$$

and compute

$$J(x, \alpha) = \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt + \int_{\tau(\alpha)}^{\infty} e^{-\lambda t} f(X(t), \alpha(t)) dt$$

$$= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt$$

$$\begin{split} &+e^{-\lambda\tau(\alpha)}\int_{0}^{\infty}e^{-\lambda s}f(X(s+\tau(\alpha)),\alpha(s+\tau(\alpha))ds\\ &=\int_{0}^{\tau(\alpha)}e^{-\lambda t}f(X(t),\alpha(t))dt\\ &+e^{-\lambda\tau(\alpha)}J(X(\tau(\alpha)),\alpha(\tau(\alpha)+\cdot))\\ &\geq\int_{0}^{\tau(\alpha)}e^{-\lambda t}f(X(t),\alpha(t))dt+e^{-\lambda\tau(\alpha)}V(X(\tau(\alpha)))\\ &\geq W(x). \end{split}$$

Hence,

$$V(x) \geq W(x)$$
.

Choose $\alpha \in \mathcal{C}$ so that

$$W(x)pprox \int_0^{ au(lpha)} e^{-\lambda t} f(X(t),lpha(t)) dt + e^{-\lambda au(lpha)} V(X(au(lpha))).$$

Choose $eta \in \mathcal{C}$ so that

$$V(X(\tau(\alpha))) \approx J(X(\tau(\alpha)), \beta).$$

Then

$$\begin{split} W(x) &\approx \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau(\alpha)} J(X(\tau(\alpha)), \beta) \\ &= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt \\ &+ e^{-\lambda \tau(\alpha)} \int_0^\infty e^{-\lambda t} f(X(t, X(\tau(\alpha)), \beta), \beta(t)) dt \\ &= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt \\ &+ e^{-\lambda \tau(\alpha)} \int_{\tau(\alpha)}^\infty e^{-\lambda (s - \tau(\alpha))} \times \\ &\times f(X(s - \tau(\alpha), X(\tau(\alpha)), \beta), \beta(s - \tau(\alpha))) ds \\ &= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt \\ &+ \int_{\tau(\alpha)}^\infty e^{-\lambda t} f(X(t - \tau(\alpha), X(\tau(\alpha)), \beta), \beta(t - \tau(\alpha))) dt \end{split}$$

Set

$$\gamma(t) = egin{cases} lpha(t) & ext{for } t \in [0, au(lpha)) \ eta(t - au(lpha)) & ext{for } t \in [au(lpha), \infty), \end{cases}$$

and note that

$$X(t,x,\gamma) = \begin{cases} X(t,x,\alpha) & \text{for } t \in [0,\tau(\alpha)), \\ X(t-\tau(\alpha),X(\tau(\alpha)),\beta) & \text{for } t \in [\tau(\alpha),\infty), \end{cases}$$

to find that

$$egin{aligned} W(x) &pprox \int_0^{ au(lpha)} e^{-\lambda t} f(X(t,x,\gamma),\gamma(t)) dt \ &+ \int_{ au(lpha)}^{\infty} e^{-\lambda t} f(X(t,x,\gamma),\gamma(t)) dt \ &= J(x,\gamma) \geq V(x). \end{aligned}$$

Thus, $W(x) \geq V(x)$. The proof is complete.

By continuity, for some r>0,

$$H(x, D\phi(x), \phi(x)) < 0 \ \forall x \in \overline{B}_r(\hat{x}).$$

Define $au:\mathcal{C} o[0,\infty]$ by

$$\tau = \tau(\alpha) := \inf\{t \ge 0 : X(t; \hat{x}, \alpha) \in \partial B_r(\hat{x})\}.$$

By DPP, for each $\varepsilon > 0$, $\exists \alpha \in \mathcal{C}$ such that

$$V(\hat{x}) + \varepsilon > \int_0^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} V(X(\tau)).$$

Note that

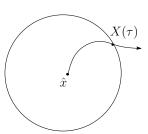
$$V(\hat{x}) = \phi(\hat{x}), \quad V(X(\tau)) \ge \phi(X(\tau)),$$

and, since $|\dot{X}| = |g(X)| \leq C$,

$$au \geq rac{r}{C}$$
,

which implies

$$\int_0^{\tau} e^{-\lambda t} dt \ge \int_0^{\frac{r}{C}} e^{-\lambda t} dt.$$



We replace ε by

$$\varepsilon \int_0^{\frac{r}{C}} e^{-\lambda t} dt,$$

to obtain

$$\begin{split} \phi(\hat{x}) + \varepsilon \int_0^\tau e^{-\lambda t} dt &> \int_0^\tau e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} \phi(X(\tau)), \\ \text{and, if } 0 &< \varepsilon \ll 1, \\ 0 &< \int_0^\tau e^{-\lambda t} \Big(\varepsilon - f(X(t), \alpha(t)) + \lambda \phi(X(t)) \\ &\qquad - g(X(t), \alpha(t)) \cdot D\phi(X(t)) \Big) dt \\ &\leq \int_0^\tau e^{-\lambda t} \Big(\varepsilon + H\big(X(t), D\phi(X(t)), \phi(X(t)) \big) dt < 0. \end{split}$$

Hence, a contradiction.

Theorem 1 is an existence theorem.

If we write

$$H(x,p) = \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c)),$$

then

$$|H(x,p) - H(y,p)| \le C|x - y|(|p| + 1),$$

 $|H(x,p) - H(x,q)| \le C|p - q|.$

Under the above hypotheses on a general $oldsymbol{H}$, consider the HJ equation

(2)
$$\lambda u + H(x, Du) = 0 \text{ in } \mathbb{R}^n.$$

Theorem 3 (Comparison theorem)

Let $v, w \in \mathrm{BC}(\mathbb{R}^n)$ be sub and super solutions of (2), respectively. Then, $v \leq w$ in \mathbb{R}^n .

The value function V is a unique solution in the class $BC(\mathbb{R}^n)$. A PDE characterization of value functions.

1) Fix any $\varepsilon>0$. Set $v_\varepsilon(x)=v(x)-\varepsilon\langle x\rangle$, where $\langle x\rangle=(|x|^2+1)^{1/2}$. Note:

$$egin{aligned} \lambda v_{arepsilon} + H(x,Dv_{arepsilon}) & \leq \lambda v + H\left(x,Dv - arepsilon rac{x}{\langle x
angle}
ight) \ & \leq \lambda v + H(x,Dv) + Carepsilon. \end{aligned}$$

Replace v_{ε} by $v_{\varepsilon}=v-arepsilon(\langle x \rangle+\lambda^{-1}C)$, to get

$$\lambda v_{\varepsilon} + H(x, Dv_{\varepsilon}) \le \lambda v - \varepsilon C + H(x, Dv) + \varepsilon C \le 0.$$

Enough to show that $v_{\varepsilon} \leq w$ in \mathbb{R}^n for all $\varepsilon > 0$ $(0 < \varepsilon \ll 1)$.

2) Fix $\varepsilon > 0$. Since v, w are bounded,

$$\lim_{x \to \infty} (v_{\varepsilon} - w)(x) = -\infty.$$

Choose R>0 so that

$$(v_{\varepsilon}-w)(x)<0 \ \forall x\in\mathbb{R}^n\setminus B_R.$$

3) To complete the proof, we argue by contradiction. Suppose:

$$\sup_{\mathbb{R}^n}(v_\varepsilon-w)>0,$$

which implies

$$S:=\sup_{B_R}(u_arepsilon-w)>0.$$

4) If we have $w \in C^1$, by chance, then, by the viscosity properties,

$$\lambda v_{\varepsilon}(x) + H(x,Dw(x)) \leq 0, \text{ and } \lambda w(x) + H(x,Dw(x)) \geq 0$$

at any maximum point x of $v_\varepsilon-w$. (v_ε is tested by w from above and w is tested by w itself from below.) Subtracting one from the other yields

$$\lambda(v_{arepsilon}-w)(x)\leq 0$$
 at any maximu point x of $v_{arepsilon}-w$.

This is a contradiction: $\lambda S < 0$.

5) In the general situation, a standard technique to overcome the lack of regularity is the so-called doubling variable method. For $k \in \mathbb{N}$, consider the function

$$\Phi_k(x,y) = v_{\varepsilon}(x) - w(y) - k|x - y|^2$$

on $K:=\overline{B}_R imes\overline{B}_R$. Let (x_k,y_k) be a maximum point of this function.

6) Observe that

$$\max_K \Phi_k \geq \max_{x \in \overline{B}_R} \Phi_k(x,x) = \max_{\overline{B}_R} (v_{arepsilon} - w) = S,$$

and hence,

$$S \leq \Phi_k(x_k, y_k) = v_{\varepsilon}(x_k) - w(y_k) - k|x_k - y_k|^2 \leq C_1 - k|x_k - y_k|^2.$$

We may assume by passing to a subsequence that for some $(x_0,y_0)\in K$,

$$\lim_k (x_k, y_k) = (x_0, y_0).$$

Since $\{k|x_k-y_k|^2\}_k$ is bounded, we find that

$$x_0=y_0,$$

and, moreover, from the above,

$$S \leq v_{\varepsilon}(x_0) - w(x_0) - \limsup_{k} k|x_k - y_k|^2,$$

which implies that

$$(v_arepsilon-w)(x_0)=S$$
 and $\lim_k k|x_k-y_k|^2=0.$

The first identity above implies that $x_0 \in B_R$ (interior point). Passing to a subsequence, we may assume that

$$x_k, y_k \in B_R \ \forall k.$$

Note that the functions

$$x \mapsto \Phi_k(x,y_k) = v_arepsilon(x) - k|x - y_k|^2 - w(y_k), \ y \mapsto -\Phi_k(x_k,y) = w(y) + k|y - x_k|^2 - v_arepsilon(x_k)$$

take, respectively, a max at $x=x_k$ and min at $y=y_k$. By the viscosity properties,

$$egin{aligned} \lambda v_arepsilon(x_k) + H(x_k, 2k(x_k-y_k)) & \leq 0, \ \lambda w(y_k) + H(y_k, -2k(y_k-x_k)) & \geq 0. \end{aligned}$$

Hence,

$$egin{aligned} 0 & \geq \lambda(v_{arepsilon}(x_k)\!-\!w(y_k))\!+\!H(x_k,2k(x_k\!-\!y_k))\!-\!H(y_k,2k(x_k\!-\!y_k)) \ & \geq \lambda S - C|x_k-y_k|(2k|x_k-y_k|+1). \end{aligned}$$

In the limit $k \to \infty$, $\lambda S \le 0$, a contradiction.

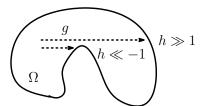
• Dirichlet problem. Let $\Omega\subset\mathbb{R}^n$ be an open set. Let f,g be as above. We introduce a function h on $\partial\Omega$, which is called the pay-off in the framework of optimal control. The cost functional is:

$$J(x,\alpha) = \int_0^\tau e^{-\lambda t} f(X(t),\alpha(t)) dt + e^{-\lambda \tau} h(X(\tau)),$$

where $au=\inf\{t\geq 0: X(t)\in\mathbb{R}^n\setminus\Omega\}$, called the *exit time*. The value function V is given by

$$V(x) = \inf_{\alpha \in \mathcal{C}} J(x, \alpha).$$

The continuity of $oldsymbol{V}$ can be a big issue.



When everything goes fine, u=V satisfies the Dirichlet problem

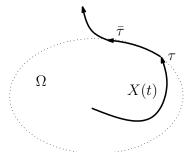
$$\begin{cases} \lambda u + \max_{c \in \mathbb{C}} (-g(x,c) \cdot Du - f(x,c)) = 0 & \text{in } \Omega, \\ u = h & \text{on } \partial \Omega. \end{cases}$$

In the above choice of au, X have to stop at the first hitting time to $\partial\Omega$.

Another possible choice of au is:

$$ar{ au} = \inf\{t \geq 0: X(t) \in \mathbb{R}^n \setminus \overline{\Omega}\}.$$

Here X stays in $\overline{\Omega}$ until it first exits from $\overline{\Omega}$.



EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY SOLUTIONS II

Consider the time-evolution problem

(1)
$$u_t + H(x, D_x u) = 0 \quad \text{in } \mathbb{R}^n \times (0, \infty).$$

If we set F(x,t,p,q):=q+H(x,p) for $(x,t)\in\mathbb{R}^n\times(0,\infty),\ (p,q)\in\mathbb{R}^n\times\mathbb{R}$, then the above time-evolution PDE can be written as F(z,Du)=0. The previous definition of viscosity solutions makes sense for the current problem.

If H is given as before by

$$H(x,p) = \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c)),$$

then our PDE can be written as

$$\max_{c \in \mathcal{C}} (-g(x,c) \cdot D_x u - (-1)u_t - f(x,c)) = 0.$$

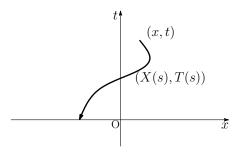
In view of optimal control, the dynamics is described by

$$\dot{X}(s) = g(X(s), \alpha(s)), \ \dot{T}(s) = -1, \ X(0) = x, \ T(0) = t,$$

and the cost functional is:

$$J(x,t,lpha)=\int_0^t f(X(s),lpha(s))ds+h(X(t)),$$

where $h \in \mathrm{BC}(\mathbb{R}^n)$.



A kind of the Dirichlet problem: au=t.

The value function is now:

(2)
$$V(x,t) = \inf_{\alpha \in \mathcal{C}} J(x,t,\alpha).$$

Theorem 1

Assume that f, g satisfy the Lipschitz condition as before and that $h \in \mathrm{BC}(\mathbb{R}^n)$. Then,

- for any $0 < T < \infty$, the value function V, given by (2), is bounded and continuous on $\mathbb{R}^n \times [0,T]$.
- $\mathbf{v} = \mathbf{V}$ is a (viscosity) solution of the Cauchy problem

$$(3) u_t + H(x, D_x u) = 0 \text{in } \mathbb{R}^n \times (0, \infty),$$

$$(4) u(\cdot,0)=h \text{on } \mathbb{R}^n,$$

where
$$H(x,p) = \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c))$$
.

This can be regarded as an existence result for the Cauchy problem (3) - (4). Here h is the *initial data*.

We have a comparison theorem which covers the above Cauchy problem, and the consequence is that $oldsymbol{V}$ is a unique solution of (3)-(4).

Let H be a (general) continuous function on $\mathbb{R}^n imes [0,\infty) imes \mathbb{R}^n$ such that for some constant C>0,

$$|H(x,t,p) - H(x,t,q)| \le C|p-q|, \ |H(x,t,p) - H(y,s,p)| \le C(|x-y| + |t-s|)(|p| + 1).$$

Let $0 < T \leq \infty$. Consider the HJ equation

(5)
$$u_t + H(x, t, D_x u) = 0 \quad \text{in } \mathbb{R}^n \times [0, T).$$

Theorem 2

Under the above assumptions on H, let $v,w\in \mathrm{BC}(\mathbb{R}^n\times [0,T))$ be, respectively, a sub and supersolution of (5). Assume moreover that $v(x,0)\leq w(x,0)$ for all $x\in \mathbb{R}^n$. Then, $v\leq w$ in $\mathbb{R}^n\times [0,T)$.

Proof.

- 1) Enough to show that for any 0 < S < T, $v \le w$ on $\mathbb{R}^n \times [0, S)$. Fix any S > 0.
- 2) Fix any $\varepsilon>0$. Set $v_{\varepsilon}(x,t)=v(x,t)-\varepsilon\langle x\rangle$, where $\langle x\rangle=(|x|^2+1)^{1/2}$. Enough to show that $v_{\varepsilon}\leq w$ on $\mathbb{R}^n\times[0,S)$. Note that

$$v_{\varepsilon,t} + H(x,t,D_x v_{\varepsilon}) \le v_t + H(x,t,D_x v) + C\varepsilon.$$

Replace $v_arepsilon$ by $v_arepsilon(x,t)=v(x,t)-\delta\langle x
angle-Carepsilon t$, and note that

$$v_{\varepsilon,t} + H(x,t,D_xv_{\varepsilon}) \le v_t - C\varepsilon + H(x,t,D_xv) + C\varepsilon \le 0.$$

Replace again $v_{arepsilon}$ by $v(x,t)-arepsilon\langle x
angle-Carepsilon t-rac{arepsilon}{S-t}$, and note that

$$v_{\varepsilon,t} + H(x,t,Dv_{\varepsilon}) \leq v_t - \frac{\varepsilon}{(S-t)^2} - C\varepsilon + H(x,t,Dv) + C\varepsilon \leq -\eta,$$

where $\eta = \varepsilon S^{-2}$.

