HAMILTON-JACOBI EQUATIONS AND VISCOSITY SOLUTIONS Hitoshi Ishii Tsuda University (Waseda University) Mini-Course at Nanjing University on Web. April-May, 2021 Hamilton-Jacobi equations and optimal control Existence, uniqueness and stability of viscosity solutions I Existence, uniqueness and stability of viscosity solutions II Existence, uniqueness and stability of viscosity solutions III Homogenization of Hamilton-Jacobi equations I Homogenization of Hamilton-Jacobi equations II Long-time behavior of solutions I Long-time behavior of solutions II Vanishing discount problem for Hamilton-Jacobi equations I Vanishing discount problem for Hamilton-Jacobi equations II #### Hamilton-Jacobi equations and optimal control Example 1 Consider the eikonal equation $$|u'(x)| = 1$$ in $(-1,1)$, with boundary condition u(-1) = u(1) = 0. No C^1 solution. This is a *Hamilton-Jacobi equation*. This appears in geometric optics and describes the wave front. In the above case, the light sources are located at $x=\pm 1$ and the speed of light is assumed to be one. The right solution should be $$u(x)=1-|x|=\min\{x-1,1-x\}=\operatorname{dist}(x,\{\pm 1\}).$$ The set $\{x:u(x)=a\}$ is the set of points where the light arrives after time a coming from $\{\pm 1\}.$ In view of the theory of differential equations, this gives a big problem. No classical solution, but \exists a right solution. What is a good generalised (weak) solution? People tried to find a good notion of generalized solutions in the class of Lipschitz functions which satisfy the given equation in the almost everywhere sense. $$|u'(x)| = 1$$ a.e. $(-1,1)$ and $u(-1) = u(1) = 0$. Some a.e. solutions \bullet Semi-concave a.e. solutions: Kruzkov (after entropy solutions for conservation laws by Oleinik, Douglis) \longrightarrow No downward pointing corner. The existence of solutions can be a problem in general. • Viscosity solutions: Crandall-Lions, Crandall-Evans-Lions Based on the maximum principle: if $u, \phi \in C^1$ and $u - \phi$ takes a maximum (or minimum) at x, then $u'(x) = \phi'(x)$. #### Definition 2 (Preliminary) $u\in C(-1,1)$ is a (viscosity) subsolution of |u'|=1 (or $|u'|\le 1$) in (-1,1) if, whenever $\phi\in C^1(-1,1)$ and $(u-\phi)(\hat x)=\max(u-\phi)$, we have $$|\phi'(\hat{x})| \leq 1.$$ For the definition of (viscosity) supersolution, we replace (\mathbf{max}, \leq) by (\mathbf{min}, \geq) . (Viscosity) solution is defined as a function which has both sub and super solution properties. Let $u=\operatorname{dist}(x,\{\pm 1\})$ and $\phi\in C^1(-1,1)$. Assume that $\max(u-\phi)=(u-\phi)(\hat{x})$ for some \hat{x} . If $\hat{x}\neq 0$, then $u'(\hat{x})=\phi'(\hat{x})$ and $|\phi'(\hat{x})|=|u'(\hat{x})|=1$. If $\hat{x}=0$, then $|\phi'(\hat{x})|\leq 1$. Instead, if $\min(u-\phi)=(u-\phi)(\hat{x})$, then $\hat{x}\neq 0$ and $|\phi'(\hat{x})|=1$. • For classical smooth solutions, $$|u'|=1 \iff -|u'|=-1.$$ This is not true for viscosity solutions. For instance, $u=\operatorname{dist}(x,\{\pm 1\})$ (resp., $u=-\operatorname{dist}(x,\{\pm 1\})$) is a viscosity solution to |u'|=1 (resp., -|u'|=-1), but not to -|u'|=-1 (resp., |u'|=1). • The vanishing viscosity method: when "right" solutions may have singularities, a classical argument to pick up a "right" solution (physically meaning solution) is to introduce an artificial viscosity to the equation. In our example, we consider $$-\varepsilon u''(x)+|u'|=1 \quad \text{in } (-1,1), \quad \text{and} \quad u(\pm 1)=0, \quad \text{with } \varepsilon>0.$$ #### This has a C^2 solution $$u_{arepsilon}(x) = 1 + arepsilon e^{- rac{1}{arepsilon}} - |x| - arepsilon e^{- rac{|x|}{arepsilon}}.$$ $$\operatorname{dist}\left(x,\{\pm 1\}\right) = \lim_{arepsilon o 0^+} u_{arepsilon}(x);$$ "viscosity" solution. page:1.6 Given two functions $f:\mathbb{R}^n imes \mathsf{C} o \mathbb{R}$ and $g:\mathbb{R}^n imes \mathsf{C} o \mathbb{R}^n$, $$\dot{X}(t) = g(X(t), \alpha(t)), \quad X(0) = x,$$ $J(x, \alpha) = \int_0^\infty e^{-\lambda t} f(X(t), \alpha(t)) dt$ Here, X(t) is the solution of the Cauchy problem for the ODE given by g, $J(x,\alpha)$ is the cost functional, which gives the criteria for the choice of the control α . The constant $\lambda>0$ is the so-called discount factor, and the effect of the running cost f is decreasing with the factor $e^{-\lambda t}$ as the time proceeds. We assume that C is a compact subset of \mathbb{R}^m , the functions f,g are continuous on $\mathbb{R}^n \times \mathsf{C}$, and there exists a constant C>0 such that for all $x,y\in\mathbb{R}^n$, $c\in\mathsf{C}$, $$|f(x,c)| \lor |g(x,c)| \le C,$$ $|f(x,c) - f(y,c)| \lor |g(x,c) - g(y,c)| \le C|x - y|.$ The set of all measurable functions $\alpha:[0,\infty)\to \mathbb{C}$ is denoted by \mathcal{C} . For any $\alpha\in\mathcal{C}$, the Cauchy problem $$\dot{X}(t) = g(X(t), lpha(t)), \ \ X(0) = x \in \mathbb{R}^n$$ has a unique solution X(t)=X(t;x,lpha), and the cost functional J(x,lpha) is well defined. The value function V on \mathbb{R}^n is defined by $$V(x) = \inf_{\alpha \in \mathcal{C}} J(x, \alpha).$$ Note: $$|J(x,lpha)| \leq \int_0^\infty e^{-\lambda t} |f(X(t),lpha(t))| dt \leq C/\lambda,$$ and $$|V(x)| \leq C/\lambda$$. page:1.8 $$|X(t;x,lpha)-X(t;y,lpha)|\leq |x-y|e^{Ct},$$ we have $$|J(x, \alpha) - J(y, \alpha)| \le \int_0^T e^{-\lambda t + Ct} C|x - y| dt + 2C \int_T^\infty e^{-\lambda t} dt$$ $\le O(|x - y| e^{CT} + e^{-\lambda T}) \ \ \forall T > 0.