Enough to show that $v_{\varepsilon} \leq w$ on $\mathbb{R}^n \times [0, S)$.

page:3.5

5) We argue by contradiction: suppose that $\sup(v_{arepsilon}-w)>0$ and will get a contradiction. Since

$$\lim_{|x| o \infty} (v_{arepsilon} - w)(x,t) = -\infty$$
 uniformly in $t,$ $\lim_{t o S^-} (v_{arepsilon} - w)(x,t) = -\infty$ uniformly in $x,$ $(v_{arepsilon} - w)(x,0) < 0$ for all $x \in \mathbb{R}^n,$ $\exists R > 0, \delta > 0$ such that $(x_{arepsilon} - w)(x,t) < 0$ for all $(x,t) \in (\mathbb{R}^n \times [0,S)) \setminus (R_D \times (\delta,S))$

 $(v_arepsilon-w)(x,t)< 0 \;\; ext{for all}\; (x,t)\in (\mathbb{R}^n imes [0,S))ackslash ig(B_R imes (\delta,S-\delta)ig).$ In particular,

$$\max_{\overline{B}_R imes [\delta, S - \delta]} (v_arepsilon - w) = \max_{B_R imes (\delta, S - \delta)} (v_arepsilon - w) > 0.$$

6) If $w \in C^1$, then, at any maximum point of $v_{arepsilon} - w$,

$$w_t + H(x, t, Dw) \le -\eta,$$

 $w_t + H(x, t, Dw) \ge 0,$

which yields a contradiction.

In the general case, we use the doubling variable method, to obtain a contradiction.

$$egin{aligned} \Phi_k(x,t,y,s) &:= v_{arepsilon}(x,t) - w(y,s) - k(|x-y|^2 + |t-s|^2). \ (x_k,t_k,y_k,s_k) ext{ a max point of } \Phi_k. \ &\lim_{k o \infty} (x_k,t_k,y_k,s_k) = (x_0,x_0,t_0,t_0), \ (v_{arepsilon} - w)(x_0,t_0) = \max(v_{arepsilon} - w), \ &\lim_{k o \infty} k(|x_k-y_k|^2 + |t_k-s_k|^2) = 0, \ &2(t_k-s_k) + H(x_k,t_k,2k(x_k-y_k)) \leq -\eta, \ &2(t_k-s_k) + H(y_k,s_k,2k(x_k-y_k)) \geq 0. \ &-\eta \geq H(x_k,t_k,\ldots) - H(y_k,s_k,\ldots) \ &\geq -C(|x_k-y_k| + |t_k-s_k|)(2k|x_k-y_k| + 1) \to 0 \ &(k o \infty). \end{aligned}$$

EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY SOLUTIONS III

Stability:

Well-posedness (Hadamard) = existence, uniqueness, stability. Consider the general first-oder PDE

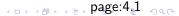
(1)
$$F(x, Du, u) = 0 \quad \text{in } \Omega,$$

where $\Omega \subset \mathbb{R}^n$ is an open set and $F \in C(\Omega \times \mathbb{R}^n \times \mathbb{R})$.

Theorem 1

Let $\{u_k\}$ be a sequence of continuous functions on Ω converging to a function u in $C(\Omega)$. If every u_k is a (viscosity) subsolution (resp., supersolution, solution) of (1), then so is the function u.

PROOF. Only the subsolution case. Let $\phi \in C^1(\Omega)$ and assume that $\max(u - \phi) = (u - \phi)(\hat{x})$. By adding the function $|x - \hat{x}|^2$ to ϕ (notice that $D|x - \hat{x}|^2 = 0$ at $x = \hat{x}$), we may assume that \max is a strict \max .



Choose $0 < r \ll 1$ so that $\overline{B}_r(\hat{x}) \subset \Omega$. Let x_k be a maximum point of $(u_k - \phi)|_{\overline{B}_r(\hat{x})}$. Because of the uniform convergence on $\overline{B}_r(\hat{x})$ and the strict \max ,

$$\lim_k x_k = \hat{x}.$$

We may assume that $x_k \in B_r(\hat{x})$ (interior point). Since u_k is a subsolution, we have

$$F(x_k, D\phi(x_k), u_k(x_k)) \leq 0.$$

Sending $k o \infty$ yields

$$F(\hat{x}, D\phi(\hat{x}), u(\hat{x})) \leq 0.$$

page:4.2

The following is a straightforward generalization of the above theorem.

Theorem 2

Let $\{u_k\}$ be a sequence of continuous functions on Ω converging to a fucntion u in $C(\Omega)$. Let $\{F_k\}$ be a sequence of continuous functions on $\Omega \times \mathbb{R}^n \times \mathbb{R}$ converging to a function F in $C(\Omega \times \mathbb{R}^n \times \mathbb{R})$. If each u_k is a (viscosity) subsolution (resp., supersolution, solution) of $F_k(x,Du,u)=0$ in Ω , then u is a (viscosity) subsolution (resp., supersolution, solution) of F(x,Du,u)=0 in Ω ,

Let $v,w\in C(\Omega)$ be subsolutions of (1) and consider the function $v\vee w=\max\{v,w\}$. This function $v\vee w$ is also a subsolution of (1).

Let \mathcal{F} be a family of subsolutions of (1). In general,

$$w(x) := \sup\{v(x) : v \in \mathcal{F}\}$$

does not define a continuous function on Ω . w(x) can be $+\infty$. Given a function f on Ω which is locally bounded (above), we define the upper semicontinuous envelope f^* by

$$egin{aligned} f^*(x) &:= \inf\{g(x): g \in C(\Omega), f \leq g \ \ ext{on} \ \Omega\} \ &= \lim_{r
ightarrow 0^+} \sup\{f(y): |y-x| < r\}. \end{aligned}$$

Similarly, the lower semicontinuous envelope f_st of f is defined by

$$f_*(x) := \sup\{g(x): g \in C(\Omega), f \geq g \text{ on } \Omega\}$$

$$= \lim_{r o 0^+} \inf\{f(y): |y-x| < r\}.$$

It follows

$$f^* \in \mathrm{USC}(\Omega), \quad f_* \in \mathrm{LSC}(\Omega), \quad f_* < f < f^*.$$

Definition 1

Let $u:\Omega\to\mathbb{R}$ be a locally bounded function. We call u a (viscosity) subsolution (resp., supersolution) of (1) if u^* (resp., u_*) satisfies the requirement of being a subsolution (resp., supersolution) of (1). We call u a solution if it is both a subsolution and a supersolution of (1).

Theorem 3

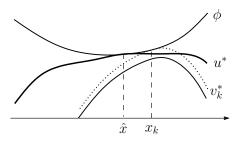
Let \mathcal{F} be a family of subsolutions of (1). Set

$$u(x) = \sup\{v(x) : v \in \mathcal{F}\}$$
 for $x \in \Omega$.

Assume that u is locally bounded in Ω . Then u is a subsolution of (1).

- An assertion parallel to the above for supersolutions holds.
- If u is a subsolution of (1), then v = -u is a supersolution of -F(x, -Dv, -v) = 0 in Ω , and vice versa.

PICTORIAL PROOF:



Theorem 4

Let $\{v_k\}_{k\in\mathbb{N}}\subset \mathrm{USC}(\Omega)$ and locally uniformly bounded in Ω . Let v_k be a subsolution of (1) for any k. Assume $v_k>v_{k+1}$ on Ω for all k. Set

$$v(x)=\lim_k v_k(x)=\inf_k v_k(x)\quad\text{for }x\in\Omega.$$

Then, v is a subsolution of (1).

$$egin{aligned} \phi(\hat{x}) &= u^*(\hat{x}), \ \phi(x) &\geq u^*(x) + |x - \hat{x}|^2, \ (v_k^* - \phi)(x_k) &= \max(v_k^* - \phi), \ v_k^*(\hat{x}) &> u^*(\hat{x}) - rac{1}{k}, \ v_k^* &\leq u^*. \ (v_k^* - \phi)(x_k) &\leq (u^* - \phi)(x_k) &\leq -|x_k - \hat{x}|^2, \ \parallel \ (v_k^* - \phi)(x_k) &\geq (v_k^* - \phi)(\hat{x}) &> -rac{1}{k}. \end{aligned}$$

Hence,

$$\lim_k x_k = \hat{x}, \qquad \lim_k v_k^*(x_k) = \phi(\hat{x}) = u^*(\hat{x}).$$
 $F(x_k, D\phi(x_k), v_k^*(x_k)) \le 0 \implies F(\hat{x}, D\phi(\hat{x}), u^*(\hat{x})) \le 0.$

Correction of the previous slide

The choice of v_k (and y_k):

$$\lim y_k = \hat{x}, \qquad v_k^*(y_k) > \phi(\hat{x}) - \frac{1}{k}.$$

$$\begin{cases} \phi(\hat{x}) = u^*(\hat{x}), \\ \phi(x) \geq u^*(x) + |x - \hat{x}|^2, \\ (v_k^* - \phi)(x_k) = \max(v_k^* - \phi), \\ v_k^* \leq u^*. \end{cases}$$

$$(v_k^* - \phi)(x_k) \leq (u^* - \phi)(x_k) \leq -|x_k - \hat{x}|^2,$$

$$\parallel$$

$$(v_k^* - \phi)(x_k) \geq (v_k^* - \phi)(y_k) \gtrapprox -\frac{1}{k}.$$

Hence,

$$\lim_{k} x_k = \hat{x}, \qquad \lim_{k} v_k^*(x_k) = \phi(\hat{x}) = u^*(\hat{x}).$$

$$F(x_k, D\phi(x_k), v_k^*(x_k)) \le 0 \implies F(\hat{x}, D\phi(\hat{x}), u^*(\hat{x})) \le 0.$$

PROOF. Let $\phi \in C^1(\Omega)$ and

$$\max(v-\phi)=(v-\phi)(\hat{x})=0$$
 (a strict max).

Then, $\sup(v_k - \phi) \downarrow 0$ as $k \to \infty$. Look at $(v_k - \phi)_+$, which is in $\mathrm{USC}(\Omega)$ and $\downarrow 0$ as $k \to \infty$. Dini's lemma implies that the convergence is locally uniformly on Ω . The situation is now same as in the first stability theorem.

Theorem 5 (Barles-Perthame, half-relaxed limits)

Let $\{v_k\}_{k\in\mathbb{N}}$ be a sequence of functions on Ω , which is locally uniformly bounded in Ω . Let v_k be a subsolution of (1) for any k. Set

$$v(x) = \lim_{r o 0^+} \sup\{v_k(y): k > rac{1}{r}, \ |y{-}x| < r\}$$
 for $x \in \Omega$.

Then, v is a subsolution of (1).

PROOF. Let $\Omega=\mathbb{R}^n$. Let r>0. Note that for any $\xi\in B_r(0)$, $x\mapsto v_k(\xi+x)$ is a subsolution of

$$\inf_{\eta \in B_r(0)} F(x+\eta, Du(x), u(x)) = 0 \quad \text{in } \Omega.$$

So, $x \mapsto \sup\{v_k(y) : k > \frac{1}{r}, |y - x| < r\}$ is a subsolution of the above HJ equation. The stability under monotone convergence (Theorem 4) completes the proof.

Theorem 6 (Perron's method)

Let f,g be, respectively, a sub and supersolution of (1). Assume $f\in \mathrm{LSC}(\Omega)$ and $g\in \mathrm{USC}(\Omega)$ and that $f\leq g$ in Ω . Set

$$u(x)=\sup\{v(x):v\in\mathcal{S}^-,\,f\leq v\leq g\ \text{in }\Omega\}\ \text{for }x\in\Omega,$$

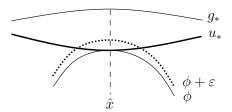
where S^- = the set of all subsolutions of (1). Then u is a solution of (1).

PROOF. Since, by definition, \boldsymbol{u} is a pointwise sup of a family of subsolutions, it is a subsolution.

Let $\phi \in C^1$ and $\min(u_* - \phi) = (u_* - \phi)(\hat{x})$ for some $\hat{x} \in \Omega$. Assume that $\min = a$ strict min. Two cases:

Case 1: $\phi(\hat{x}) = g_*(\hat{x})$. Then, $\phi \leq u_* \leq g_*$ in Ω . ϕ touches g_* from below at \hat{x} . Since $g \in \mathcal{S}^+$, where $\mathcal{S}^+ =$ the set of all supersolultions of (1), we find that $F(\hat{x}, D\phi(\hat{x}), g_*(\hat{x})) \geq 0$ $(F(\hat{x}, D\phi(\hat{x}), u_*(\hat{x})) \geq 0)$.

Case 2: $\phi(\hat{x}) < g_*(\hat{x})$. Suppose by contradiction that $F(\hat{x}, D\phi(\hat{x}), \phi(\hat{x})) < 0$.



The function $\max\{u, \phi + \varepsilon\}$ $(0 < \varepsilon \ll 1)$ is against the maximality of u.

Let ${\cal H}$ be a Hamiltonian satisfying the Lipschitz condition: for some constant C>0,

$$|H(x,t,p)-H(x,t,q)| \leq C|p-q|, \ |H(x,t,p)-H(y,s,p)| \leq C(|x-y|+|t-s|)(|p|+1).$$

Theorem 7

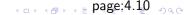
Let H=H(x,p) satisfy the above Lipschitz condition as well as the boundedness: $|H(x,0)| \leq C$. Let $\lambda > 0$. There exists a solution $u \in \mathrm{BC}(\mathbb{R}^n)$ of

(2)
$$\lambda u + H(x, Du) = 0 \text{ in } \mathbb{R}^n.$$

PROOF. Set $f(x) = -C/\lambda$, $g(x) = C/\lambda$. Then f, g are, respectively, a sub and super solution of (2). Set

$$u(x) = \sup\{v(x) : v \in \mathcal{S}^-, f \le v \le g \text{ in } \mathbb{R}^n\},$$

where S^- =the set of all subsolutions of (2). By Perron's method, u is a solution of (2).



By the comparison theorem, applied to a subsolution u^* and a supersolution u_* , we find that $u^* \leq u_*$ in \mathbb{R}^n , from which $u \leq u^* \leq u_* \leq u$ in \mathbb{R}^n . That is, $u = u^* = u_*$ and hence, $u \in C(\mathbb{R}^n)$.

Theorem 8

Let H satisfy the above Lipschitz condition and the boundedness: $|H(x,t,0)| \leq C$. Let $h \in \mathrm{BC}(\mathbb{R}^n)$. Then there exists a solution $u \in C(\mathbb{R}^n \times [0,\infty))$, bounded on $\mathbb{R}^n \times [0,T]$ for any T>0, of

(3)
$$\begin{cases} u_t + H(x,t,Du) = 0 & \text{in } \mathbb{R}^n \times (0,\infty), \\ u(\cdot,0) = h & \text{on } \mathbb{R}^n. \end{cases}$$

PROOF. We may assume that $|h(x)| \leq C$. Set

$$g_0(x,t) = C(1+t)$$
 and $f_0 = -g_0$,

and note that f,g are, resp., a sub and super solutions of $u_t+H=0$.

Want to have a sub and super solutions f,g such that $f(\cdot,0)=g(\cdot,0)=h$. Fix any $y\in\mathbb{R}^n,\, \varepsilon>0$ and choose a constant $A(y,\varepsilon)>0$ so that

$$|h(x) - h(y)| < \varepsilon + A(y, \varepsilon)|x - y| \ \forall x.$$

Note:

$$|H(x,t,p)| \le |H(x,t,0)| + C|p| \le C(1+|p|).$$

and choose a constant B(y,arepsilon)>0 so that if $|p|\leq A(y,arepsilon)$,

$$|H(x,t,p)| \leq B(y,\varepsilon).$$

Set

$$g_{y,\varepsilon}(x,t) = h(y) + \varepsilon + A(y,\varepsilon)|x-y| + B(y,\varepsilon)t,$$

 $f_{y,\varepsilon}(x,t) = h(y) - (\varepsilon + A(y,\varepsilon)|x-y| + B(y,\varepsilon)t),$

and note that $f_{y,\varepsilon},\ g_{y,\varepsilon}$ are, resp., a sub and super solution of our HJ equation.

Moreover, we have

$$egin{aligned} f_{y,arepsilon}(x,t) & \leq h(x) \leq g_{y,arepsilon}(x,t) & orall (x,t), \ |f_{y,arepsilon}(y,0) - h(y)| = |g_{y,arepsilon}(y,0) - h(y)| = arepsilon. \end{aligned}$$

Finally, define $g,f:\mathbb{R}^n imes [0,\infty) o\mathbb{R}$ by

$$g(x,t) = g_0(x,t) \wedge \inf_{y,\varepsilon} g_{y,\varepsilon}(x,t),$$

 $f(x,t) = f_0(x,t) \vee \sup f_{y,\varepsilon}(x,t).$

Then,

$$g \in \mathcal{S}^+, \quad f \in \mathcal{S}^-, \quad g \in \mathrm{USC}, \quad f \in \mathrm{LSC},$$
 f,g are bounded on $\mathbb{R}^n \times [0,T] \quad \forall T < \infty,$ $f(x,t) \leq h(x) \leq g(x,t) \; \forall (x,t), \quad f(\cdot,0) = h = g(\cdot,0).$

Perron's method yields a solution u such that $f \leq u \leq g$, which implies that $u^*(\cdot,0) = u_*(\cdot,0) = h$ on \mathbb{R}^n . The comparison theorem shows that $u^* = u_* = u$ and $u \in C$.

HOMOGENIZATION OF HAMILTON-JACOBI EQUATIONS I (Lions-Papanicolaou-Varadhan) Consider the HJ equation

$$(1) \ u_t+|Du|^2-f(x/\varepsilon)=0 \ \ \text{in } \mathbb{R}^n\times(0,\infty), \text{ with } \varepsilon>0,$$
 together with initial condition

(2)
$$u(x,0) = h(x)$$
 for $x \in \mathbb{R}^n$.

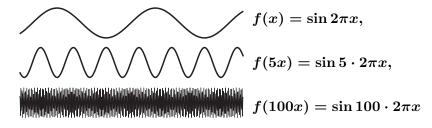
The Hamiltonian H is:

$$H(x,p) = |p|^2 - f(x),$$

where $f \in C(\mathbb{T}^n)$ is assumed, and our HJ equation reads

$$u_t + H(x/\varepsilon, D_x u) = 0.$$

The main question here is: If u_{ε} is a solution of the above HJ equation, what happens with u_{ε} as $\varepsilon \to 0^+$.



Formal expansion:

Suppose that we have an expansion

$$u_{\varepsilon}(x,t) = u_0(x,t) + \varepsilon u_1(x/\varepsilon,t) + \varepsilon^2 u_2(x/\varepsilon,t) + \cdots$$

Insert this into the HJ equation, to get

$$0 = u_{0,t}(x,t) + \varepsilon u_{1,t}(x/\varepsilon,t) + O(\varepsilon^2) + H(x/\varepsilon, D_x u_0(x,t) + D_x u_1(x/\varepsilon,t) + O(\varepsilon)).$$

Because of a high oscillation when $\varepsilon \to 0+$, one may look at x/ε as if an independent variable y.

$$\leftarrow$$
 page:5_2 \rightarrow

Then, in the limit $arepsilon o 0^+$, the above asymptotic identity suggests that for some u_0,u_1 ,

$$u_arepsilon(x,t) o u_0(x,t)\quad ext{as }arepsilon o 0^+,$$

$$u_{0,t}+H(y,D_xu_0(x,t)+D_yu_1(y,t))=0\quad ext{for all }x,y,t.$$

If we have a solution u_0,u_1 of the above identity, we are in a good shape to conclude the above convergence. Thus, the question is how to find u_0,u_1 which satisfy

$$u_{0,t} + H(y, D_x u_0(x,t) + D_y u_1(y,t)) = 0$$
 for all x, y, t .

If we can write

$$\overline{H}(p) = H(y, p + D_y u_1(y, t)),$$

then the above equation can be stated as

$$u_{0,t} + \overline{H}(D_x u_0) = 0.$$

page:5.3

Here a big question is when we can write

$$\overline{H}(p) = H(y, p + D_y u_1(y, t)).$$

We consider this as a solvability problem: given $p \in \mathbb{R}^n$, find $(c,v) \in \mathbb{R} \times C(\mathbb{T}^n)$ such that

(3)
$$H(y, p + Dv(y)) = c$$
 in \mathbb{T}^n .

(In fact, a crucial point is not the periodicity of v, but the sublinear growth of v.) Notice that the correspondence: $(c,v)\leftrightarrow (\overline{H}(p),u_1)$.

The problem of solving a solution (c, v) is called a *cell problem*. (Aslo, ergodic problem, additive eigenvalue problem, weak KAM problem)

Example 1

Consider the case n=1 and $f(x)=-\cos(2\pi x)$. The case p=0:

$$|v_x(x)|^2 = c - \cos(2\pi x).$$

For the solvability, RHS $\geq 0 \iff c \geq 1$.

When $oldsymbol{v}$ is a solution of

(3')
$$H(y, p + Dv(y)) = c \text{ in } \mathbb{R}^n,$$

then $w(y) = p \cdot y + v(y)$ is a solution of

$$H(y,Dw(y))=c$$
 in \mathbb{R}^n .

The sublinear growth of the solution \boldsymbol{v} identifies the \boldsymbol{p} term in the equation.

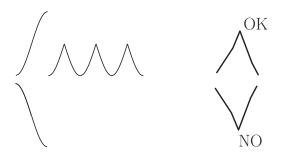
If c>1, then RHS $\geq c-1>0$, which implies NO periodic (viscosity) solution: any function is tested from below at its minimum point, if any, by constant functions.

Thus, c=1. If c=1, then

$$|v_x(x)| = \sqrt{1 - \cos(2\pi x)} = \sqrt{2}|\sin(\pi x)|.$$

Integrate, to get

$$v(x)=\operatorname{constant}\pm rac{\sqrt{2}}{\pi}\cos(\pi x) \quad ext{for } 0\leq x\leq 1.$$



The periodic function

$$v(x) = -rac{\sqrt{2}}{\pi}\cos(\pi x) \quad ext{for } -rac{1}{2} \leq x \leq rac{1}{2},$$

with period 1, is a viscosity solution for p=0 and c=1.

For general $p \in \mathbb{R}$, we have to solve

$$|p+v_x|=\sqrt{c-\cos(2\pi x)},$$

with c > 1, which reads

$$v_x = -p \pm \sqrt{c - \cos(2\pi x)}.$$

Let c=1 and

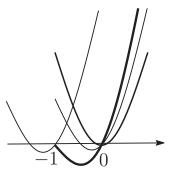
$$v(x) := -px + \frac{\sqrt{2}}{\pi} (1 - \cos(\pi x)).$$

Note that v(0)=0 and solve

$$v(-1)=0,$$

to find that

$$-p = rac{2\sqrt{2}}{\pi}.$$



So, as far as $|p| \leq rac{2\sqrt{2}}{\pi}$, the problem

$$|p + v_x|^2 = 1 - \cos(2\pi x)$$

has a periodic viscosity solultion. Moreover, if $|p|>rac{2\sqrt{2}}{\pi}$,

$$|p + v_x|^2 = c - \cos(2\pi x)$$

has a periodic solution v only when c>1.

We will know that if $oldsymbol{v}$ is a (viscosity) solution of

$$|p+v_x|=\sqrt{2}|\sin\pi x|,$$

then v is Lipschitz continuous and satisfies the equation in the a.e. If it is periodic with period 1, then

$$\int_0^1 |p+v_x| dx egin{cases} = \sqrt{2} \int_0^1 \sin \pi x \, dx = rac{2\sqrt{2}}{\pi}, \ \geq \left| \int_0^1 (p+v_x) dx
ight| = |p|. \end{cases}$$

page:5.7

As a function of p, $c=\overline{H}(p)$ and, in the above case of f,

$$\overline{H}(p) egin{cases} = 1 & ext{if } |p| \leq rac{2\sqrt{2}}{\pi}, \ > 1 & ext{otherwise} \ . \end{cases}$$

In homogenization theory, \overline{H} is called the *effective Hamiltonian*.

Some properties of \overline{H} :

- $ightharpoonup \overline{H}$ is a continuous function on \mathbb{R} .
- $ightharpoonup \overline{H}$ is a convex function on \mathbb{R} .
- lacksquare \overline{H} is coercive on $\mathbb R$. That is, $\lim_{|p| o \infty} \overline{H}(p) = \infty$.

Theorem 1

Assume that $h \in \mathrm{BUC}(\mathbb{R}^n)$. Then there exists a unique solution u_{ε} on $\mathbb{R}^n \times [0,\infty)$ of the Cauchy problem (1) – (2) such that $u_{\varepsilon} \in \mathrm{BUC}(\mathbb{R}^n \times [0,T])$ for every T>0. Also, there exists a unique solution u on $\mathbb{R}^n \times [0,\infty)$ of

$$\begin{cases} u_t + \overline{H}(D_x u) = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(\cdot, 0) = h & \text{on } \mathbb{R}^n, \end{cases}$$

such that $u \in \mathrm{BUC}(\mathbb{R}^n \times [0,T))$ for every T>0. Furthermore, as $\varepsilon \to 0^+$,

$$u_{arepsilon}(x,t) o u(x,t)$$
 locally uniformly on $\mathbb{R}^n imes [0,\infty)$.

page:5.9

- The main steps in the proof of the convergence:
 - Show that $\{u_{\varepsilon}\}_{{\varepsilon}\in(0,1)}$ is unif-bounded and equi-continuous on $\mathbb{R}^n imes[0,T]$ orall T>0.
 - $\mathbf{v} := \lim_{j \to \infty} u_{\varepsilon_j}$ for some $\varepsilon_j \to 0^+$, where the convergence is locally uniform on $\mathbb{R}^n \times [0, \infty)$.
 - ightharpoonup Show that v = u.
- Method of purterbed test functions (Evans).

To show the last step of the above list, we need to prove that v is a solution of $v_t + \overline{H}(D_x v) = 0$ in $\mathbb{R}^n \times (0, \infty)$.

Let $\psi \in C^1(\mathbb{R}^n \times (0,\infty))$ and assume that $v-\psi$ takes a strict maximum at (\hat{x},\hat{t}) . Fix a compact neighborhood $K \subset \mathbb{R}^n \times (0,\infty)$ of (\hat{x},\hat{t}) .

Classical argument: Let $(x_{arepsilon},t_{arepsilon})\in K$ be a maximum point of $u_{arepsilon}-\psi$ on K. We have

$$\lim_{arepsilon o 0^+} (x_arepsilon, t_arepsilon) = (\hat{x}, \hat{t}).$$

For sufficiently small $\varepsilon>0$, we have $(x_{\varepsilon},t_{\varepsilon})\in\operatorname{int} K$ and

$$\psi_t(x_{\varepsilon}, t_{\varepsilon}) + H(x_{\varepsilon}/\varepsilon, D_x \psi(x_{\varepsilon}, t_{\varepsilon})) \le 0.$$

This way, we can show that v is a subsolultion of $v_t + \min_y H(y, D_x v) = 0$ and a supersolution of $v_t + \max_y H(y, D_x v) = 0$. This is not enough to conclude that v = u.

The formal exapansion suggests that $v(x,t) + \varepsilon w(x/\varepsilon)$ should be a good approximation of u_{ε} .

Set $\hat{p} = D_x \psi(\hat{x}, \hat{t})$. Let $w \in C(\mathbb{T}^n)$ be a solution of

$$H(y,\hat{p}+D_yw(y))=\overline{H}(\hat{p}) \quad ext{for } y\in\mathbb{T}^n.$$

Temporarily, we assume that $w \in C^1$ and consider the function

$$u_{\varepsilon}(x,t) - \psi(x,t) - \varepsilon w(x/\varepsilon).$$

Let $(x_{arepsilon},t_{arepsilon})\in K$ be a maximum point of this function. Then

$$\lim_{arepsilon o 0^+} (x_{arepsilon}, t_{arepsilon}) = (\hat{x}, \hat{t}),$$

and if $\varepsilon>0$ is small enough, $(x_{\varepsilon},t_{\varepsilon})\in\operatorname{int} K$ and

$$\psi_t(x_{\varepsilon}, t_{\varepsilon}) + H(x_{\varepsilon}/\varepsilon, D_x \psi(x_{\varepsilon}, t_{\varepsilon}) + Dw(x_{\varepsilon}/\varepsilon)) \le 0.$$

For some $arepsilon_j o 0^+$, we may assume that for some $\hat{y}\in\mathbb{T}^n$,

$$\lim_{j o\infty}x_{arepsilon_j}/arepsilon_j=\hat{y}\pmod{\mathbb{Z}^n}$$

Sending $\varepsilon_j \to 0$ + yields

$$\psi_t(\hat{x},\hat{t}) + H(\hat{y},D_x\psi(\hat{x},\hat{t}) + Dw(\hat{y})) \leq 0,$$

while we had

$$H(y,D_x\psi(\hat x,\hat t)+D_yw(y))=\overline{H}(D_x\phi(\hat x,\hat t))$$
 for $y\in\mathbb T^n.$

Thus,

$$\psi_t(\hat{x},\hat{t}) + \overline{H}(D_x\psi(\hat{x},\hat{t})) \le 0,$$

proving that v is a subsolution of $v_t + \overline{H} = 0$.

In general, we have only the Lipschitz regularity of \boldsymbol{w} and we need to use the doubling variable argument.

Similarly, we conclude that v is a supersolution of $v_t + \overline{H} = 0$. Thus, v = u.

page:5.12

Homogenization of Hamilton-Jacobi equations II

Consider the equation

(1)
$$u_t + H(x, x/\varepsilon, D_x u) = 0$$
 in $\mathbb{R}^n \times (0, \infty)$, where

- $ightharpoonup H \in C(\mathbb{R}^n imes \mathbb{T}^n imes \mathbb{R}^n).$
- ▶ H(x, y, p) is bounded and uniformly continuous on $\mathbb{R}^n \times \mathbb{T}^n \times B_R$ for every R > 0.
- H is coercive, i.e.,

$$\lim_{|p| o \infty} H(x,y,p) = \infty$$
 uniformly in (x,y) .

The cell problem is: given $(x,p)\in\mathbb{R}^{2n}$, we solve $(c,w)\in\mathbb{R} imes C(\mathbb{T}^n)$ such that

(2)
$$H(x, y, p + D_y w(y)) = c$$
 for $y \in \mathbb{T}^n$.

Theorem 1

Under the above hypotheses on H, there exists a solution (c,w) for each $(x,p)\in\mathbb{R}^{2n}$. The constant c is unique and defines a function $\overline{H}(x,p)$. That is, $\overline{H}(x,p)=c$.