$ If we choose T>0 so that $|x-y|e^{CT}=e^{-\lambda T}$ (i.e., $e^T = |x - y|^{-1/(C + \lambda)}$), the O term becomes $O(|x-y|^{\lambda/(C+\lambda)})$. The value function V is in $\mathrm{BUC}(\mathbb{R}^n)$. Optimal control theory: - Find $\alpha \in \mathcal{C}$ such that $V(x) = J(x, \alpha)$. optimal control! - Find the value of V. page:1.9 Bellman equation The Bellman equation should characterize the value function $oldsymbol{V}$. $$\begin{aligned} \max_{c \in \mathbb{C}} (\lambda u(x) - g(x,c) \cdot Du(x) - f(x,c)) &= 0 \quad \text{in } \mathbb{R}^n. \\ (Du &= (\partial u/\partial x_1, \dots, \partial u/\partial x_n) \text{ gardient of } u.) \text{ If we write} \\ H(x,p,r) &= \max_{c \in \mathbb{C}} (\lambda r - g(x,c) \cdot p - f(x,c)) \\ &= \lambda r + \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c)), \end{aligned}$$ then the above equation reads H(x,Du(x),u(x))=0. If $\mathsf{C}=\overline{B}_1(0)\subset\mathbb{R}^n$, g(x,c)=c, f(x,c)=1 and $\lambda=0$ (against to the tentative assumption), then $$H(x,p,r) = H(p) = |p| - 1 \ (|Du(x)| - 1 = 0).$$ Similarly, if $\mathsf{C} = \overline{B}_1(0) \subset \mathbb{R}^n$, g(x,c) = g(x)c, $$f(x,c)=f(x)$$ and $\lambda=0$, then $$H = |g(x)||p| - f(x) \ (|g(x)||p| - f(x) = 0).$$ Removing the compactness assumption on C, if $C=\mathbb{R}^n$, g=c, $f=|c|^2/2+1$, and $\lambda=0$, then $$H = \frac{1}{2}|p|^2 - 1 \ (\frac{1}{2}|Du|^2 - 1 = 0).$$ A remark is: the Hamiltonians H(x,p,r) for Bellman equations are convex in p. Assume that C = $\{c\}$ (a singleton). Write $f(x)=f(x,c),\,g(x)=g(x,c).$ Assume evrything are smooth. Then, for $\tau>0$, $$\begin{split} V(x) &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + \int_\tau^\infty e^{-\lambda t} f(X(t)) dt \\ &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + e^{-\lambda \tau} \int_0^\infty e^{-\lambda t} f(X(t+\tau)) dt \\ &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + e^{-\lambda \tau} V(X(\tau)), \end{split}$$ page:1.11 and $$\begin{split} 0 &= \int_0^\tau e^{-\lambda t} f(X(t)) dt + e^{-\lambda \tau} V(X(\tau)) - V(X(0)) \\ &= \int_0^\tau \left(e^{-\lambda t} f(X(t)) + \frac{d}{dt} \left(e^{-\lambda t} V(X(t)) \right) \right) dt \\ &= \int_0^\tau e^{-\lambda t} \left(f(X(t)) - \lambda V(X(t)) + DV(X(t)) \cdot g(X(t)) \right) dt. \end{split}$$ It follows that $$\lambda V(x) - g(x) \cdot DV(x) - f(x) = 0 \ \ \forall x \in \mathbb{R}^n.$$ If we start with this PDE, the formula of V is a consequence of the so-called characteristic method applied to this PDE. page:1.12 ### EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY SOLUTIONS I Consider the first-order PDE (1) $$F(x,Du(x),u(x))=0 \text{ in } \Omega\subset\mathbb{R}^n.$$ #### Definition 1 Let Ω be an open set $\subset \mathbb{R}^n$ and $F \in C(\Omega \times \mathbb{R}^n \times \mathbb{R}, \mathbb{R})$. Let $u \in C(\Omega, \mathbb{R})$. We call u a (viscosity) subsolution (resp., supseroslution) of (1) if for any $(\phi, x) \in C^1(\Omega, \mathbb{R}) \times \Omega$ such that $\max(u - \phi) = (u - \phi)(x)$ (resp., $\min(u - \phi) = (u - \phi)(x)$, $$F(x,D\phi(x),u(x))\leq 0 \ \ (\text{resp.,} \ \ F(x,D\phi(x),u(x))\geq 0).$$ When u is both a (viscosity) sub and supersolution of (1), we call u a (voscosity) solution of (1). page:2.1 u is tested from above by ϕ at \hat{x} ; ϕ is an upper tangent to u at \hat{x} ; u is touched from above by ϕ at \hat{x} ,... - Subsolution for $u \in \mathrm{USC}(\Omega, \mathbb{R} \cup \{-\infty\})$; supersolution for $u \in \mathrm{LSC}(\Omega, \mathbb{R} \cup \{\infty\})$. - $\phi \in C^{\infty}(\Omega)$. - ightharpoonup max, min \longrightarrow strict max, strict min. page:2.2 #### Remark 2 - 1) In general, when $oldsymbol{u}$ is a (viscosity) solution of - F(x,Du,u)=0, u may not be a (viscosity) solution of - -F(x,Du,u)=0. Reverse inequalities. - 2) In general, when u is a (viscosity) solution of F(x,Du,u)=0, v:=-u may not be a (viscosity) solution of F(x,-Dv,-v)=0. Testing from the reverse side. 3) Set v := -u. Then u is a (viscosity) solution of F(x,Du,u)=0 if and only if v is a (viscosity) solution of -F(x, -Dv, -v) = 0. Let $\phi \in C^1$, $\psi := -\phi$, and $\hat{x} \in \Omega$. $$(u - \phi)(\hat{x}) = \max(u - \phi) \iff (v + \phi)(\hat{x}) = \min(v + \phi)$$ $$\iff (v - \psi)(\hat{x}) = \min(v - \psi),$$ and $$F(\hat{x}, D\phi(\hat{x}), u(\hat{x})) \le 0 \iff -F(\hat{x}, -D\psi(\hat{x}), -v(\hat{x})) \ge 0.$$ #### Theorem 1 The value function $oldsymbol{V}$ defined above is a viscosity solution of (2)