A standard proof goes this way: consider the discounted problem

- (3) $\lambda w + H(x,y,p+D_yw) = 0$ in $\mathbb{T}^n,$ with $\lambda > 0,$ and send $\lambda o 0^+.$
- 1) Choose C>0 so large that $|H(x,y,p)| \leq C$ and observe that $\lambda^{-1}C$ (resp. $-\lambda^{-1}C$) is a super (resp. sub) solution of (3). Perron's method yields a solution w_{λ} of (3).
- 2) By comparison, $|w_{\lambda}| \leq \lambda^{-1}C$ (and hence, $\lambda |w_{\lambda}| \leq C$) on \mathbb{T}^n .
- 3) By the coercivity, choose L>0 so that if |q|>L, then H(x,y,p+q)>C for all (x,y). Since $H(x,y,p+D_yw_\lambda)\leq -\lambda w_\lambda\leq C$, we have $|Dw_\lambda|\leq L$. This implies that w_λ is Lipschitz continuous with Lipschitz bound L.
- 4) Fix $y_0\in\mathbb{T}^n$. the family $\{w_\lambda-w_\lambda(y_0)\}_{\lambda>0}$ is unif-bounded and equi-Lipschitz. We may choose $\lambda_j\to 0^+$ so that, as $\lambda_j\to 0^+$,

$$egin{aligned} \lambda_j w_{\lambda_j}(y_0) &
ightarrow -c \; (\exists c \in \mathbb{R}), \ w_{\lambda_j} - w_{\lambda_j}(y_0) &
ightarrow w \; (\exists w \in \mathrm{Lip}(\mathbb{T}^n)). \end{aligned}$$

To repeat, as $\lambda_j
ightarrow 0^+$,

$$egin{aligned} \lambda_j w_{\lambda_j}(y_0) &
ightarrow -c \ (\exists c \in \mathbb{R}), \ \overline{w}_j := w_{\lambda_j} - w_{\lambda_j}(y_0)
ightarrow w \ (\exists w \in \mathrm{Lip}(\mathbb{T}^n)). \end{aligned}$$

Then:

$$\lambda_j \overline{w}_j + H(x, y, p + D_y \overline{w}_j) = -\lambda_j w_{\lambda_j}(y_0).$$

In the limit $k \to \infty$,

$$H(x,y,p+D_yw)=c$$
 for $y\in\mathbb{T}^n$.

page:6.3

We have used the following regularity results.

Theorem 2

Let $\Omega\subset\mathbb{R}^n$ be open and convex. Let $F\in C(\Omega imes\mathbb{R}^n)$ satisfy the condition that $\exists R>0$ such that

$$F(x,p) > 0$$
 if $|p| > R$.

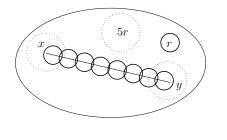
If $v\in \mathrm{USC}(\Omega)$ is a subsolution of F(x,Du)=0 in Ω , then $|v(x)-v(y)|\leq R|x-y|$ for all $x,y\in\Omega$.

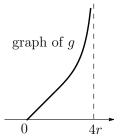
PROOF. Fix $z\in\Omega$ and r>0 so that $B_{5r}(z)\subset\Omega$. We claim that

$$|v(x)-v(y)| \leq R|x-y| \ \ \forall x,y \in B_r(z).$$

This is enough to conclude the proof.

page:6.4



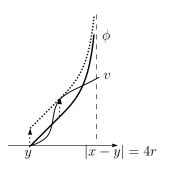


Let $g:[0,4r)\to [0,\infty)$ be a smooth function such that g(t)=t for $0\le t\le 2r$, $g'(t)\ge 1$ for all $0\le t< 4r$, and $\lim_{t\to 4r^-}g(t)=\infty$.

For each fixed $y\in B_r(z)$ and $\varepsilon>0$, consider the function $\phi:x\mapsto v(y)+(R+\varepsilon)g(|x-y|)$ on $B_{4r}(y)\subset B_{5r}(z)$. If $v(x)\leq \phi(x)$ on $B_{4r}(y)$, then $v(x)-v(y)\leq (R+\varepsilon)|x-y|$ for all $x\in B_r(z)\subset B_{2r}(y)$.

page:6.5

Otherwise,



The slope of
$$\phi \geq R + \varepsilon$$
, $F(x,p) > 0$ if $|p| > R$.

Hence,

$$F(x, D\phi(x)) > 0.$$

Theorem 3

Let $F \in C(\mathbb{R}^n \times \mathbb{R}^n)$ and a < b. Assume that $F \in \mathrm{BUC}(\mathbb{R}^n \times B_R)$ for any R > 0. Let $v, w \in \mathrm{B}(\mathbb{R}^n)$ be a subsolution of F(x, Du) = a in \mathbb{R}^n and a supersolution of F(x, Du) = b in \mathbb{R}^n , respectively. Assume that either v or w is Lipschitz continuous in \mathbb{R}^n . Then, v < w in \mathbb{R}^n .

PROOF. We consider only the case when $v \in \mathbf{Lip}$. Choose $\varepsilon > 0$ be such that $a + \varepsilon < b$. Choose $\delta > 0$ small enough so that $v_{\delta}(x) := v(x) - \delta \langle x \rangle$ is a subsolution of $F(x, Du) = a + \varepsilon$ in \mathbb{R}^n . This is possible since $v \in \mathbf{Lip}$ and $F \in \mathbf{UC}(\mathbb{R}^n \times B_R)$ for any R > 0.

We only need to prove that $v_\delta \leq w_*$. By contradiction, we suppose that $\sup(v_\delta-w_*)>0$. We fix r>0 large enough so that

$$v_\delta - w_* < 0$$
 on $\mathbb{R}^n \setminus B_r$.

Consider the function

$$\Phi_k(x,y)=v_\delta(x)-w_*(y)-k|x-y|^2$$
 on $\overline{B}_r imes\overline{B}_r$. Let (x_k,y_k) be a maximum point of Φ_k . Let $L>0$ be a Lipschitz bound of the function v_δ and note that

$$\Phi_k(x_k, y_k) \ge \Phi_k(y_k, y_k),$$

which reads

$$|k|x_k - y_k|^2 \le v_\delta(x_k) - v_\delta(y_k) \le L|x_k - y_k|.$$

This yields

$$k|x_k-y_k| \leq L$$
.

With this estimate in hand, we go as in the proof of the previous comparison theorems, to find for sufficient large k,

$$F(x_k,2k(x_k-y_k)) \leq a+arepsilon \;\;\;\; ext{ and } \;\;\; F(y_k,2k(x_k-y_k)) \geq b,$$
 and, along a subsequence,

$$\lim(x_k,y_k)=(x_0,x_0)$$
 for some $x_0\in B_r$.

We may assume that, after taking a further subsequence,

$$\lim 2k(x_k-y_k)=p_0 \quad ext{for some } p_0\in\mathbb{R}^n.$$

Consequently,

$$F(x_0, p_0) \le a + \varepsilon < b \le F(x_0, p_0).$$

This is a contradiction.

page:6.8

Recall Theorem 1:

Theorem 1

Under the hypotheses above on H, there exists a solution (c,w), for each $(x,p)\in\mathbb{R}^{2n}$, of

(2)
$$H(x, y, p + D_y w(y)) = c$$
 for $y \in \mathbb{T}^n$.

The constant c is unique and defines a function $\overline{H}(x,p)$. That is, $\overline{H}(x,p)=c$.

PROOF OF THE UNIQUENESS. Let (c, w) and (d, v) be solutions of (2). If c < d, then, by Theorem 3 (the comparison theorem),

$$w+C \leq v \quad \text{in } \mathbb{T}^n,$$

where C is an arbitrary constant, which is a contradiction. Hence, we have c > d. By symmetry, we have d > c.

page:6.9

Theorem 5

Under the above hypotheses on H, the effective Hamiltonian \overline{H} has the properties:

- ▶ $\overline{H} \in \mathrm{BUC}(\mathbb{R}^n \times B_R)$ for every R > 0.
- $ightharpoonup \overline{H}$ is coercive, i.e.,

$$\lim_{|p| o \infty} \overline{H}(x,p) = \infty$$
 uniformly in $x \in \mathbb{R}^n$.

1) We have

$$\overline{H}(x,p)=\min\{c\in\mathbb{R}:\exists z\in \mathrm{Lip}(\mathbb{T}^n) ext{ s.t. } \ H(x,y,p+Dz)\leq c ext{ in } \mathbb{T}^n\}.$$

Let $w\in \operatorname{Lip}(\mathbb{T}^n)$ be a solution of $H(x,y,p+Dw(y))=\overline{H}(x,p)$ in \mathbb{T}^n . If $c\geq \overline{H}(x,p)$, then $H(x,y,p+Dw(y))\leq c$ (subsolution) in \mathbb{T}^n . If $z\in \operatorname{Lip}(\mathbb{T}^n)$ be a subsolution of $H(x,y,p+Dz(y))\leq c$ in \mathbb{T}^n , with $c<\overline{H}(x,p)$, then, by the comparison theorem, $z+C\leq w$ in \mathbb{T}^n for all $C\in\mathbb{R}$, which is impossible.

Thus, the formula above is valid.

2) Set

$$m_0 := \inf H > -\infty.$$

Then

$$\overline{H}(x,p) \geq m_0 \quad ext{for all } (x,p) \in \mathbb{R}^{2n}.$$

(H(x,y,p+Dw(y)) = c, with $c < m_0$, cannot have a solution w.)

Fix R>0. Set

$$M_R = \sup_{x,y,|p| \le R} H(x,y,p).$$

Note that z(y) = 0 satisfies

$$H(x, y, p + Dz(y)) \le M_R$$
, if $|p| \le R$

and that

$$\overline{H}(x,p) \leq M_R$$
 for all $x \in \mathbb{R}^n, \ p \in B_R$.

Thus,

 \overline{H} is bounded on $\mathbb{R}^n imes B_R, \;\; orall R > 0.$

3) Fix R>0 and let $M_R>0$ be as above. There is L>0 such that

$$H(x, y, r) - M_R > 0$$
 if $|r| > L$.

Fix any $(x,p)\in\mathbb{R}^n imes B_R$. Let w be a solution of

$$H(x,y,p+Dw(y))=\overline{H}(x,p)$$
 in \mathbb{T}^n .

Since $H(x, y, p + Dw(y)) \leq M_R$ (subsolution), the function w is in $\operatorname{Lip}(\mathbb{T}^n)$, with Lipschitz constant $\leq L + |p| \leq L + R$.

4) Set K=2R+L+1 and note that $H\in \mathrm{UC}(\mathbb{R}^{2n} imes B_K)$.

$$orall arepsilon > 0, \, \exists \delta \in (0,1)$$
 such that for all $(x',p') \in B_\delta(x,p)$,

$$H(x',y,p'+Dw(y)) \leq H(x,y,p+Dw(y)) + arepsilon,$$
iah sasuras

which assures

$$H(x',y,p'+Dw(y)) \leq \overline{H}(x,p)+arepsilon \;\; ext{ for all } (x',p') \in B_{\delta}(x,p),$$
 and

$$\overline{H}(x',p') \leq \overline{H}(x,p) + \varepsilon$$
 for all $(x',p') \in B_{\delta}(x,p)$.

Notice that δ can be chosen uniformly in (x, p, w) in the above. Thus, \overline{H} is uniformly continuous on $\mathbb{R}^n \times B_R$, $\forall R > 0$.

5) Let w be a solution of

$$H(x,y,p+Dw(y))=\overline{H}(p)$$
 in \mathbb{T}^n .

w takes a maximum at some $y_0 \in \mathbb{T}^n$, and then

$$H(x, y_0, p) \le \overline{H}(x, p).$$

Since H is coercive, this shows that \overline{H} is coercive.

Theorem 6

Assume in addition that $p\mapsto H(x,y,p)$ is convex. Then $p\mapsto \overline{H}(x,p)$ is convex.

PROOF. To check this, let $oldsymbol{v}$ and $oldsymbol{w}$ be solutions of

$$H(x,y,p+Dv(y))=\overline{H}(x,p) \quad \text{in } \mathbb{T}^n,$$
 $H(x,y,q+Dw(y))=\overline{H}(x,q) \quad \text{in } \mathbb{T}^n.$

page:6.13

Let $heta \in (0,1)$. Assuming that $v,w \in C^1$, we observe that

$$egin{split} Hig(x,y, heta(p+Dv(y))+(1- heta)(q+Dw(y))ig) \ &\leq heta H(x,y,p+Dv(y))+(1- heta)H(x,y,q+Dw(y)) \ &\leq heta \overline{H}(x,p)+(1- heta)\overline{H}(x,q). \end{split}$$

In general, we deduce (a.e. subsolution or the doubling variable argument) that $\theta v + (1-\theta)w$ is a subsolution of

$$H(x,y,\theta p+(1-\theta)q+Du(y))\leq \theta \overline{H}(p)+(1-\theta)\overline{H}(q) \ \ \text{in} \ \mathbb{T}^n,$$
 which proves that

$$\overline{H}(x, \theta p + (1 - \theta)q) \le \theta \overline{H}(x, p) + (1 - \theta)\overline{H}(x, q).$$

page:6.14

Theorem 7

Assume

- ▶ $H \in \mathrm{BC}(\mathbb{R}^n \times B_R)$ for every R > 0;
- ▶ *H* is coercive, i.e.,

$$\lim_{|p|\to\infty} H(x,p) = \infty \quad \text{uniformly in } x;$$

▶ $h \in \operatorname{Lip} \cap \operatorname{B}(\mathbb{R}^n)$.

Then there is a solution $u \in \mathrm{Lip}(\mathbb{R}^n imes [0,\infty))$ of

(4)
$$\begin{cases} u_t + H(x,D_x u) = 0 & \text{in } \mathbb{R}^n \times (0,\infty), \\ u(\cdot,0) = h & \text{on } \mathbb{R}^n. \end{cases}$$

REMARK. The Lipschitz constant of u is bounded by a constant which depends only on the "structural bounds" for H and the Lipschitz constant of h.

$$\sup_{\mathbb{R}^n imes B_R} |H|, \quad \inf_{\mathbb{R}^n imes (\mathbb{R}^n \setminus B_R)} H, \quad ext{with } R > 0.$$

PROOF. Let $C_h>0$ be a Lipschitz bound for h. Set

$$C = C_{h,H} := \sup_{|p| \le C_h} |H(x,p)|.$$

Note that f(x,t)=h(x)-Ct and g(x,t)=h(x)+Ct are in \mathcal{S}^- and \mathcal{S}^+ , respectively.

Moreover, $f(x,t) \leq h(x) \leq g(x,t)$ and f(x,0) = h(x) = g(x,0) for all (x,t). Perron's method yields a solution u such that $f \leq u_* \leq u \leq u^* \leq g$ on $\mathbb{R}^n \times (0,\infty)$. These inequalities imply

$$u(x,0):=\lim_{t o 0^+}u(x,t)=h(x)\quad ext{for all }x\in\mathbb{R}^n.$$

Note:

$$u(x,t)=\sup\{v(x,t):v\in\mathcal{S}^-,\,v\leq g\ ext{ on }\mathbb{R}^n imes(0,\infty)\},$$
 $u\in\mathrm{USC}(\mathbb{R}^n imes[0,\infty))$, and $u(x,t)=\max\{v(x,t):v\in\mathcal{S}^-,\,v\leq g\ ext{ on }\mathbb{R}^n imes(0,\infty)\}.$

Fix any $\delta > 0$. Note

$$(x,t)\mapsto u(x,\delta+t)\in\mathcal{S}^-,\ \leq g(x,t+\delta)=g(x,t)+C\delta.$$

Hence,

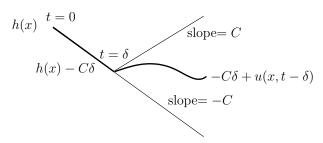
$$u(x,t) \ge u(x,t+\delta) - C\delta$$

and $u(x, \delta + t) \le u(x, t) + C\delta$.

Set

$$u^\delta(x,t) = egin{cases} f(x,t) & ext{if } t \in [0,\delta], \ -C\delta + u(x,t-\delta) & ext{if } t > \delta. \end{cases}$$

Observe: $u^\delta \in \mathcal{S}^-$ and $u^\delta \leq g$.



Hence,

$$u(x, \delta + t) \ge u^{\delta}(x, \delta + t) = u(x, t) - C\delta,$$

and $t\mapsto u(x,t)$ is Lipschitz continuous with Lipschitz bound C. This implies that $|u_t|\leq C$, $u_t\geq |u_t|-2|u_t|\geq |u_t|-2C$, and

$$|u_t|+H(x,D_xu)-2C\leq 0$$
 in $\mathbb{R}^n imes (0,\infty)$.

Since F(x,t,p,q):=|q|+H(x,p)-2C is coercive, u is Lipschitz continuous on $\mathbb{R}^n\times(0,\infty)$.

Theorem 8

Let $0 < T < \infty$. Assume that

 $H \in \mathrm{BUC}(\mathbb{R}^n imes (0,T) imes B_R)$ for every R > 0. Consider

(5)
$$u_t + H(x, t, D_x u) = 0 \quad \text{in } \mathbb{R}^n \times (0, T).$$

Let v, w be a sub and super-solution of (5). Assume that v, w are bounded, $v, -w \in \mathrm{USC}$, and $v(x, 0) \leq w(x, 0)$ for all $x \in \mathbb{R}^n$. Assume moreover either v or w is Lipschitz continuous. Then, $v \leq w$ on $\mathbb{R}^n \times (0, T)$.

REMARK. The Lipshictz regularity assumption above can be replaced by the existence of a Lipschitz continuous solution u such that $v(x,0) \leq u(x,0) \leq w(x,0)$.

 $\ensuremath{\mathrm{REMARK}}.$ In the doubling variable argument, we consider the function

$$\Phi_k(x,t,y,s)=v(x,t)-w(y,s)-k[|x-y|^2+(t-s)^2]$$
 and its maximum point (x_k,t_k,y_k,s_k) . If $v\in ext{Lip}$, then $\Phi_k(x_k,t_k,y_k,s_k)>\Phi_k(y_k,s_k,y_k,s_k)$

yields

$$k[|x_k - y_k|^2 + (t_k - s_k)^2] \le v(x_k, t_k) - v(y_k, s_k)$$

$$\le C(|x_k - y_k| + |t_k - s_k|),$$

and

$$k[|x_k - y_k| + |t_k - s_k|] \le C'.$$

This is the *boundedness of the gradient* of our test functions, which allows us to take the limit as $k \to \infty$:

$$egin{aligned} 2(t_k-s_k) + H(x_k,t_k,2k(x_k-y_k)) & \leq -\eta, \ 2(t_k-s_k) + H(y_k,s_k,2k(x_k-y_k)) & \geq 0. \end{aligned}$$

Theorem 9

Assume that $h \in \mathrm{BUC}(\mathbb{R}^n)$. Then there exists a unique solution u_{ε} on $\mathbb{R}^n \times [0, \infty)$ of the Cauchy problem

$$egin{cases} u_t + H(x,x/arepsilon,D_x u) = 0 & ext{in } \mathbb{R}^n imes (0,\infty), \ u(\cdot,0) = h \end{cases}$$

such that $u_{\varepsilon} \in \mathrm{BUC}(\mathbb{R}^n \times [0,T])$ for every T>0. Also, there exists a unique solution u on $\mathbb{R}^n \times [0,\infty)$ of

$$egin{cases} u_t + \overline{H}(x,D_x u) = 0 & ext{in } \mathbb{R}^n imes (0,\infty), \ u(\cdot,0) = h & ext{on } \mathbb{R}^n, \end{cases}$$

such that $u \in \mathrm{BUC}(\mathbb{R}^n \times [0,T))$ for every T>0. Furthermore, as arepsilon o 0+,

 $u_{arepsilon}(x,t) o u(x,t)$ locally uniformly on $\mathbb{R}^n imes [0,\infty)$.

Long-time behavior of solutions I

Example 1

Let $\lambda > 0$. Consider the HJ equation

(1)
$$u_t + \lambda u + |D_x u|^2 - f(x) = 0 \quad \text{in } \mathbb{T}^n \times (0, \infty).$$

The Hamiltonian H is:

$$H(x, p, u) = \lambda u + |p|^2 - f(x),$$

where $f \in C(\mathbb{T}^n)$. If there is a solution $u_0 \in C(\mathbb{T}^n)$ of

$$(2) H(x, D_x u_0, u_0) = 0 in \mathbb{T}^n,$$

then $u(x,t) = u_0(x)$ is a solution of (1).

Let $v \in C(\mathbb{T}^n \times [0,\infty))$ be another solution of (1). By comparison, we have

(3)
$$\|(u-v)(\cdot,t)\|_{\infty} < \|(u-v)(\cdot,0)\|_{\infty}e^{-\lambda t}$$
 for all $t>0$.

Indeed.

$$w(x,t) := v(x,t) + ||u(\cdot,0) - v(\cdot,0)||_{\infty} e^{-\lambda t}$$

satisfies

$$w_t + \lambda w + |D_x w|^2 - f(x) = v_t + \lambda v + |D_v|^2 - f(x) = 0,$$

 $u(\cdot, 0) \le w(\cdot, 0),$

and, by the comparison theorem, $u(x,t) \leq w(x,t)$. Similarly, we have $v(x,t) \leq u(x,t) + \|u(\cdot,0) - v(\cdot,0)\|_{\infty} e^{-\lambda t}$.

Theorem 1

Problem (2) has a unique solution $u_0 \in \operatorname{Lip}(\mathbb{T}^n)$. For any $h \in C(\mathbb{T}^n)$, the Cauchy problem for (1) with initial condition $u(\cdot,0)=h$ has a unique solution $u \in C(\mathbb{T}^n \times [0,\infty))$. Moreover, as $t \to \infty$,

$$v(x,t) o u_0(x)$$
 uniformly and exponentially on \mathbb{T}^n .

- ullet The conclusion of the above theorem holds true if $oldsymbol{H}$ is replaced by a general continuous Hamiltonian $oldsymbol{H}$:
 - $u\mapsto H(x,p,u)-\lambda u$ is nondecreasing for some $\lambda>0$.
 - lacksquare For some C>0 and for all $x,y\in\mathbb{T}^n,p\in\mathbb{R}^n,u\in\mathbb{R}$,

$$|H(x, p, u) - H(y, p, u)| \le C|x - y|(|p| + 1).$$

page:7.2

Example 2

(Barles-Souganidis) Consider the HJ equation

$$|u_t+|u_x+2\pi|-2\pi=0 \quad ext{in } \mathbb{T}^1 imes [0,\infty).$$

n=1. The function $u(x,t)=\sin 2\pi(x-t)$ is a classical solution. The point is

$$|u_x+2\pi| = |2\pi\cos 2\pi(x-t)+2\pi| = 2\pi\cos 2\pi(x-t)+2\pi.$$

 $t\mapsto \sin 2\pi(x-t)$ is periodic with minimal period 1.

In this example, the Hamiltonian is given by

$$H(x,p) = H(p) = |p + 2\pi| - 2\pi.$$

Note that $p\mapsto H(x,p)$ is convex and coercive.

$$\lim_{|p| o \infty} H(p) = \infty$$
.

Example 3

(Namah-Roquejoffre) Consider

$$(4) u_t + |D_x u|^2 - f(x) = 0 \text{in } \mathbb{T}^n \times [0, \infty).$$

Assume that for some $x_0 \in \mathbb{T}^n$ and all $x \in \mathbb{T}^n$,

$$(5) f(x) \ge f(x_0) = 0.$$

Set

$$v_0(x) = \sup\{v(x) : v \in \mathcal{S}^-, v(x_0) = 0\},$$

where \mathcal{S}^- denotes the set of all subsolutions of

$$H(x,Du) := |Du|^2 - f(x) = 0 \text{ in } \mathbb{T}^n.$$

It follows that $0 \le v_0(x) \le o(|x-x_0|)$.

 $(|Dv_0(x)| \leq \sqrt{f(x)}.)$ Moreover, the function v_0 is a solution of H(x,Du)=0 in \mathbb{T}^n .

page:7.4

Let $u\in C(\mathbb{T}^n\times[0,\infty))$ be a solution of (4). Note that $H(x_0,p)\geq 0$ for all $p\in\mathbb{R}^n$. Hence, $u_t(x_0,t)\leq 0$ for all $t\in(0,\infty)$ and, therefore, $t\mapsto u(x_0,t)$ is nonincreasing. This monotonicity property is valid for any zero point $\in\mathbb{T}^n$ of f. That is, if we set $Z=f^{-1}(0)=\{x:f(x)=0\}$, then $t\mapsto u(x,t)$ is nonincreasing for all $x\in Z$.

Select C>0 so that $v_0-C\leq u(\cdot,0)\leq v_0+C$ on \mathbb{T}^n . By the comparison theorem, $v_0-C\leq u(x,t)\leq v_0(x)+C$ for all $(x,t)\in\mathbb{T}^n\times[0,\infty)$.

By Theorem 9 in the last lecture, u is uniformly continuous on $\mathbb{T}^n \times [0,\infty)$. Thus, the family $\{u(\cdot,t):t\geq 0\}$ is unif-bounded and equi-continuous on \mathbb{T}^n .

page:7.5

The monotonicity on Z of u and the unif-boundedness and equi-continuity properties, together with AA theorem, assure that for some function $u_0\in C(\mathbb{T}^n)$, as $t\to\infty$,

- $lacksquare u(x,t)
 ightarrow u_0(x)$ uniformly and monotonically for $x \in Z$,
- $ullet u(x,t) o u_0(x)$ uniformly for $x \in \mathbb{T}^n$ along a sequence of t.

At this point, it is not clear if u_0 is a solution of H(x,Du)=0 in \mathbb{T}^n . Define

$$w^\pm(x,t)\!=\!egin{cases} \sup \{u(x,t\!+\!s):s\geq 0\} \;\; ext{for all}\;(x,t)\in\mathbb{T}^n\! imes\![0,\infty). \end{cases}$$

The function w^+ (resp., w^-) is a subsolution (resp., a supersolution) of $w_t + H(x, D_x w) = 0$ in $\mathbb{T}^n \times (0, \infty)$, they are bounded, uniformly continuous on $\mathbb{T}^n \times [0, \infty)$, $t \mapsto w^+(x,t)$ (resp., $t \mapsto w^-(x,t)$) is nonincreasing (resp., nondecreasing) for all $x \in M$, and $w^+(x,t) = u(x,t)$ (resp.,

 $w_0^\pm \in C(\mathbb{T}^n)$,

 $w^\pm(x,t) o w_0^\pm(x)$ uniformly and monotonically on \mathbb{T}^n .

 $w^-(x,t)=u_0(x)$) on $Z\times [0,\infty)$. Thus, as $t\to\infty$, for some

It follows that $w_0^\pm=u_0$ on Z and that w_0^+ (resp., w_0^-) is a subsolultion (resp., supersolution) of H(x,Du)=0 in \mathbb{T}^n . Also, by the definition of w_0^\pm , we have $w_0^+\geq w_0^-$ on \mathbb{T}^n . Once we have shown that $w_0^+=w_0^-$ on \mathbb{T}^n , we see easily that $u_0=w_0^\pm$ on \mathbb{T}^n , which implies that as $t\to\infty$,

$$u(x,t) o u_0$$
 uniformly on \mathbb{T}^n .

We claim that $w_0^+ = w_0^-$ on \mathbb{T}^n . It is enough to prove that

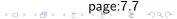
$$w_0^+ \leq w_0^-$$
 on $\mathbb{T}^n \setminus Z$.

By adding a large constant to w_0^\pm , we may assume that both w_0^\pm are positive functions. Let $\theta \in (0,1)$ and set $w_\theta = \theta w_0^+$. Note that

$$H(x, Dw_{\theta}) = \theta^{2} |Dw_{0}^{+}|^{2} - f(x) = \theta^{2} H(x, Dw_{0}^{+}) - (1 - \theta^{2}) f(x),$$

and that

$$w_{\theta}(x) < w_0^-(x)$$
 on Z .



Let Z_{δ} be the closed δ -neighborhood of Z $(\delta>0)$ such that

$$w_{\theta}(x) < w_0^-(x) \quad \text{for all } x \in Z_{\delta}.$$

Set $U_{\delta}:=\mathbb{T}^n\setminus Z_{\delta}$. There exists $\eta>0$ such that $f(x)>\eta$ for all $x\in U_{\delta}$.

Note that

$$(1-\theta^2)f(x) > (1-\theta^2)\eta \quad \text{on } U_{\delta},$$

and hence, $w_{ heta}$ is a subsolution of

$$H(x,Du) \leq -(1-\theta^2)\eta$$
 in U_{δ} .

By the comparison principle, we have

$$w_{ heta} \leq w_0^-$$
 on U_{δ} (and on \mathbb{T}^n).

Theorem 2

Let u be a solution of (4). Assume (5) $(f \ge f(x_0) = 0)$.

Then, for some $u_0 \in C(\mathbb{T}^n)$, as $t \to \infty$,

$$u(x,t) o u_0(x)$$
 uniformly on \mathbb{T}^n .

One can replace $H(x,p)=|p|^2-f(x)$ by a general continuous H(x,p) which satisfies:

- $lackbox{ } p\mapsto H(x,p)$ is convex for every $x\in\mathbb{T}^n$.
- $ightharpoonup p\mapsto H(x,p)$ is coercive for every $x\in\mathbb{T}^n$.
- $ullet \min_{p\in\mathbb{R}^n} H(x,p) = H(x,0) \ \ \forall x\in\mathbb{T}^n, \ \max_{x\in\mathbb{T}^n} H(x,0) = 0.$

Some convenient technical theorems are as follows.

Theorem 3

Let $\Omega\subset\mathbb{R}^n$ be an open set. Let F=F(x,p,u) is a continuous convex (in p) Hamiltonian on $\Omega\times\mathbb{R}^n\times\mathbb{R}$. Let $u\in\operatorname{Lip}(\Omega)$. Then

$$u \in \mathcal{S}^-(F) \iff u \in \mathcal{S}^-_{ae}(F).$$

 $m{\circ}\ {\cal S}^-=$ the set of all viscosity subsolutions, ${\cal S}^-_{
m ae}=$ the set of all a.e. subsolutions $(F(x,Du(x),u(x))\leq 0$ a.e.).

PROOF. Local property! We may assume that Ω is bounded (and convex).

1) Assume that $u \in \mathcal{S}^-(F)$. Since $u \in \operatorname{Lip}$ and is differentiable a.e. in Ω . Fix any differentiability point x of u, and choose $\phi \in C^1(\Omega)$ such that ϕ tests u from above at x. Note that $D\phi(x) = Du(x)$. Then, since $u \in \mathcal{S}^-$,

$$0 \geq F(x, D\phi(x), u(x)) = F(x, Du(x), u(x)).$$

2) Assume now that $u \in \mathcal{S}^-_{ae}(F)$. Since $u \in \operatorname{Lip}$, it is differentiable a.e. in Ω and the derivative Du is identified with the distributional derivative of u. Choose a constant M>0 so that $|u(x)|+|Du(x)|\leq M$ a.e. We may assume that F is uniformly continuous on $\Omega\times B_{M+1}\times [-M-1,M+1]$ (if needed, replace Ω by a smaller one). For each $0<\varepsilon\ll 1$, choose $\delta(\varepsilon)>0$ so that

$$F(x,Du(y),u(x))\leq F(y,Du(y),u(y))+arepsilon$$
 a.e. $y\in\Omega, orall x\in B_{\delta(arepsilon)}(y).$

Mollifying the above with a standard kernel (and using the convexity), to get

$$F(x, u_{\varepsilon}(x), u(x)) \leq \varepsilon$$
 in Ω ,

where u_{ε} is the mollified function of u. Now, u_{ε} is a classical (hence, viscosity) subsolution of $F(x,Du_{\varepsilon}(x),u(x))\leq \varepsilon$. In the limit as $\varepsilon\to 0$, we see that $u\in \mathcal{S}^-(F)$.

We write $\mathcal{S}_{\mathrm{BJ}}^-(F)$ for the set of all functions $u\in\mathrm{Lip}(\Omega)$ such that if $\phi\in C^1(\Omega)$ touches from below at $x\in\Omega$, then $F(x,D\phi(x),u(x))\leq 0$. (Barron-Jensen)

Theorem 4

Let $\Omega\subset\mathbb{R}^n$ be an open set. Let F=F(x,p,u) is a continuous convex (in p) Hamiltonian on $\Omega\times\mathbb{R}^n\times\mathbb{R}$. Let $u\in\mathrm{Lip}(\Omega)$. Then

$$u \in \mathcal{S}^-(F) \iff u \in \mathcal{S}^-_{\mathrm{BJ}}(F).$$

PROOF. We need to show that

$$u \in \mathcal{S}^-_{\mathrm{ae}}(F) \iff u \in \mathcal{S}^-_{\mathrm{BJ}}(F).$$

The previous proof applies to show this claim.