$$\lambda u + \max_{c \in C} (-g(x,c) \cdot Du - f(x,c)) = 0$$ in \mathbb{R}^n . #### Theorem 2 (DPP) Let $x \in \mathbb{R}^n$ and $au: \mathcal{C} \to [0,\infty]$ be a mapping. Then $$V(x) = \inf_{lpha \in \mathcal{C}} \int_0^ au e^{-\lambda t} f(X(t), lpha(t)) dt + e^{-\lambda au} V(X(au)).$$ We write $$H(x, p, r) = \lambda r + \max_{c \in C} (-g(x, c) \cdot p - f(x, c)).$$ Proof of Theorem 2: $$\begin{split} J(x,\alpha) &= \int_0^\tau e^{-\lambda t} f(X(t),\alpha(t)) dt \\ &+ e^{-\lambda \tau} \int_0^\infty e^{-\lambda t} f(X(\tau+t),\alpha(\tau+t)) dt, \\ J(x,\alpha) &\geq V(x), \\ \int_0^\infty e^{-\lambda t} f(X(\tau+t),\alpha(\tau+t)) dt &= J(X(\tau),\alpha(\tau+\cdot)) \\ &\geq V(X(\tau)). \end{split}$$ Proof of Theorem 1: Since C is compact and f,g are continuous, H is continuous. We only check the supersolution property by a contradiction argument. Let $\phi \in C^1$ and $\min(V-\phi)=(V-\phi)(\hat{x})$ for some $\hat{x}\in\mathbb{R}^n$. Suppose that $$H(\hat{x}, D\phi(\hat{x}), V(\hat{x})) < 0.$$ Replacing ϕ by $\phi + \min(V - \phi)$, we may assume that $\min(V - \phi) = 0$. That is, $V(\hat{x}) = \phi(\hat{x})$. $$V(x) = \inf_{\alpha \in \mathcal{C}} \int_0^\tau e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} V(X(\tau)).$$ Proof Set $$W(x) = \inf_{\alpha \in \mathcal{C}} \int_0^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} V(X(\tau)).$$ Choose $\alpha \in \mathcal{C}$ so that $$V(x) \approx J(x, \alpha),$$ and compute $$J(x, \alpha) = \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt + \int_{\tau(\alpha)}^{\infty} e^{-\lambda t} f(X(t), \alpha(t)) dt$$ $$= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt$$ $$\begin{split} &+e^{-\lambda\tau(\alpha)}\int_{0}^{\infty}e^{-\lambda s}f(X(s+\tau(\alpha)),\alpha(s+\tau(\alpha))ds\\ &=\int_{0}^{\tau(\alpha)}e^{-\lambda t}f(X(t),\alpha(t))dt\\ &+e^{-\lambda\tau(\alpha)}J(X(\tau(\alpha)),\alpha(\tau(\alpha)+\cdot))\\ &\geq\int_{0}^{\tau(\alpha)}e^{-\lambda t}f(X(t),\alpha(t))dt+e^{-\lambda\tau(\alpha)}V(X(\tau(\alpha)))\\ &\geq W(x). \end{split}$$ Hence, $$V(x) \geq W(x)$$. Choose $\alpha \in \mathcal{C}$ so that $$W(x)pprox \int_0^{ au(lpha)} e^{-\lambda t} f(X(t),lpha(t)) dt + e^{-\lambda au(lpha)} V(X(au(lpha))).$$ Choose $eta \in \mathcal{C}$ so that $$V(X(\tau(\alpha))) \approx J(X(\tau(\alpha)), \beta).$$ Then $$\begin{split} W(x) &\approx \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau(\alpha)} J(X(\tau(\alpha)), \beta) \\ &= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt \\ &+ e^{-\lambda \tau(\alpha)} \int_0^\infty e^{-\lambda t} f(X(t, X(\tau(\alpha)), \beta), \beta(t)) dt \\ &= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt \\ &+ e^{-\lambda \tau(\alpha)} \int_{\tau(\alpha)}^\infty e^{-\lambda (s - \tau(\alpha))} \times \\ &\times f(X(s - \tau(\alpha), X(\tau(\alpha)), \beta), \beta(s - \tau(\alpha))) ds \\ &= \int_0^{\tau(\alpha)} e^{-\lambda t} f(X(t), \alpha(t)) dt \\ &+ \int_{\tau(\alpha)}^\infty e^{-\lambda t} f(X(t - \tau(\alpha), X(\tau(\alpha)), \beta), \beta(t - \tau(\alpha))) dt \end{split}$$ Set $$\gamma(t) = egin{cases} lpha(t) & ext{for } t \in [0, au(lpha)) \ eta(t - au(lpha)) & ext{for } t \in [au(lpha), \infty), \end{cases}$$ and note that $$X(t,x,\gamma) = \begin{cases} X(t,x,\alpha) & \text{for } t \in [0,\tau(\alpha)), \\ X(t-\tau(\alpha),X(\tau(\alpha)),\beta) & \text{for } t \in [\tau(\alpha),\infty), \end{cases}$$ to find that $$egin{aligned} W(x) &pprox \int_0^{ au(lpha)} e^{-\lambda t} f(X(t,x,\gamma),\gamma(t)) dt \ &+ \int_{ au(lpha)}^{\infty} e^{-\lambda t} f(X(t,x,\gamma),\gamma(t)) dt \ &= J(x,\gamma) \geq V(x). \end{aligned}$$ Thus, $W(x) \geq V(x)$. The proof is complete. By continuity, for some r>0, $$H(x, D\phi(x), \phi(x)) < 0 \ \forall x \in \overline{B}_r(\hat{x}).$$ Define $au:\mathcal{C} o[0,\infty]$ by $$\tau = \tau(\alpha) := \inf\{t \ge 0 : X(t; \hat{x}, \alpha) \in \partial B_r(\hat{x})\}.$$ By DPP, for each $\varepsilon > 0$, $\exists \alpha \in \mathcal{C}$ such that $$V(\hat{x}) + \varepsilon > \int_0^{\tau} e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} V(X(\tau)).$$ Note that $$V(\hat{x}) = \phi(\hat{x}), \quad V(X(\tau)) \ge \phi(X(\tau)),$$ and, since $|\dot{X}| = |g(X)| \leq C$, $$au \geq rac{r}{C}$$, which implies $$\int_0^{\tau} e^{-\lambda t} dt \ge \int_0^{\frac{r}{C}} e^{-\lambda t} dt.$$ We replace ε by $$\varepsilon \int_0^{\frac{r}{C}} e^{-\lambda t} dt,$$ to obtain $$\begin{split} \phi(\hat{x}) + \varepsilon \int_0^\tau e^{-\lambda t} dt &> \int_0^\tau e^{-\lambda t} f(X(t), \alpha(t)) dt + e^{-\lambda \tau} \phi(X(\tau)), \\ \text{and, if } 0 &< \varepsilon \ll 1, \\ 0 &< \int_0^\tau e^{-\lambda t} \Big(\varepsilon - f(X(t), \alpha(t)) + \lambda \phi(X(t)) \\ &\qquad - g(X(t), \alpha(t)) \cdot D\phi(X(t)) \Big) dt \\ &\leq \int_0^\tau e^{-\lambda t} \Big(\varepsilon + H\big(X(t), D\phi(X(t)), \phi(X(t)) \big) dt < 0. \end{split}$$ Hence, a contradiction. Theorem 1 is an existence theorem. If we write $$H(x,p) = \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c)),$$ then $$|H(x,p) - H(y,p)| \le C|x - y|(|p| + 1),$$ $|H(x,p) - H(x,q)| \le C|p - q|.$ Under the above hypotheses on a general $oldsymbol{H}$, consider the HJ equation (2) $$\lambda u + H(x, Du) = 0 \text{ in } \mathbb{R}^n.$$ ### Theorem 3 (Comparison theorem) Let $v, w \in \mathrm{BC}(\mathbb{R}^n)$ be sub and super solutions of (2), respectively. Then, $v \leq w$ in \mathbb{R}^n . The value function V is a unique solution in the class $BC(\mathbb{R}^n)$. A PDE characterization of value functions. 1) Fix any $\varepsilon>0$. Set $v_\varepsilon(x)=v(x)-\varepsilon\langle x\rangle$, where $\langle x\rangle=(|x|^2+1)^{1/2}$. Note: $$egin{aligned} \lambda v_{arepsilon} + H(x,Dv_{arepsilon}) & \leq \lambda v + H\left(x,Dv - arepsilon rac{x}{\langle x angle} ight) \ & \leq \lambda v + H(x,Dv) + Carepsilon. \end{aligned}$$ Replace v_{ε} by $v_{\varepsilon}=v-arepsilon(\langle x \rangle+\lambda^{-1}C)$, to get $$\lambda v_{\varepsilon} + H(x, Dv_{\varepsilon}) \le \lambda v - \varepsilon C + H(x, Dv) + \varepsilon C \le 0.$$ Enough to show that $v_{\varepsilon} \leq w$ in \mathbb{R}^n for all $\varepsilon > 0$ $(0 < \varepsilon \ll 1)$. 2) Fix $\varepsilon > 0$. Since v, w are bounded, $$\lim_{x \to \infty} (v_{\varepsilon} - w)(x) = -\infty.$$ Choose R>0 so that $$(v_{\varepsilon}-w)(x)<0 \ \forall x\in\mathbb{R}^n\setminus B_R.$$ 3) To complete the proof, we argue by contradiction. Suppose: $$\sup_{\mathbb{R}^n}(v_\varepsilon-w)>0,$$ which implies $$S:=\sup_{B_R}(u_arepsilon-w)>0.$$ 4) If we have $w \in C^1$, by chance, then, by the viscosity properties, $$\lambda v_{\varepsilon}(x) + H(x,Dw(x)) \leq 0, \text{ and } \lambda w(x) + H(x,Dw(x)) \geq 0$$ at any maximum point x of $v_\varepsilon-w$. (v_ε is tested by w from above and w is tested by w itself from below.) Subtracting one from the other yields $$\lambda(v_{arepsilon}-w)(x)\leq 0$$ at any maximu point x of $v_{arepsilon}-w$. This is a contradiction: $\lambda S < 0$. 5) In the general situation, a standard technique to overcome the lack of regularity is the so-called doubling variable method. For $k \in \mathbb{N}$, consider the function $$\Phi_k(x,y) = v_{\varepsilon}(x) - w(y) - k|x - y|^2$$ on $K:=\overline{B}_R imes\overline{B}_R$. Let (x_k,y_k) be a maximum point of this function. 6) Observe that $$\max_K \Phi_k \geq \max_{x \in \overline{B}_R} \Phi_k(x,x) = \max_{\overline{B}_R} (v_{arepsilon} - w) = S,$$ and hence, $$S \leq \Phi_k(x_k, y_k) = v_{\varepsilon}(x_k) - w(y_k) - k|x_k - y_k|^2 \leq C_1 - k|x_k - y_k|^2.$$ We may assume by passing to a subsequence that for some $(x_0,y_0)\in K$, $$\lim_k (x_k, y_k) = (x_0, y_0).$$ Since $\{k|x_k-y_k|^2\}_k$ is bounded, we find that $$x_0=y_0,$$ and, moreover, from the above, $$S \leq v_{\varepsilon}(x_0) - w(x_0) - \limsup_{k} k|x_k - y_k|^2,$$ which implies that $$(v_arepsilon-w)(x_0)=S$$ and $\lim_k k|x_k-y_k|^2=0.$ The first identity above implies that $x_0 \in B_R$ (interior point). Passing to a subsequence, we may assume that $$x_k, y_k \in B_R \ \forall k.$$ Note that the functions $$x \mapsto \Phi_k(x,y_k) = v_arepsilon(x) - k|x - y_k|^2 - w(y_k), \ y \mapsto -\Phi_k(x_k,y) = w(y) + k|y - x_k|^2 - v_arepsilon(x_k)$$ take, respectively, a max at $x=x_k$ and min at $y=y_k$. By the viscosity properties, $$egin{aligned} \lambda v_arepsilon(x_k) + H(x_k, 2k(x_k-y_k)) & \leq 0, \ \lambda w(y_k) + H(y_k, -2k(y_k-x_k)) & \geq 0. \end{aligned}$$ Hence, $$egin{aligned} 0 & \geq \lambda(v_{arepsilon}(x_k)\!-\!w(y_k))\!+\!H(x_k,2k(x_k\!-\!y_k))\!-\!H(y_k,2k(x_k\!-\!y_k)) \ & \geq \lambda S - C|x_k-y_k|(2k|x_k-y_k|+1). \end{aligned}$$ In the limit $k \to \infty$, $\lambda S \le 0$, a contradiction. • Dirichlet problem. Let $\Omega\subset\mathbb{R}^n$ be an open set. Let f,g be as above. We introduce a function h on $\partial\Omega$, which is called the pay-off in the framework of optimal control. The cost functional is: $$J(x,\alpha) = \int_0^\tau e^{-\lambda t} f(X(t),\alpha(t)) dt + e^{-\lambda \tau} h(X(\tau)),$$ where $au=\inf\{t\geq 0: X(t)\in\mathbb{R}^n\setminus\Omega\}$, called the *exit time*. The value function V is given by $$V(x) = \inf_{\alpha \in \mathcal{C}} J(x, \alpha).$$ The continuity of $oldsymbol{V}$ can be a big issue. When everything goes fine, u=V satisfies the Dirichlet problem $$\begin{cases} \lambda u + \max_{c \in \mathbb{C}} (-g(x,c) \cdot Du - f(x,c)) = 0 & \text{in } \Omega, \\ u = h & \text{on } \partial \Omega. \end{cases}$$ In the above choice of au, X have to stop at the first hitting time to $\partial\Omega$. Another possible choice of au is: $$ar{ au} = \inf\{t \geq 0: X(t) \in \mathbb{R}^n \setminus \overline{\Omega}\}.$$ Here X stays in $\overline{\Omega}$ until it first exits from $\overline{\Omega}$. ## EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY SOLUTIONS II Consider the time-evolution
problem (1) $$u_t + H(x, D_x u) = 0 \quad \text{in } \mathbb{R}^n \times (0, \infty).$$ If we set F(x,t,p,q):=q+H(x,p) for $(x,t)\in\mathbb{R}^n\times(0,\infty),\ (p,q)\in\mathbb{R}^n\times\mathbb{R}$, then the above time-evolution PDE can be written as F(z,Du)=0. The previous definition of viscosity solutions makes sense for the current problem. If H is given as before by $$H(x,p) = \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c)),$$ then our PDE can be written as $$\max_{c \in \mathcal{C}} (-g(x,c) \cdot D_x u - (-1)u_t - f(x,c)) = 0.$$ In view of optimal control, the dynamics is described by $$\dot{X}(s) = g(X(s), \alpha(s)), \ \dot{T}(s) = -1, \ X(0) = x, \ T(0) = t,$$ and the cost functional is: $$J(x,t,lpha)=\int_0^t f(X(s),lpha(s))ds+h(X(t)),$$ where $h \in \mathrm{BC}(\mathbb{R}^n)$. A kind of the Dirichlet problem: au=t. The value function is now: (2) $$V(x,t) = \inf_{\alpha \in \mathcal{C}} J(x,t,\alpha).