A consequence of the above is:

Theorem 5

Let $\Omega \subset \mathbb{R}^n$ be an open set. Let F = F(x,p,u) be a continuous convex (in p) Hamiltonian on $\Omega \times \mathbb{R}^n \times \mathbb{R}$. Let $\mathcal{F} \neq \emptyset$ be a locally unif-bounded, equi-Lipschitz continuous collection of subsolutions of F = 0 in Ω . Then the function

$$u(x) := \inf\{v(x) : v \in \mathcal{F}\}$$

is in $\mathcal{S}^-(F)$.

page:7.12

PROOF. The proof is parallel to that of the assertion that the pointwise \sup of a family of subsolutions is a subsolution: replace "touching from above" and " \sup " by "touching from below" and " \inf ", respectively, which is also parallel to that of the theorem saying that the pointwise \inf of a family of supersolutions is a supersolution: replace \geq by \leq .

Remark. Roughly speaking, if u is differentiable at y and it is a subsolution of F=0, then

$$F(y, Du(y), u(y)) \leq 0.$$

Indeed, we may choose a continuous function ω on [0,1] such that $\omega(0)=0,\,\omega(t)\geq0,$ and

$$u(x)-u(y) \leq p \cdot (x-y) + \omega(|x-y|)|x-y| \quad \text{if } x \in B_1(y),$$

where p=Du(y). We may assume that ω is nondecreasing.

page:7.13

Note that

$$\omega(t)t \leq \int_t^{2t} \omega(r) dr$$
 for all $t \in [0, 1/2]$.

Setting

$$\psi(t) = \int_t^{2t} \omega(r) dr \quad ext{for all } t \in [0,1/2],$$

and

$$\phi(x)=u(y)+p\cdot(x-y)+\psi(|x-y|)\quad\text{for all }x\in B_{1/2}(y),$$

we observe that $\phi \in C^1(B_{1/2}(y))$, $D\phi(y)=p$,

$$u(x) \leq \phi(x) \; \forall x \in B_{1/2}(y) \quad \text{and} \quad u(y) = \phi(y).$$

Extending ϕ smoothly outside $B_{1/3}(y)$ so that $u(x) \leq \phi(x)$ on the domain of definition of u. We now find that

$$0 \ge F(y, D\phi(y), u(y)) = F(y, Du(y), u(y)).$$

In the above discussion, the differentiability can be weakened as follows:

$$u(x)-u(y)\leq p\cdot (x-y)+o(|x-y|)$$
 as $x o y$ for some $p\in\mathbb{R}^n$. If this is the case and u is a subsolution of $F=0$, then $F(y,p,u(y))<0.$

The set of all $p \in \mathbb{R}^n$ for which the above asymptotic relation hold is called the *superdifferentials* of u at y and is denoted by $D^+u(y)$. By making the upside-down in the above discussion, we define $D^-u(y)$, called the *subdifferentials* of u at y.

Theorem 6

Let $\Omega \subset \mathbb{R}^n$ be an open set and $u:\Omega \to \mathbb{R}$ locally bounded. Let $F \in C(\Omega \times \mathbb{R}^n \times \mathbb{R})$. The function u is a (viscosity) subsolution (resp., supersolution) of F(x,Du,u)=0 in Ω if and only if

$$F(x,p,u^*(x))\leq 0 \quad ext{for all } p\in D^+u^*(x)$$
 (resp., $F(x,p,u_*(x))>0 \quad ext{for all } p\in D^-u_*(x)).$

Long-time behavior of solutions II

Long-time behavior of solutions to a general HJE

(1)
$$u_t + H(x, D_x u) = 0 \text{ in } \mathbb{T}^n \times (0, \infty).$$

Assumptions on H:

- $ightharpoonup H \in C(\mathbb{T}^n \times \mathbb{R}^n).$
- $ightharpoonup p\mapsto H(x,p)$ is coercive for every (uniformly) x. i.e.,

$$\lim_{r\to\infty}\inf_{|p|>r}H(x,p)=\infty.$$

Recall the following theorem (the proof was done for bounded functions on \mathbb{R}^n).

Theorem 1

Let $h \in \operatorname{Lip}(\mathbb{T}^n)$. Under the above assumptions, there is a solution $u \in \operatorname{Lip}(\mathbb{T}^n \times [0,\infty))$ of

(2)
$$\begin{cases} u_t + H(x, D_x u) = 0 & \text{in } \mathbb{T}^n \times (0, \infty), \\ u(\cdot, 0) = h & \text{on } \mathbb{T}^n. \end{cases}$$

Note also that the comparison principle holds for sub and super solutions of (1), which is crucial to establish the following theorem.

Theorem 2

Let $h \in C(\mathbb{T}^n)$. Under the above assumptions, there is a solution $u \in \mathrm{UC}(\mathbb{T}^n \times [0,\infty))$ of

(2)
$$\begin{cases} u_t + H(x, D_x u) = 0 & \text{in } \mathbb{T}^n \times (0, \infty), \\ u(\cdot, 0) = h & \text{on } \mathbb{T}^n. \end{cases}$$

PROOF. Choose a sequence $h_k \in \operatorname{Lip}(\mathbb{T}^n) \to h$ in $C(\mathbb{T}^n)$ and let $u_k \in \operatorname{Lip}(\mathbb{T}^n \times [0,\infty)$ be the solution of the Cauchy problem (2) with h replaced by h_k . Choose a monotone sequence $\varepsilon_k \to 0^+$ so that

$$||h_j(x) - h_k||_{\infty} \le \varepsilon_k \ \forall j > k.$$

By the comparison principle, if j > k, then

$$|u_j(x,t) - u_k(x,t)| \le \varepsilon_k \ \forall (x,t).$$

That is, for some $u \in \mathrm{UC}(\mathbb{T}^n \times [0,\infty))$,

$$\lim_k u_k(x,t) = u(x,t)$$
 uniformly on $\mathbb{T}^n imes [0,\infty).$

The function u is a solution of (2). Limit problem:

(3)
$$H(x,Du)=c \text{ in } \mathbb{T}^n.$$

This ergodic problem has a solution $(c, u) \in \mathbb{R} \times \operatorname{Lip}(\mathbb{T}^n)$. The ergodic constant c is uniquely determined.

We follow the argument due to Barles-Souganidis. The argument has been modified (or simplified) by Barles-HI-Mitake. Another important approach is the one due to Davini-Siconolfi (after Fathi).

page:8.3

We add another requirement on H:

There exist constants $\eta_0>0$ and $\theta_0>1$ and for each $(\eta,\theta)\in(0,\eta_0) imes(1,\theta_0)$ a constant $\psi=\psi(\eta,\theta)>0$ such that for all $x,p,q\in\mathbb{R}^n$, if $H(x,p)\leq c$ and $H(x,q)\geq c+\eta$, then

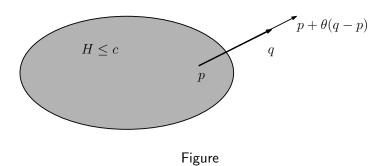
$$H(x, p + \theta(q - p)) \ge c + \eta\theta + \psi.$$

This is a kind of strict convexity of H. Indeed, if $p \mapsto H(x,p)$ is strictly convex, one can show that the above condition is satisfied.

Indeed, if H is strictly convex, since $q = \theta^{-1}(p + \theta(q - p)) + (1 - \theta^{-1})p$, $c + \eta \le H(x,q) < \theta^{-1}H(x,p + \theta(q - p)) + (1 - \theta^{-1})H(x,p)$ $< \theta^{-1}H(x,p + \theta(q - p)) + (1 - \theta^{-1})c$,

i.e.,

$$H(x, p + \theta(q - p)) > c + \theta\eta.$$



page:8.5

Theorem 3

Let $h \in C(\mathbb{T}^n)$ and c be the ergodic constant. Let $u = u(x,t,h) \in \mathrm{UC}(\mathbb{T}^n \times [0,\infty))$ be the solution of the Cauchy problem (2). Then, for some $h_{\infty} \in \mathcal{S}(H-c) \cap \mathrm{Lip}(\mathbb{T}^n)$, as $t \to \infty$,

$$u(x,t,h)+ct
ightarrow h_{\infty}(x)$$
 uniformly in \mathbb{T}^n .

OUTLINE OF PROOF. By the comparison principle,

$$||u(\cdot,t,h)-u(\cdot,t,g)||_{\infty} \leq ||h-g||_{\infty}.$$

we may assume that $h\in \mathrm{Lip}(\mathbb{T}^n)$ and $u\in \mathrm{Lip}(\mathbb{T}^n imes [0,\infty))$.

Note that the function v=u(x,t,h)+ct is a solution of $v_t+H-c=0$. By rewriting H for H-c, we henceforth assume that c=0.

Fix a $v_0 \in \mathcal{S}(H)$. By choosing C>0 so that

$$v_0 - C \le h \le v_0 + C$$
 on \mathbb{T}^n .

we have by the comparison principle,

$$|u(x,t,h)-v_0(x)|\leq C$$
 $\forall (x,t).$

$$u(\cdot,\cdot,h)\in (\mathrm{Lip}\cap\mathrm{B})(\mathbb{T}^n imes[0,\infty)).$$

We assume by adding a constant to v_0 that

$$u(x,t) - v_0(x) \ge 0 \quad \forall (x,t).$$

Let $heta, \eta, \psi$ be as in the above condition on H. Define

$$w(x,t) = \sup_{s \geq t} [u(x,t) - v_0(x) - \theta(u(x,s) - v_0(x) + \eta(s-t))]$$

Let M>0 be a Lipschitz bound of u and v_0 . Define

$$\omega(r) = \max\{|H(x,p) - H(x,q)| : p,q \in \overline{B}_R, \ |p-q| \le r\},$$

where $R=(2 heta_0+1)M$.

page:8.7

Theorem 4

The function $oldsymbol{w}$ is a subsolution of

$$\min\{w, w_t - \omega(|D_x w|) + \psi\} \leq 0 \quad \text{in } \mathbb{T}^n \times (0, \infty).$$

In particular, setting

$$m(t) = \max_{x} w(x, t),$$

we have

$$\min\{m, m_t + \psi\} \le 0.$$

The last inequality implies that for a finite time au>0,

$$m(t) \leq 0 \ \forall t \geq \tau$$
.

Then, for any $t \geq \tau$, $x \in \mathbb{T}^n$, $s \geq t$,

$$u(x,t) - v_0(x) \le \theta(u(x,s) - v_0(x) + \eta(s-t)).$$

The constant $au= au_{ heta,\eta}$ depends on $heta,\eta$.

(AA theorem) $\exists t_j o \infty$ such that for some $u_\infty \in \mathrm{Lip}(\mathbb{T}^n)$,

$$u(x,t_j,h) \rightarrow u_{\infty}(x)$$
 in $C(\mathbb{T}^n)$.

Then, we have

$$egin{aligned} u(x,t+t_j,h) &
ightarrow u(x,t,u_\infty) &orall (x,t).\ \left(\|u(\cdot,t,u(\cdot,t_j,h)) - u(\cdot,t,u_\infty)\|_\infty
ight. \ &\leq \|u(\cdot,t_j,h) - u_\infty\|_\infty &orall t \geq 0 \quad ext{by comparison.} \end{aligned}$$

Hence, for all $t \geq 0$, $s \geq t$, $x \in \mathbb{T}^n$,

$$u(x, t, u_{\infty}) - v_0(x) \le \theta(u(x, s, u_{\infty}) - v_0(x) + \eta(s - t)).$$

This holds for any $heta \in (1, heta_0)$ and $\eta > 0$. Thus,

$$u(x, t, u_{\infty}) - v_0(x) \le u(x, s, u_{\infty}) - v_0(x)$$
 if $s \ge t$.

That is, $t\mapsto u(x,t,u_\infty)$ is nondecreasing. Monotone in t.

(AA theorem) $\exists h_\infty \in \mathrm{Lip}(\mathbb{T}^n)$ such that

$$h_{\infty}(x) = \lim_{t \to \infty} u(x, t, u_{\infty})$$
 in $C(\mathbb{T}^n)$.

Since

$$||u(\cdot, t + t_j, h) - u(\cdot, t, u_{\infty})||_{\infty}$$

$$< ||u(\cdot, t_j, h) - u_{\infty}||_{\infty} \quad \forall t > 0,$$

we have

$$h_{\infty}(x) = \lim_{t \to \infty} u(x, t, h)$$
 in $C(\mathbb{T}^n)$.

Since

$$\|u(\cdot,t+t_j,h)-h_\infty\|_\infty o 0$$
 as $j o\infty$,

we find that
$$\partial_t h_\infty + H(x,D_x h_\infty) = 0$$
 and $h_\infty \in \mathcal{S}(H)$. \Box

OUTLINE OF THE PROOF OF THE VI:

$$\min\{w,w_t-\omega(|D_xw|)+\psi\}\leq 0,\quad\text{where}$$

$$w(x,t):=\sup_{s>t}[u(x,t)-v_0(x)-\theta(u(x,s)-v_0(x)+\eta(s-t))].$$

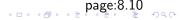
Fix any $(x,t)\in\mathbb{T}^n imes(0,\infty)$. If $w(x,t)\leq 0$, we have VI at (x,t).

Assume that w(x,t)>0. Suppose that $u\in C^1$ and $v_0\in C^1$ and that for some s>t,

$$w(x,t) = u(x,t) - v_0(x) - \theta(u(x,s) - v_0(x) + \eta(s-t)),$$

and show that

$$w_t - \omega(|D_x w|) + \psi \leq 0.$$



Set

$$p = Dv_0(x), \quad q = D_x u(x, s), \quad r = D_x u(x, t),$$

 $a = u_t(x, s), \quad b = u_t(x, t).$

We have

$$H(x,p) \leq 0. \ a + H(x,q) \geq 0, \ b + H(x,r) \leq 0.$$

The function

$$-w(x',t') + u(x',t') - v_0(x') - \theta(u(x',s') - v_0(x') + \eta(s'-t'))$$

 ≤ 0 and attains the maximum value 0 at (x,t,s), which yields

$$egin{aligned} D_x w(x,t) &= r - p - heta(q-p), \ w_t(x,t) &= b + heta\eta, \ 0 &= - heta(a+\eta). \end{aligned}$$

$$a+H(x,q)\geq 0$$
 and $a+\eta=0$ yield $H(x,q)>\eta.$

This and $H(x,p) \leq 0$, the key assumption on H,

$$H(x, p + \theta(q - p)) \ge \theta \eta + \psi.$$

Since $r = D_x w(x,t) + p + \theta(q-p)$,

$$H(x,r) = H(x, D_x w(x,t) + p + \theta(q-p)).$$

Note:

$$|r| = |D_x u(x,t)| \le M \le R , |p+\theta(q-p)| \le (1+2\theta)M \le R.$$

Hence,

$$H(x,r) \geq H(x,p+ heta(q-p)) - \omega(|D_x w(x,t)|) \ \geq -\omega(|D_x w(x,t)|) + heta \eta + \psi.$$

Now,

$$w_t(x,t) = b + \theta \eta,$$

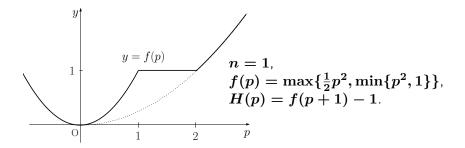
 $0 > b + H(x,r) > b - \omega(|D_x w|) + \theta \eta + \psi$

yield

$$0 > w_t - \omega(|D_x w|) + \psi.$$

page;8.12

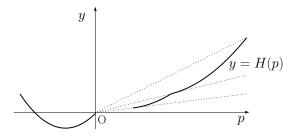
Example 1 (Non-convex H)



Note that constant functions are solutions of H=0. Hence, c(H)=0. Since H is "strictly convex" on $\{H>0\}=\{f>1\}$, our key condition is satisfied.

page:8.13

The key condition implies that $\{p: H(x,p) \leq c\}$ is convex. The key assumption requires a kind of "strict convexity" of H in a neighborhood of $\{p: H(x,p) \leq c\}$ in $\{p: H(x,p) > c\}$.