$$ #### Theorem 1 Assume that f, g satisfy the Lipschitz condition as before and that $h \in \mathrm{BC}(\mathbb{R}^n)$. Then, - for any $0 < T < \infty$, the value function V, given by (2), is bounded and continuous on $\mathbb{R}^n \times [0,T]$. - $\mathbf{v} = \mathbf{V}$ is a (viscosity) solution of the Cauchy problem $$(3) u_t + H(x, D_x u) = 0 \text{in } \mathbb{R}^n \times (0, \infty),$$ $$(4) u(\cdot,0)=h \text{on } \mathbb{R}^n,$$ where $$H(x,p) = \max_{c \in \mathbb{C}} (-g(x,c) \cdot p - f(x,c))$$. This can be regarded as an existence result for the Cauchy problem (3) - (4). Here h is the *initial data*. We have a comparison theorem which covers the above Cauchy problem, and the consequence is that $oldsymbol{V}$ is a unique solution of (3)-(4). Let H be a (general) continuous function on $\mathbb{R}^n imes [0,\infty) imes \mathbb{R}^n$ such that for some constant C>0, $$|H(x,t,p) - H(x,t,q)| \le C|p-q|, \ |H(x,t,p) - H(y,s,p)| \le C(|x-y| + |t-s|)(|p| + 1).$$ Let $0 < T \leq \infty$. Consider the HJ equation (5) $$u_t + H(x, t, D_x u) = 0 \quad \text{in } \mathbb{R}^n \times [0, T).$$ #### Theorem 2 Under the above assumptions on H, let $v,w\in \mathrm{BC}(\mathbb{R}^n\times [0,T))$ be, respectively, a sub and supersolution of (5). Assume moreover that $v(x,0)\leq w(x,0)$ for all $x\in \mathbb{R}^n$. Then, $v\leq w$ in $\mathbb{R}^n\times [0,T)$. Proof. - 1) Enough to show that for any 0 < S < T, $v \le w$ on $\mathbb{R}^n \times [0, S)$. Fix any S > 0. - 2) Fix any $\varepsilon>0$. Set $v_{\varepsilon}(x,t)=v(x,t)-\varepsilon\langle x\rangle$, where $\langle x\rangle=(|x|^2+1)^{1/2}$. Enough to show that $v_{\varepsilon}\leq w$ on $\mathbb{R}^n\times[0,S)$. Note that $$v_{\varepsilon,t} + H(x,t,D_x v_{\varepsilon}) \le v_t + H(x,t,D_x v) + C\varepsilon.$$ Replace $v_arepsilon$ by $v_arepsilon(x,t)=v(x,t)-\delta\langle x angle-Carepsilon t$, and note that $$v_{\varepsilon,t} + H(x,t,D_xv_{\varepsilon}) \le v_t - C\varepsilon + H(x,t,D_xv) + C\varepsilon \le 0.$$ Replace again $v_{arepsilon}$ by $v(x,t)-arepsilon\langle x angle-Carepsilon t- rac{arepsilon}{S-t}$, and note that $$v_{\varepsilon,t} + H(x,t,Dv_{\varepsilon}) \leq v_t - \frac{\varepsilon}{(S-t)^2} - C\varepsilon + H(x,t,Dv) + C\varepsilon \leq -\eta,$$ where $\eta = \varepsilon S^{-2}$. Enough to show that $v_{\varepsilon} \leq w$ on $\mathbb{R}^n \times [0, S)$. page:3.5 5) We argue by contradiction: suppose that $\sup(v_{arepsilon}-w)>0$ and will get a contradiction. Since $$\lim_{|x| o \infty} (v_{arepsilon} - w)(x,t) = -\infty$$ uniformly in $t,$ $\lim_{t o S^-} (v_{arepsilon} - w)(x,t) = -\infty$ uniformly in $x,$ $(v_{arepsilon} - w)(x,0) < 0$ for all $x \in \mathbb{R}^n,$ $\exists R > 0, \delta > 0$ such that $(x_{arepsilon} - w)(x,t) < 0$ for all $(x,t) \in (\mathbb{R}^n \times [0,S)) \setminus (R_D \times (\delta,S))$ $(v_arepsilon-w)(x,t)< 0 \;\; ext{for all}\; (x,t)\in (\mathbb{R}^n imes [0,S))ackslash ig(B_R imes (\delta,S-\delta)ig).$ In particular, $$\max_{\overline{B}_R imes [\delta, S - \delta]} (v_arepsilon - w) = \max_{B_R imes (\delta, S - \delta)} (v_arepsilon - w) > 0.$$ 6) If $w \in C^1$, then, at any maximum point of $v_{arepsilon} - w$, $$w_t + H(x, t, Dw) \le -\eta,$$ $w_t + H(x, t, Dw) \ge 0,$ which yields a contradiction. In the general case, we use the doubling variable method, to obtain a contradiction. $$egin{aligned} \Phi_k(x,t,y,s) &:= v_{arepsilon}(x,t) - w(y,s) - k(|x-y|^2 + |t-s|^2). \ (x_k,t_k,y_k,s_k) ext{ a max point of } \Phi_k. \ &\lim_{k o \infty} (x_k,t_k,y_k,s_k) = (x_0,x_0,t_0,t_0), \ (v_{arepsilon} - w)(x_0,t_0) = \max(v_{arepsilon} - w), \ &\lim_{k o \infty} k(|x_k-y_k|^2 + |t_k-s_k|^2) = 0, \ &2(t_k-s_k) + H(x_k,t_k,2k(x_k-y_k)) \leq -\eta, \ &2(t_k-s_k) + H(y_k,s_k,2k(x_k-y_k)) \geq 0. \ &-\eta \geq H(x_k,t_k,\ldots) - H(y_k,s_k,\ldots) \ &\geq -C(|x_k-y_k| + |t_k-s_k|)(2k|x_k-y_k| + 1) \to 0 \ &(k o \infty). \end{aligned}$$ # EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY SOLUTIONS III Stability: Well-posedness (Hadamard) = existence, uniqueness, stability. Consider the general first-oder PDE (1) $$F(x, Du, u) = 0 \quad \text{in } \Omega,$$ where $\Omega \subset \mathbb{R}^n$ is an open set and $F \in C(\Omega \times \mathbb{R}^n \times \mathbb{R})$. #### Theorem 1 Let $\{u_k\}$ be a sequence of continuous functions on Ω converging to a function u in $C(\Omega)$. If every u_k is a (viscosity) subsolution (resp., supersolution, solution) of (1), then so is the function u. PROOF. Only the subsolution case. Let $\phi \in C^1(\Omega)$ and assume that $\max(u - \phi) = (u - \phi)(\hat{x})$. By adding the function $|x - \hat{x}|^2$ to ϕ (notice that $D|x - \hat{x}|^2 = 0$ at $x = \hat{x}$), we may assume that \max is a strict \max . Choose $0 < r \ll 1$ so that $\overline{B}_r(\hat{x}) \subset \Omega$. Let x_k be a maximum point of $(u_k - \phi)|_{\overline{B}_r(\hat{x})}$. Because of the uniform convergence on $\overline{B}_r(\hat{x})$ and the strict \max , $$\lim_k x_k = \hat{x}.$$ We may assume that $x_k \in B_r(\hat{x})$ (interior point). Since u_k is a subsolution, we have $$F(x_k, D\phi(x_k), u_k(x_k)) \leq 0.$$ Sending $k o \infty$ yields $$F(\hat{x}, D\phi(\hat{x}), u(\hat{x})) \leq 0.$$ page:4.2 The following is a straightforward generalization of the above theorem. #### Theorem 2 Let $\{u_k\}$ be a sequence of continuous functions on Ω converging to a fucntion u in $C(\Omega)$. Let $\{F_k\}$ be a sequence of continuous functions on $\Omega \times \mathbb{R}^n \times \mathbb{R}$ converging to a function F in $C(\Omega \times \mathbb{R}^n \times \mathbb{R})$. If each u_k is a (viscosity) subsolution (resp., supersolution, solution) of $F_k(x,Du,u)=0$ in Ω , then u is a (viscosity) subsolution (resp., supersolution, solution) of F(x,Du,u)=0 in Ω , Let $v,w\in C(\Omega)$ be subsolutions of (1) and consider the function $v\vee w=\max\{v,w\}$. This function $v\vee w$ is also a subsolution of (1). Let \mathcal{F} be a family of subsolutions of (1). In general, $$w(x) := \sup\{v(x) : v \in \mathcal{F}\}$$ does not define a continuous function on Ω . w(x) can be $+\infty$. Given a function f on Ω which is locally bounded (above), we define the upper semicontinuous envelope f^* by $$egin{aligned} f^*(x) &:= \inf\{g(x): g \in C(\Omega), f \leq g \ \ ext{on} \ \Omega\} \ &= \lim_{r ightarrow 0^+} \sup\{f(y): |y-x| < r\}. \end{aligned}$$ Similarly, the lower semicontinuous envelope f_st of f is defined by $$f_*(x) := \sup\{g(x): g \in C(\Omega), f \geq g \text{ on } \Omega\}$$ $$= \lim_{r o 0^+} \inf\{f(y): |y-x| < r\}.$$ It follows $$f^* \in \mathrm{USC}(\Omega), \quad f_* \in \mathrm{LSC}(\Omega), \quad f_* < f < f^*.$$ #### Definition 1 Let $u:\Omega\to\mathbb{R}$ be a locally bounded function. We call u a (viscosity) subsolution (resp., supersolution) of (1) if u^* (resp., u_*) satisfies the requirement of being a subsolution (resp., supersolution) of (1). We call u a solution if it is both a subsolution and a supersolution of (1). #### Theorem 3 Let \mathcal{F} be a family of subsolutions of (1). Set $$u(x) = \sup\{v(x) : v \in \mathcal{F}\}$$ for $x \in \Omega$. Assume that u is locally bounded in Ω . Then u is a subsolution of (1). - An assertion parallel to the above for supersolutions holds. - If u is a subsolution of (1), then v = -u is a supersolution of -F(x, -Dv, -v) = 0 in Ω , and vice versa. #### PICTORIAL PROOF: #### Theorem 4 Let $\{v_k\}_{k\in\mathbb{N}}\subset \mathrm{USC}(\Omega)$ and locally uniformly bounded in Ω . Let v_k be a subsolution of (1) for any k. Assume $v_k>v_{k+1}$ on Ω for all k. Set $$v(x)=\lim_k v_k(x)=\inf_k v_k(x)\quad\text{for }x\in\Omega.$$ Then, v is a subsolution of (1). $$egin{aligned} \phi(\hat{x}) &= u^*(\hat{x}), \ \phi(x) &\geq u^*(x) + |x - \hat{x}|^2, \ (v_k^* - \phi)(x_k) &= \max(v_k^* - \phi), \ v_k^*(\hat{x}) &> u^*(\hat{x}) - rac{1}{k}, \ v_k^* &\leq u^*. \ (v_k^* - \phi)(x_k) &\leq (u^* - \phi)(x_k) &\leq -|x_k - \hat{x}|^2, \ \parallel \ (v_k^* - \phi)(x_k) &\geq (v_k^* - \phi)(\hat{x}) &> - rac{1}{k}. \end{aligned}$$ Hence, $$\lim_k x_k = \hat{x}, \qquad \lim_k v_k^*(x_k) = \phi(\hat{x}) = u^*(\hat{x}).$$ $F(x_k, D\phi(x_k), v_k^*(x_k)) \le 0 \implies F(\hat{x}, D\phi(\hat{x}), u^*(\hat{x})) \le 0.$ #### Correction of the previous slide The choice of v_k (and y_k): $$\lim y_k = \hat{x}, \qquad v_k^*(y_k) > \phi(\hat{x}) - \frac{1}{k}.$$ $$\begin{cases} \phi(\hat{x}) = u^*(\hat{x}), \\ \phi(x) \geq u^*(x) + |x - \hat{x}|^2, \\ (v_k^* - \phi)(x_k) = \max(v_k^* - \phi), \\ v_k^* \leq u^*. \end{cases}$$ $$(v_k^* - \phi)(x_k) \leq (u^* - \phi)(x_k) \leq -|x_k - \hat{x}|^2,$$ $$\parallel$$ $$(v_k^* - \phi)(x_k) \geq (v_k^* - \phi)(y_k) \gtrapprox -\frac{1}{k}.$$ Hence, $$\lim_{k} x_k = \hat{x}, \qquad \lim_{k} v_k^*(x_k) = \phi(\hat{x}) = u^*(\hat{x}).$$ $$F(x_k, D\phi(x_k), v_k^*(x_k)) \le 0 \implies F(\hat{x}, D\phi(\hat{x}), u^*(\hat{x})) \le 0.$$ PROOF. Let $\phi \in C^1(\Omega)$ and
$$\max(v-\phi)=(v-\phi)(\hat{x})=0$$ (a strict max). Then, $\sup(v_k - \phi) \downarrow 0$ as $k \to \infty$. Look at $(v_k - \phi)_+$, which is in $\mathrm{USC}(\Omega)$ and $\downarrow 0$ as $k \to \infty$. Dini's lemma implies that the convergence is locally uniformly on Ω . The situation is now same as in the first stability theorem. ## Theorem 5 (Barles-Perthame, half-relaxed limits) Let $\{v_k\}_{k\in\mathbb{N}}$ be a sequence of functions on Ω , which is locally uniformly bounded in Ω . Let v_k be a subsolution of (1) for any k. Set $$v(x) = \lim_{r o 0^+} \sup\{v_k(y): k > rac{1}{r}, \ |y{-}x| < r\}$$ for $x \in \Omega$. Then, v is a subsolution of (1). PROOF. Let $\Omega=\mathbb{R}^n$. Let r>0. Note that for any $\xi\in B_r(0)$, $x\mapsto v_k(\xi+x)$ is a subsolution of $$\inf_{\eta \in B_r(0)} F(x+\eta, Du(x), u(x)) = 0 \quad \text{in } \Omega.$$ So, $x \mapsto \sup\{v_k(y) : k > \frac{1}{r}, |y - x| < r\}$ is a subsolution of the above HJ equation. The stability under monotone convergence (Theorem 4) completes the proof. ## Theorem 6 (Perron's method) Let f,g be, respectively, a sub and supersolution of (1). Assume $f\in \mathrm{LSC}(\Omega)$ and $g\in \mathrm{USC}(\Omega)$ and that $f\leq g$ in Ω . Set $$u(x)=\sup\{v(x):v\in\mathcal{S}^-,\,f\leq v\leq g\ \text{in }\Omega\}\ \text{for }x\in\Omega,$$ where S^- = the set of all subsolutions of (1). Then u is a solution of (1). PROOF. Since, by definition, \boldsymbol{u} is a pointwise sup of a family of subsolutions, it is a subsolution. Let $\phi \in C^1$ and $\min(u_* - \phi) = (u_* - \phi)(\hat{x})$ for some $\hat{x} \in \Omega$. Assume that $\min = a$ strict min. Two cases: Case 1: $\phi(\hat{x}) = g_*(\hat{x})$. Then, $\phi \leq u_* \leq g_*$ in Ω . ϕ touches g_* from below at \hat{x} . Since $g \in \mathcal{S}^+$, where $\mathcal{S}^+ =$ the set of all supersolultions of (1), we find that $F(\hat{x}, D\phi(\hat{x}), g_*(\hat{x})) \geq 0$ $(F(\hat{x}, D\phi(\hat{x}), u_*(\hat{x})) \geq 0)$. Case 2: $\phi(\hat{x}) < g_*(\hat{x})$. Suppose by contradiction that $F(\hat{x}, D\phi(\hat{x}), \phi(\hat{x})) < 0$. The function $\max\{u, \phi + \varepsilon\}$ $(0 < \varepsilon \ll 1)$ is against the maximality of u. Let ${\cal H}$ be a Hamiltonian satisfying the Lipschitz condition: for some constant C>0, $$|H(x,t,p)-H(x,t,q)| \leq C|p-q|, \ |H(x,t,p)-H(y,s,p)| \leq C(|x-y|+|t-s|)(|p|+1).