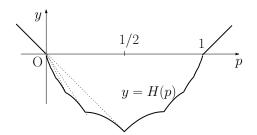


page:8.14

The following condition replaces the key condition:

There exist constants $\eta_0>0$ and $\theta_0>1$ and for each $(\eta,\theta)\in(0,\eta_0)\times(1,\theta_0)$ a constant $\psi=\psi(\eta,\theta)>0$ such that for all $x\in\mathbb{T}^n,\,p,q\in\mathbb{R}^n$, if $H(x,p)\leq c$ and $H(x,q)\geq c-\eta$, then

$$H(x, p + \theta(q - p)) \ge c - \eta\theta + \psi.$$



Vanishing discount problem for Hamilton-Jacobi equations I

Let $\lambda > 0$. Consider the stationary problem

(1)
$$\lambda u + H(x, Du) = 0 \quad \text{in } \mathbb{T}^n.$$

In view of optimal control theory, the constant λ is called a discoutn factor. Here we study the asymptotic behavior of the solution u_{λ} of (1) as $\lambda \to 0^+$.

Assumptions on H:

- $ightharpoonup H \in C(\mathbb{T}^n \times \mathbb{R}^n).$
- H is coercive, i.e.,

$$\lim_{r o\infty}\inf_{\mathbb{T}^n imes(\mathbb{R}^n\setminus B_r)}H(x,p)=\infty.$$

▶ H is convex, i.e., $p \mapsto H(x,p)$ is convex, $\forall x \in \mathbb{R}^n$.

page:9.1

Theorem 1

PDE (1) has a unique solution u_{λ} in the class $\operatorname{Lip}(\mathbb{T}^n)$. The comparison principle is valid for sub and super solutions in the class $\mathbf{B}(\mathbb{T}^n)$.

REMARK. $\exists C>0$ (independent of $\lambda>0$) such that

$$\lambda |u_{\lambda}(x)| \leq C.$$

 $\exists M>0$ such that

$$|p| > M \implies -C + H(x, p) > 0.$$

Since u_{λ} is a subsolution of

$$-C + H(x, Du) \le 0$$
 in \mathbb{T}^n ,

M is a Lipschitz bound of u_{λ} .

M can be chosen independently of λ .

The above observations imply together with AA theorem that for a sequence $\lambda_k \to 0^+$, u_{λ_k} "converge" to a function $u_0 \in C(\mathbb{T}^n)$ and for some constant c (the ergodic constant), u_0 is a solution of

(2)
$$H(x,Du)=c \text{ in } \mathbb{T}^n.$$

The main result is roughly stated as follows.

Claim 2

The whole family $\{u_{\lambda}\}_{\lambda>0}$ "converges" to a function u_0 in $C(\mathbb{T}^n)$.

(Davini-Fathi-Iturriaga-Zavidovique)

• Mather measures play an important role in the proof.

page:9.3

- 1) $\exists M>0$ such that $\|Du_{\lambda}\|_{\infty}\leq M$ for all $\lambda>0$.
- 2) u_{λ} is the value function of the optimal control system:

$$\begin{cases} H(x,p) = \sup_{\xi} (\xi \cdot p - L(x,\xi)), \\ \dot{X}(t) = -\alpha(t) \ \ X(0) = x, \\ J(x,\alpha) = \int_{0}^{\infty} e^{-\lambda t} L(X(t),\alpha(t)) dt. \end{cases}$$

That is,

$$egin{align} u_{\lambda}(x) &= \inf_{X(0)=x} \int_0^{\infty} e^{-\lambda t} L(X(t), -\dot{X}(t)) dt \ &= \inf_{Y(0)=x} \int_{-\infty}^0 e^{\lambda t} L(Y(t), \dot{Y}(t)) dt. \end{split}$$

3) $\xi \mapsto L(x,\xi)$ has a superlinear growth:

$$L(x,\xi) \geq \xi \cdot rac{A\xi}{|\xi|} - H(x,rac{A\xi}{|\xi|}), \;\; orall A>0, \xi
eq 0.$$

 $\forall |p| \leq M, \; \exists \rho > 0 \; \text{such that}$

$$H(x,p) = \max_{|\xi| < \rho} \xi \cdot p - L(x,\xi).$$

Set

$$H_\rho(x,p) := \max_{|\xi| \le \rho} \xi \cdot p - L(x,\xi).$$

 u_{λ} is a solution of

$$\lambda u + H_{\rho}(x, Du) = 0$$
 in \mathbb{T}^n ,

and

$$u_{\lambda}(x) = \inf_{X(0)=x,\,|\dot{X}(t)| \leq
ho} \int_0^{\infty} e^{-\lambda t} L(X(t),-\dot{X}(t)) dt.$$

4) Set $K = K_{\rho} =: \mathbb{T}^n \times \overline{B}_{\rho}$. Let $M = M(\mathbb{T}^n \times \mathbb{R}^n)$ denote the set of all finite Borel measures μ on $\mathbb{T}^n \times \mathbb{R}^n$. Set

$$\begin{split} \mathsf{M}_{\rho} &= \mathsf{M}_{\rho}(\mathbb{T}^n \times \mathbb{R}^n) = \{ \mu \in \mathsf{M} : \operatorname{supp} \mu \subset K_{\rho} \}, \\ \mathsf{M}_{\rho}^+ &= \mathsf{M}_{\rho}^+(\mathbb{T}^n \times \mathbb{R}^n) = \{ \mu \in \mathsf{M}_{\rho} : \mu \geq 0 \}. \end{split}$$

Set

$$\mathcal{C}_
ho(x)=\{X\in C([0,\infty),\mathbb{T}^n):X\in \mathrm{AC}[0,T], orall T>0, \ X(0)=x,\;|\dot{X}(t)|\leq
ho\; ext{a.e.}\;\}.$$

Given $z \in \mathbb{T}^n$ and $X \in \mathcal{C}(z)$, consider the functional

$$C(K)
ightarrow \phi \mapsto \int_0^\infty e^{-\lambda t} \phi(X(t), -\dot{X}(t)) dt \in \mathbb{R}.$$

Note:

$$\left|\int_0^\infty e^{-\lambda t}\phi(X(t),-\dot{X}(t))dt\right|\leq \|\phi\|_\infty\int_0^\infty e^{-\lambda t}dt=\lambda^{-1}\|\phi\|_\infty.$$

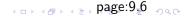
Each $z\in\mathbb{T}^n$ and $X\in\mathcal{C}(z)$ define a continuous linear functional on C(K), an element of $C^*(K)$, and by Riesz' theorem, $\exists \mu\in\mathsf{M}_\rho$ such that

$$\lambda \int_0^\infty e^{-\lambda t} \phi(X(t), -\dot{X}(t)) dt = \int_K \phi(x, \xi) \mu(dx, d\xi).$$

If $\phi=1$ (resp., $\phi\geq 0$), then

$$\lambda \int_0^\infty e^{-\lambda t} \phi(X(t),-\dot{X}(t)) dt = 1 \; (ext{resp.}, \; \geq 0).$$

Hence, $\mu \in \mathsf{M}_{\rho}^+$ and a probability measure.



Let $\mathsf{P}_{\rho}=\{\mu\in\mathsf{M}_{\rho}^{+}:\mu(K)=1\}$. If we write $\mu_{z,X}$ for the measure defined above, then

$$\lambda u_{\lambda}(z) = \inf_{X \in \mathcal{C}(z)} \int_{K} L(x,\xi) \mu_{z,X}(dx,d\xi).$$

 P_{ρ} has a good stability property: the compactness in the weak-star convergence in $C^*(K)$ (the weak convergence in the sense of measures). The Banach-Alaoglu theorem. On the other hand, the implication of "convergence" of $\{X_k\}$ to the functionals

$$\int_0^\infty e^{-\lambda t} \phi(X_k(t), -\dot{X}_k(t)) dt$$

is not easy. What is the limit?

$$\mu_{z,X_k} \stackrel{\mathsf{weak}^*}{\longrightarrow} \mu = \mu_{z,X} \; (\exists X \in \mathcal{C}(z)?).$$

Want to replace $\{\mu_{z,X}:X\in\mathcal{C}(z)\}$ by a good $G\subset\mathsf{P}_
ho$ such that

$$\lambda u_{\lambda}(z) = \inf_{\mu \in G} \int_{K} L\mu(dx, d\xi).$$

 $G = \mathsf{P}_{\rho}$ is too big.

5) Note that if $u_\lambda \in C^1(\mathbb{T}^n)$, then

$$\lambda u_{\lambda}(x) + \xi \cdot Du_{\lambda}(x) \leq L(x,\xi) \ \ \forall (x,\xi) \in K.$$

Integrate both sides by $\mu=\mu_{z,X}$, to get

$$\int_K (\lambda u_\lambda(x) + \xi \cdot Du_\lambda(x)) \mu(dx, d\xi) \leq \int_K L(x, \xi) \mu(dx, d\xi).$$

Compute that

$$\begin{split} &\int_K (\lambda u_\lambda(x) + \xi \cdot Du_\lambda(x)) \mu_{x,X}(dx, d\xi) \\ &= \lambda \int_0^\infty e^{-\lambda t} (\lambda u_\lambda(X(t)) - \dot{X}(t) \cdot Du_\lambda(X(t))) dt \\ &= \lambda \int_0^\infty \frac{d}{dt} \left(-e^{-\lambda t} u_\lambda(X(t)) \right) dt = \lambda u_\lambda(z). \end{split}$$

Hence, for any $\mu=\mu_{z,X}$,

$$\int_{\mathcal{K}} L(x,\xi)\mu(dx,d\xi) \geq \lambda u_{\lambda}(z).$$

Let P_c denote the set of all (Borel) probability measures with compact support. Note: $P_{\rho} \subset P_c$.

We introdue the condition on $\mu \in \mathsf{P}_{\mathrm{c}}$ that $\ orall \psi \in C^1(\mathbb{T}^n)$,

(3)
$$\lambda \psi(z) = \int_{\mathbb{T}^n imes \mathbb{R}^n} (\lambda \psi(x) + \xi \cdot D \psi(x)) \mu(dx, d\xi).$$

In general, " $u_{\lambda} \in C^1(\mathbb{T}^n)$ " does not hold, but the above condition always makes sense.

We call $\mu \in \mathsf{P_c}$ a closed measure for (z,λ) if (3) holds. We write $\mathfrak{C}(z,\lambda)$ for the set of all closed measures for (z,λ) . Note that $\mathfrak{C}(z,\lambda)$ is irrelevant to our HJE. Since all $\mu_{z,X}$ are in $\mathfrak{C}(z,\lambda)$, we have

$$\lambda u_{\lambda}(z) \geq \inf_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$

Theorem 3

$$\lambda u_{\lambda}(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$

ロ ト 4 回 ト 4 差 ト 4 差 ト 9 Q C

PROOF. 1) A first step is: $\forall \mu \in \mathfrak{C}(z,\lambda)$,

(4)
$$\lambda u_{\lambda}(z) \leq \int_{\mathbb{T}^n \times \mathbb{R}^n} L(x, \xi) \mu(dx, d\xi).$$

Since $u_\lambda\in \operatorname{Lip}(\mathbb{T}^n)$, it is a.e. differentiable and the pointwise derivative is identified with the distributional derivative. Let u_λ^ε and $(Du_\lambda)^\varepsilon$ be the mollified functions of u_λ and Du_λ , respectively, with the same millification kernel. We have $Du_\lambda^\varepsilon=(Du_\lambda)^\varepsilon$. H is uniformly continuous on $\mathbb{T}^n\times B_M$, and so

$$\begin{split} \lambda u_\lambda(y) + H(x, Du_\lambda(y)) & \leq \delta(\varepsilon) \text{ a.e. } \{(x,y) \in \mathbb{T}^{2n}: |x-y| < \varepsilon\}, \\ \text{where } \delta(\varepsilon) & \to 0+ (\varepsilon \to 0+). \text{ By the convexity of } H \text{, we find} \\ \lambda u_\lambda^\varepsilon(x) + H(x, Du_\lambda^\varepsilon(x)) & \leq \delta(\varepsilon) \text{ on } \mathbb{T}^n. \end{split}$$

Integrate

$$\lambda u^\varepsilon_\lambda(x) + \xi \cdot D u^\varepsilon_\lambda(x) \leq L(x,\xi) + \delta(\varepsilon),$$

by $\mu \in \mathfrak{C}(z,\lambda)$, to get

$$\lambda u^arepsilon_\lambda(z) \leq \int_{\mathbb{T}^n imes\mathbb{D}^n} L(x,\xi) \mu(dx,d\xi) + \delta(arepsilon); \quad ext{hence, (4)}.$$

Recall that

$$\lambda u_{\lambda}(z) \geq \inf_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi),$$

to conclued that

$$\lambda u_{\lambda}(z) = \inf_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$

2) The next and last step is to replace \inf by \min . Choose $\{X_k\}\subset \mathcal{C}(z)$ so that

$$\int_K L(x,\xi) \mu_{z,X_k}(dx,d\xi) o u_\lambda(z).$$

By replacing by a subsequence, we may assume that

$$\mu_{z,X_k} \stackrel{\mathsf{weak}^*}{\longrightarrow} \mu$$
 for some $\mu \in \mathsf{P}_{\rho}$.

3) "Lower semicontinuity + weak* convergence" imply:

$$\int_{K} L \, \mu(dx, d\xi) \leq \liminf_{k} \int_{K} L \, \mu_{z, X_{k}}(dx, d\xi) \; (= \lambda u_{\lambda}(z)).$$

4) Need to check that μ is a closed measure for (z,λ) : $\forall \psi \in C^1(\mathbb{T}^n)$, $\phi(x,\xi):=\lambda \psi(x)+\xi\cdot D\psi(x)$ is in $C^1(K)$. Hence,

$$\lambda \psi(z) = \int_K \phi(x,\xi) \mu_{x,X_k}(dx,d\xi) o \int_K \phi(x,\xi) \mu(dx,d\xi).$$

Thus, $\mu \in \mathfrak{C}(x,\lambda) \cap \mathsf{P}_{
ho}$ and

$$\lambda u_{\lambda}(z) = \int_{T^n imes \mathbb{R}^n} L \mu(dx, d\xi).$$

- We call a minimizer $\mu \in \mathfrak{C}(z,\lambda)$ as generalized Mather measure for (z,λ) . We write $\mathfrak{M}(z,\lambda)$ for all minimizers $\mu \in \mathsf{P}_{\mathsf{c}}(z,\lambda)$. Also, called as a discounted Mather measure
- One can show that $\mathfrak{M}(z,\lambda)\subset\mathsf{P}_{
 ho}.$

page:9.12

ANOTHER APPROACH TO THE EXISTENCE OF MATHER MEASURES.

Assume that

$$L \in C(K)$$
.

For $\phi \in C(K)$, set

$$H_{\phi}(x,p) := \max_{|\xi| \le
ho} \xi \cdot p - \phi(x,\xi),$$
 $F_{\lambda,\phi}(x,p,u) := \lambda u + H_{\phi}(x,p).$

Let Γ denote the set of all $(\psi,\phi)\in C(\mathbb{T}^n) imes C(K)$ such that $\psi\in\mathcal{S}^-(F_{\lambda,\phi})$. That is,

$$\lambda \psi(x) + \xi \cdot D\psi(x) \le \phi(x,\xi)$$
 for all $(x,\xi) \in K$.

For fixed (z, λ) , let

$$G(z,\lambda) = \{\phi - \lambda \psi(z) : (\psi,\phi) \in \Gamma\}.$$

 Γ and $G(z,\lambda)$ are closed convex cones with vertex at the origin in $C(\mathbb{T}^n)\times C(K)$ and C(K), respectively.