$$ #### Theorem 7 Let H=H(x,p) satisfy the above Lipschitz condition as well as the boundedness: $|H(x,0)| \leq C$. Let $\lambda > 0$. There exists a solution $u \in \mathrm{BC}(\mathbb{R}^n)$ of (2) $$\lambda u + H(x, Du) = 0 \text{ in } \mathbb{R}^n.$$ PROOF. Set $f(x) = -C/\lambda$, $g(x) = C/\lambda$. Then f, g are, respectively, a sub and super solution of (2). Set $$u(x) = \sup\{v(x) : v \in \mathcal{S}^-, f \le v \le g \text{ in } \mathbb{R}^n\},$$ where S^- =the set of all subsolutions of (2). By Perron's method, u is a solution of (2). By the comparison theorem, applied to a subsolution u^* and a supersolution u_* , we find that $u^* \leq u_*$ in \mathbb{R}^n , from which $u \leq u^* \leq u_* \leq u$ in \mathbb{R}^n . That is, $u = u^* = u_*$ and hence, $u \in C(\mathbb{R}^n)$. #### Theorem 8 Let H satisfy the above Lipschitz condition and the boundedness: $|H(x,t,0)| \leq C$. Let $h \in \mathrm{BC}(\mathbb{R}^n)$. Then there exists a solution $u \in C(\mathbb{R}^n \times [0,\infty))$, bounded on $\mathbb{R}^n \times [0,T]$ for any T>0, of (3) $$\begin{cases} u_t + H(x,t,Du) = 0 & \text{in } \mathbb{R}^n \times (0,\infty), \\ u(\cdot,0) = h & \text{on } \mathbb{R}^n. \end{cases}$$ PROOF. We may assume that $|h(x)| \leq C$. Set $$g_0(x,t) = C(1+t)$$ and $f_0 = -g_0$, and note that f,g are, resp., a sub and super solutions of $u_t+H=0$. Want to have a sub and super solutions f,g such that $f(\cdot,0)=g(\cdot,0)=h$. Fix any $y\in\mathbb{R}^n,\, \varepsilon>0$ and choose a constant $A(y,\varepsilon)>0$ so that $$|h(x) - h(y)| < \varepsilon + A(y, \varepsilon)|x - y| \ \forall x.$$ Note: $$|H(x,t,p)| \le |H(x,t,0)| + C|p| \le C(1+|p|).$$ and choose a constant B(y,arepsilon)>0 so that if $|p|\leq A(y,arepsilon)$, $$|H(x,t,p)| \leq B(y,\varepsilon).$$ Set $$g_{y,\varepsilon}(x,t) = h(y) + \varepsilon + A(y,\varepsilon)|x-y| + B(y,\varepsilon)t,$$ $f_{y,\varepsilon}(x,t) = h(y) - (\varepsilon + A(y,\varepsilon)|x-y| + B(y,\varepsilon)t),$ and note that $f_{y,\varepsilon},\ g_{y,\varepsilon}$ are, resp., a sub and super solution of our HJ equation. Moreover, we have $$egin{aligned} f_{y,arepsilon}(x,t) & \leq h(x) \leq g_{y,arepsilon}(x,t) & orall (x,t), \ |f_{y,arepsilon}(y,0) - h(y)| = |g_{y,arepsilon}(y,0) - h(y)| = arepsilon. \end{aligned}$$ Finally, define $g,f:\mathbb{R}^n imes [0,\infty) o\mathbb{R}$ by $$g(x,t) = g_0(x,t) \wedge \inf_{y,\varepsilon} g_{y,\varepsilon}(x,t),$$ $f(x,t) = f_0(x,t) \vee \sup f_{y,\varepsilon}(x,t).$ Then, $$g \in \mathcal{S}^+, \quad f \in \mathcal{S}^-, \quad g \in \mathrm{USC}, \quad f \in \mathrm{LSC},$$ f,g are bounded on $\mathbb{R}^n \times [0,T] \quad \forall T < \infty,$ $f(x,t) \leq h(x) \leq g(x,t) \; \forall (x,t), \quad f(\cdot,0) = h = g(\cdot,0).$ Perron's method yields a solution u such that $f \leq u \leq g$, which implies that $u^*(\cdot,0) = u_*(\cdot,0) = h$ on \mathbb{R}^n . The comparison theorem shows that $u^* = u_* = u$ and $u \in C$. # HOMOGENIZATION OF HAMILTON-JACOBI EQUATIONS I (Lions-Papanicolaou-Varadhan) Consider the HJ equation $$(1) \ u_t+|Du|^2-f(x/\varepsilon)=0 \ \ \text{in } \mathbb{R}^n\times(0,\infty), \text{ with } \varepsilon>0,$$ together with initial condition (2) $$u(x,0) = h(x)$$ for $x \in \mathbb{R}^n$. The Hamiltonian H is: $$H(x,p) = |p|^2 - f(x),$$ where $f \in C(\mathbb{T}^n)$ is assumed, and our HJ equation reads $$u_t + H(x/\varepsilon, D_x u) = 0.$$ The main question here is: If u_{ε} is a solution of the above HJ equation, what happens with u_{ε} as $\varepsilon \to 0^+$. #### Formal expansion: Suppose that we have an expansion $$u_{\varepsilon}(x,t) = u_0(x,t) + \varepsilon u_1(x/\varepsilon,t) + \varepsilon^2 u_2(x/\varepsilon,t) + \cdots$$ Insert this into the HJ equation, to get $$0 = u_{0,t}(x,t) + \varepsilon u_{1,t}(x/\varepsilon,t) + O(\varepsilon^2) + H(x/\varepsilon, D_x u_0(x,t) + D_x u_1(x/\varepsilon,t) + O(\varepsilon)).$$ Because of a high oscillation when $\varepsilon \to 0+$, one may look at x/ε as if an independent variable y. $$\leftarrow$$ page:5_2 \rightarrow Then, in the limit $arepsilon o 0^+$, the above asymptotic identity suggests that for some u_0,u_1 , $$u_arepsilon(x,t) o u_0(x,t)\quad ext{as }arepsilon o 0^+,$$ $$u_{0,t}+H(y,D_xu_0(x,t)+D_yu_1(y,t))=0\quad ext{for all }x,y,t.$$ If we have a solution u_0,u_1 of the above identity, we are in a good shape to conclude the above convergence. Thus, the question is how to find u_0,u_1 which satisfy $$u_{0,t} + H(y, D_x u_0(x,t) + D_y u_1(y,t)) = 0$$ for all x, y, t . If we can write $$\overline{H}(p) = H(y, p + D_y u_1(y, t)),$$ then the above equation can be stated as $$u_{0,t} + \overline{H}(D_x u_0) = 0.$$ page:5.3 Here a big question is when we can write $$\overline{H}(p) = H(y, p + D_y u_1(y, t)).