Let $G^*(z,\lambda)$ denote the dual cone, i.e.,

$$G^*(z,\lambda) := \{ \nu \in C^*(K) : \langle \nu, g \rangle \ge 0 \ \forall g \in G(z,\lambda) \}.$$

We invoke the Hahn-Banach theorem:

- 1) $G(z,\lambda)$ has nonempty interior. Choose $(0,1)\in\Gamma$ so that $1\in G(z,\lambda)$. For any $\phi\in C(K)$ such that $\|\phi\|_{\infty}\leq 1$, we have $(0,1+\phi)\in\Gamma$ and $1+\phi\in G(z,\lambda)$.
- 2) $L \lambda u_{\lambda}(z) \in \partial G(z,\lambda)$. Indeed, $L \lambda u_{\lambda}(z) \in G(z,\lambda)$ and $L \lambda u_{\lambda}(z) \frac{1}{k} \not\in G(z,\lambda)$ for all $k \in \mathbb{N}$.
 - 3) HB theorem $\implies \exists \nu \in C^*(K)$ such that, $\nu \neq 0$, and $\langle \nu, g (L \lambda u_\lambda(z)) \rangle \geq 0 \ \ \forall g \in G(z,\lambda).$
 - 4) Select $g=t(L-\lambda u_\lambda(z))$, t>0, in the above, to find $(t-1)\langle
 u,L-\lambda u_\lambda(z)\rangle\geq 0,$

and

$$\langle \nu, L \rangle = \lambda u_{\lambda}(z) \langle \nu, 1 \rangle.$$

5) Select
$$g=L-\lambda u_\lambda(z)+f$$
, with any $f\geq 0$, to find that $\langle
u,f
angle\geq 0, \ {
m i.e.,}\
u\in {\sf M}_
ho^+.$

Set

$$\mu:=rac{
u}{
u(K)}\in\mathsf{P}_{
ho}.$$

6) Fix any $(\psi,\phi)\in\Gamma$ and note that $(\psi,\phi)+(L,u_\lambda)\in\Gamma$ and $\phi+L-\lambda(\psi+u_\lambda)(z)\in G(z,\lambda)$. Select $g=\phi+L-\lambda(\psi+u_\lambda)(z)$, to see

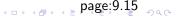
$$\langle \mu, \phi \rangle \geq \lambda \psi(z).$$

Let $\psi \in C^1(\mathbb{T}^n)$. Choose $\phi = \lambda \psi(x) + \xi \cdot D\psi(x)$, to find

$$\langle \mu, \lambda \psi + \xi \cdot D \psi(x) \rangle \geq \lambda \psi(z)$$

This is valid also for $-\psi$ in place of ψ . Hence,

$$\lambda \psi(z) = \langle \mu, \lambda \psi + \xi \cdot D \psi \rangle \ \ \forall \psi \in C^1(\mathbb{T}^n).$$



7) The conclusion:

$$\mu \in \mathfrak{C}(z,\lambda)$$
 and $\lambda u_{\lambda}(z) = \langle \mu, L
angle = \int_{K} L \mu.$

EXERCISES. 1. Prove that Γ is a convex set.

2. Prove that if a>0, then $L-\lambda u_{\lambda}(z)-a\not\in G(z,\lambda)$.

page:9.16

Vanishing discount problem for Hamilton-Jacobi equations II

Our HJE is as follows:

(1)
$$\lambda u + H(x, Du) = 0 \quad \text{in } \mathbb{T}^n.$$

Assumptions on H:

- $ightharpoonup H \in C(\mathbb{T}^n \times \mathbb{R}^n).$
- H is coercive, i.e.,

$$\lim_{r o \infty} \inf_{\mathbb{T}^n imes (\mathbb{R}^n \setminus B_r)} H(x,p) = \infty.$$

lacksquare H is convex, i.e., $p\mapsto H(x,p)$ is convex, $orall x\in \mathbb{T}^n$.

Theorem 1

$$\lambda u_{\lambda}(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$

The min is attained at $\mu \in \mathsf{P}_{\rho} \cap \mathfrak{C}(z,\lambda)$, where, for $\mu \in \mathsf{P}_{\rho}$, $\mathrm{supp}\, \mu \subset K = \mathbb{T}^n \times \overline{B}_{\rho}$ and ρ does not depend of $\lambda > 0$.

The closedness of $\mu \in \mathfrak{C}(z,\lambda)$ is described as: $orall \psi \in C^1(\mathbb{T}^n)$,

$$\lambda \psi(z) = \int_{\mathbb{T}^n imes \mathbb{R}^n} (\lambda \psi(x) + \xi \cdot D \psi(x)) \mu(dx, d\xi).$$

This condition is stable under the weak* convergence of sequences in P_{ρ} . For instance, if $\lambda_j \to 0^+$ and

$$\mathsf{P}_{
ho}\cap\mathfrak{C}(z,\lambda_j)
i\mu_j\stackrel{\mathsf{Weak}^*}{\longrightarrow}\mu$$
, then

(2)
$$0 = \int_{\mathbb{T}^n \times \mathbb{R}^n} \xi \cdot D\psi(x) \mu(dx, d\xi) \ \forall \psi \in C^1(\mathbb{T}^n).$$

We call $\mu \in \mathsf{P}_c$ a *closed measure* (for $\lambda = 0$) if (2) holds. Let $\mathfrak{C}(0)$ denote the set of all closed measures $\mu \in \mathsf{P}_c$.

page:10.2

Recall the ergodic problem:

(3)
$$H(x,Du)=c$$
 in \mathbb{T}^n .

We know the following.

Theorem 2

Let c be the ergodic constant. Then

- $u_{\lambda} \max_{\mathbb{T}^n} u_{\lambda} o u_0$ in $C(\mathbb{T}^n)$ along a sequence $\lambda_i o 0^+$,
- $lacksquare \lambda u_\lambda
 ightarrow -c ext{ in } C(\mathbb{T}^n) ext{ as } \lambda
 ightarrow 0^+,$
- u_0 is a solution of (3).

We have a representation theorem for c.

Theorem 3

Let c be the ergodic constant. Then

$$-c = \min_{\mu \in \mathfrak{C}(0)} \int_{\mathbb{T}^n \vee \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$

PROOF. 1) Let $u_0 \in \operatorname{Lip}(\mathbb{T}^n)$ be a solution of H = c in \mathbb{T}^n . We have $\|Du_0\|_{\infty} < \infty$. By approximation, $\exists u_0^{\varepsilon} \in C^1(\mathbb{T}^n), \ \delta(\varepsilon) > 0$ such that

$$\begin{cases} -c + H(x, Du_0^\varepsilon(x)) \leq \delta(\varepsilon) \ \text{ in } \mathbb{T}^n, \\ u_0^\varepsilon \to u_0 \ \text{ in } C(\mathbb{T}^n) \ (\varepsilon \to 0^+), \\ \delta(\varepsilon) \to 0^+ \ (\varepsilon \to 0^+). \end{cases}$$

In particular,

$$-c + \xi \cdot Du_0^\varepsilon(x) \leq L(x,\xi) + \delta(\varepsilon) \ \ \forall (x,\xi).$$

Integrating by $\mu \in \mathfrak{C}(0)$ and sending $arepsilon o 0^+$ yield

$$-c \leq \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x, \xi) \mu(dx, d\xi).$$

Thus,

$$-c \leq \inf_{\mu \in \mathfrak{C}(0)} \int_{\mathbb{T}^n \times \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$

2) Existence of a minimizer: Fix $z\in\mathbb{T}^n$ and for each $\lambda>0$ choose $\mu_\lambda\in\mathfrak{M}(z,\lambda)\cap\mathsf{P}_\rho$ so that

$$\lambda u_{\lambda}(z) = \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu_{\lambda}(dx,d\xi).$$

Recall that

$$\lim_{\lambda o 0^+} \lambda u_\lambda(z) = -c.$$

We can choose $\lambda_i
ightarrow 0+$ so that

$$\mu_{\lambda_j} \overset{\mathsf{weak}^*}{\longrightarrow} \mu_0 \in \mathsf{P}_{
ho}.$$

As in the argument for a fixed $\lambda > 0$, we find that $\mu_0 \in \mathfrak{C}(0)$,

$$\int_{\mathbb{T}^n imes\mathbb{R}^n}L\,\mu_0(dx,d\xi)\leq \liminf_{j o\infty}\int_{\mathbb{T}^n imes\mathbb{R}^n}L\,\mu_{\lambda_j}(dx,d\xi)=-c.$$

Hence, μ_0 is a minimizer:

$$-c=\int_{\mathbb{T}^n imes\mathbb{D}^n}L\,\mu_0(dx,d\xi).$$

ullet Any minimizer $\mu \in \mathfrak{C}(0)$ is called a *Mather measure*. Denoted by $\mathfrak{M}(0)$.

Our purpose here is:

Claim 4

The whole family $\{u_{\lambda}\}_{{\lambda}>0}$ "converges" to a function u_0 .

Formal expansion:

$$\lambda u_{\lambda} \approx -c + \lambda u_0(x) + \lambda^2 u_1(x) + \cdots$$

page:10.6

Then,

$$u_{\lambda} pprox -\lambda^{-1}c + u_0(x) + \lambda u_1(x) + \cdots;$$
 $0 = \lambda u_{\lambda} + H(x, Du_{\lambda}) pprox -c + H(x, Du_0 + \cdots) + \cdots,$ and hence,

$$-c + H(x, Du_0) = 0.$$

$$0 \gtrapprox -c + \lambda u_0 + \cdots + \xi \cdot (Du_0 + \lambda Du_1 + \cdots) - L(x, \xi).$$

If $\mu_0\in\mathfrak{M}(0)$, then

$$\int (-c-L)\mu_0 = 0, \quad \int \xi \cdot (Du_0 + \lambda Du_1 + \cdots) \mu_0 pprox 0.$$

Hence,

$$0\lessapprox \lambda\int u_0\mu_0,$$
 i.e., $\int u_0\mu_0\leq 0.$

page:10.7

Theorem 5

The whole family $\{u_{\lambda}+\lambda^{-1}c\}_{\lambda>0}$ converges to a solution u_0 in $C(\mathbb{T}^n)$ of (3).

(Davini-Fathi-Iturriaga-Zavidovique=2016)

PROOF. 1) Note that $v_{\lambda}:=u_{\lambda}+\lambda^{-1}c$ satisfies

$$\lambda v_{\lambda} + H(x, Dv_{\lambda}) = \lambda u_{\lambda} + c + H(x, Du_{\lambda}) = c$$
 in \mathbb{T}^n .

If we set $H_c(x,p)=H(x,p)-c$, then v_λ is a solution of $\lambda v_\lambda+H_c=0$ in \mathbb{T}^n . If u_0 is a solution of H=c in \mathbb{T}^n , then it is also a solution of $H_c(x,Du_0)=0$ in \mathbb{T}^n . Note that the Lagrangian corresponding to H_c is given by

$$L_c(x,\xi) := \sup_p \xi \cdot p - H_c(x,p) = L(x,\xi) + c.$$

Replacing (H,L) by (H_c,L_c) , we may assume that c=0. We need to show that the solutions u_λ of $\lambda u + H(x,Du) = 0$ in \mathbb{T}^n converge to a solution u_0 of H(x,Du) = 0 in \mathbb{T}^n .

2) Let $v_0\in \mathrm{Lip}(\mathbb{T}^n)$ be a solution of H=0 in \mathbb{T}^n . Choose $C_0>0$ so that $\|v_0\|_\infty\leq C_0$. Note that

$$\lambda(v_0 + C_0) + H(x, Du_0) \ge 0, \ \lambda(v_0 - C_0) + H \le 0 \ \text{in } \mathbb{T}^n.$$

By comparison,

$$v_0+C_0\geq u_\lambda\geq v_0-C_0$$
 in \mathbb{T}^n .

Hence,

$$|u_{\lambda}(x)| \leq 2C_0$$
 in \mathbb{T}^n ,

and the family $\{u_{\lambda}\}$ is unif-bounded on \mathbb{T}^n . Thus, the family $\{u_{\lambda}\}$ is unif-bounded and equi-Lipschitz continuous on \mathbb{T}^n .

3) Let $\mathcal V$ denote the set of all limit points in $C(\mathbb T^n)$ of $\{u_\lambda\}_{\lambda>0}$ as $\lambda\to 0^+$. We have $\mathcal V\neq\emptyset$. Since

$$\lambda u_{\lambda} o 0$$
 in $C(\mathbb{T}^n)$ $(\lambda o 0^+),$

we find that $v \in \mathcal{V}$ is a solution of H = 0 in \mathbb{T}^n .

page:10.9

We claim:

$$\int v(x)\mu(dx,d\xi) \leq 0 \ \ orall (v,\mu) \in \mathcal{V} imes \mathfrak{M}(0).$$

Let $v\in\mathcal{V}$ and $\mu\in\mathfrak{M}(0)$. Choose a sequence $\lambda_j\to 0^+$ such that u_{λ_j} converge to v in $C(\mathbb{T}^n)$. Note that u_λ is a solution of

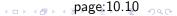
$$\widetilde{H}(x,Du_{\lambda})=0$$
 in $\mathbb{T}^n,$ (the ergodic constant $=0!$)

where $\widetilde{H}(x,p)=\sup_{\xi}(\xi\cdot p-L(x,\xi)+\lambda u_{\lambda}(x))$, which implies that

$$0=\min_{
u\in\mathfrak{C}(0)}\int (L(x,\xi)-\lambda u_{\pmb{\lambda}}(x))
u(dx,d\xi).$$

Since $\mu \in \mathfrak{C}(0)$,

$$egin{aligned} 0 & \leq \int (L(x,\xi) - \lambda u_\lambda(x)) \mu(dx,d\xi) \ & = -\lambda \int u_\lambda \mu(dx,d\xi). \end{aligned}$$



Sending $\lambda = \lambda_j o 0^+$, we find that

$$\int v(x)\mu(dx,d\xi) \leq 0.$$

Let ${\mathcal W}$ denote the set of all solutions w of H=0 in ${\mathbb T}^n$ such that

$$\int w(x)\mu(dx,d\xi) \leq 0 \ \ orall \mu \in \mathfrak{M}(0).$$

We have shown that

$$\mathcal{V} \subset \mathcal{W}$$
.

page:10.11

4) We claim that

$$w \leq v$$
 on $\mathbb{T}^n \ orall (w,v) \in \mathcal{W} imes \mathcal{V},$

which assures that for all $v \in \mathcal{V}$,

$$v(x) = \max_{w \in \mathcal{W}} w(x) \ \ \forall x \in \mathbb{T}^n.$$

In particular, if we set $v(x):=\max_{w\in\mathcal{W}}w(x)$, then $\mathcal{V}=\{v\}$, and, as $\lambda \to 0^+$,

$$u_{\lambda} \to v$$
 in $C(\mathbb{T}^n)$.

5) To show the above, fix any $w\in \mathcal{W}, v\in \mathcal{V}.$ Choose $\lambda_j o 0^+$ so that

$$u_{\lambda_i} \to v \quad \text{in } C(\mathbb{T}^n) \ (j \to \infty).$$

Fix any $z\in\mathbb{T}^n$. Fix a $\mu_\lambda\in\mathfrak{M}(z,\lambda)\cap\mathsf{P}_
ho$ for each $\lambda>0$.

Note that

$$\lambda w + \widetilde{H}(x, Dw) = 0$$
 in \mathbb{T}^n ,

where $H(x,p) := \sup_{\xi} (\xi \cdot p - L(x,\xi) - \lambda w(x))$.

By the formula

$$\lambda w(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \int (L(x,\xi) + \lambda w(x)) \mu(dx,d\xi),$$

we have

$$egin{aligned} \lambda w(z) & \leq \int (L(x,\xi) + \lambda w(x)) \mu_{\lambda} \ & = \lambda u_{\lambda}(z) + \lambda \int w(x) \mu_{\lambda} \ & = \lambda u_{\lambda}(z) + \lambda \int w(x) \mu_{\lambda}. \end{aligned}$$

By passing to a subsequence, we may assume that for some $\mu_0 \in \mathfrak{M}(0)$,

$$\mu_\lambda \stackrel{\mathsf{weak}^*}{\longrightarrow} \mu_0 \ \ (\lambda = \lambda_j o 0^+).$$

In the limit as $\lambda = \lambda_i \rightarrow 0^+$,

$$w(z) \leq v(z) + \int w(x) \mu_0(dx, d\xi) \leq v(z).$$

We have shown

$$\lim_{\lambda o 0^+} u_\lambda(x) = \max_{w \in \mathcal{W}} w(x).$$

page:10.14