$$ We consider this as a solvability problem: given $p \in \mathbb{R}^n$, find $(c,v) \in \mathbb{R} \times C(\mathbb{T}^n)$ such that (3) $$H(y, p + Dv(y)) = c$$ in \mathbb{T}^n . (In fact, a crucial point is not the periodicity of v, but the sublinear growth of v.) Notice that the correspondence: $(c,v)\leftrightarrow (\overline{H}(p),u_1)$. The problem of solving a solution (c, v) is called a *cell problem*. (Aslo, ergodic problem, additive eigenvalue problem, weak KAM problem) #### Example 1 Consider the case n=1 and $f(x)=-\cos(2\pi x)$. The case p=0: $$|v_x(x)|^2 = c - \cos(2\pi x).$$ For the solvability, RHS $\geq 0 \iff c \geq 1$. When $oldsymbol{v}$ is a solution of (3') $$H(y, p + Dv(y)) = c \text{ in } \mathbb{R}^n,$$ then $w(y) = p \cdot y + v(y)$ is a solution of $$H(y,Dw(y))=c$$ in \mathbb{R}^n . The sublinear growth of the solution \boldsymbol{v} identifies the \boldsymbol{p} term in the equation. If c>1, then RHS $\geq c-1>0$, which implies NO periodic (viscosity) solution: any function is tested from below at its minimum point, if any, by constant functions. Thus, c=1. If c=1, then $$|v_x(x)| = \sqrt{1 - \cos(2\pi x)} = \sqrt{2}|\sin(\pi x)|.$$ Integrate, to get $$v(x)=\operatorname{constant}\pm rac{\sqrt{2}}{\pi}\cos(\pi x) \quad ext{for } 0\leq x\leq 1.$$ The periodic function $$v(x) = - rac{\sqrt{2}}{\pi}\cos(\pi x) \quad ext{for } - rac{1}{2} \leq x \leq rac{1}{2},$$ with period 1, is a viscosity solution for p=0 and c=1. For general $p \in \mathbb{R}$, we have to solve $$|p+v_x|=\sqrt{c-\cos(2\pi x)},$$ with c > 1, which reads $$v_x = -p \pm \sqrt{c - \cos(2\pi x)}.$$ Let c=1 and $$v(x) := -px + \frac{\sqrt{2}}{\pi} (1 - \cos(\pi x)).$$ Note that v(0)=0 and solve $$v(-1)=0,$$ to find that $$-p = rac{2\sqrt{2}}{\pi}.$$ So, as far as $|p| \leq rac{2\sqrt{2}}{\pi}$, the problem $$|p + v_x|^2 = 1 - \cos(2\pi x)$$ has a periodic viscosity solultion. Moreover, if $|p|> rac{2\sqrt{2}}{\pi}$, $$|p + v_x|^2 = c - \cos(2\pi x)$$ has a periodic solution v only when c>1. We will know that if $oldsymbol{v}$ is a (viscosity) solution of $$|p+v_x|=\sqrt{2}|\sin\pi x|,$$ then v is Lipschitz continuous and satisfies the equation in the a.e. If it is periodic with period 1, then $$\int_0^1 |p+v_x| dx egin{cases} = \sqrt{2} \int_0^1 \sin \pi x \, dx = rac{2\sqrt{2}}{\pi}, \ \geq \left| \int_0^1 (p+v_x) dx ight| = |p|. \end{cases}$$ page:5.7 As a function of p, $c=\overline{H}(p)$ and, in the above case of f, $$\overline{H}(p) egin{cases} = 1 & ext{if } |p| \leq rac{2\sqrt{2}}{\pi}, \ > 1 & ext{otherwise} \ . \end{cases}$$ In homogenization theory, \overline{H} is called the *effective Hamiltonian*. ### Some properties of \overline{H} : -
$ightharpoonup \overline{H}$ is a continuous function on \mathbb{R} . - $ightharpoonup \overline{H}$ is a convex function on \mathbb{R} . - lacksquare \overline{H} is coercive on $\mathbb R$. That is, $\lim_{|p| o \infty} \overline{H}(p) = \infty$. #### Theorem 1 Assume that $h \in \mathrm{BUC}(\mathbb{R}^n)$. Then there exists a unique solution u_{ε} on $\mathbb{R}^n \times [0,\infty)$ of the Cauchy problem (1) – (2) such that $u_{\varepsilon} \in \mathrm{BUC}(\mathbb{R}^n \times [0,T])$ for every T>0. Also, there exists a unique solution u on $\mathbb{R}^n \times [0,\infty)$ of $$\begin{cases} u_t + \overline{H}(D_x u) = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(\cdot, 0) = h & \text{on } \mathbb{R}^n, \end{cases}$$ such that $u \in \mathrm{BUC}(\mathbb{R}^n \times [0,T))$ for every T>0. Furthermore, as $\varepsilon \to 0^+$, $$u_{arepsilon}(x,t) o u(x,t)$$ locally uniformly on $\mathbb{R}^n imes [0,\infty)$. page:5.9 - The main steps in the proof of the convergence: - Show that $\{u_{\varepsilon}\}_{{\varepsilon}\in(0,1)}$ is unif-bounded and equi-continuous on $\mathbb{R}^n imes[0,T]$ orall T>0. - $\mathbf{v} := \lim_{j \to \infty} u_{\varepsilon_j}$ for some $\varepsilon_j \to 0^+$, where the convergence is locally uniform on $\mathbb{R}^n \times [0, \infty)$. - ightharpoonup Show that v = u. - Method of purterbed test functions (Evans). To show the last step of the above list, we need to prove that v is a solution of $v_t + \overline{H}(D_x v) = 0$ in $\mathbb{R}^n \times (0, \infty)$. Let $\psi \in C^1(\mathbb{R}^n \times (0,\infty))$ and assume that $v-\psi$ takes a strict maximum at (\hat{x},\hat{t}) . Fix a compact neighborhood $K \subset \mathbb{R}^n \times (0,\infty)$ of (\hat{x},\hat{t}) . Classical argument: Let $(x_{arepsilon},t_{arepsilon})\in K$ be a maximum point of $u_{arepsilon}-\psi$ on K. We have $$\lim_{arepsilon o 0^+} (x_arepsilon, t_arepsilon) = (\hat{x}, \hat{t}).$$ For sufficiently small $\varepsilon>0$, we have $(x_{\varepsilon},t_{\varepsilon})\in\operatorname{int} K$ and $$\psi_t(x_{\varepsilon}, t_{\varepsilon}) + H(x_{\varepsilon}/\varepsilon, D_x \psi(x_{\varepsilon}, t_{\varepsilon})) \le 0.$$ This way, we can show that v is a subsolultion of $v_t + \min_y H(y, D_x v) = 0$ and a supersolution of $v_t + \max_y H(y, D_x v) = 0$. This is not enough to conclude that v = u. The formal exapansion suggests that $v(x,t) + \varepsilon w(x/\varepsilon)$ should be a good approximation of u_{ε} . Set $\hat{p} = D_x \psi(\hat{x}, \hat{t})$. Let $w \in C(\mathbb{T}^n)$ be a solution of $$H(y,\hat{p}+D_yw(y))=\overline{H}(\hat{p}) \quad ext{for } y\in\mathbb{T}^n.$$ Temporarily, we assume that $w \in C^1$ and consider the function $$u_{\varepsilon}(x,t) - \psi(x,t) - \varepsilon w(x/\varepsilon).$$ Let $(x_{arepsilon},t_{arepsilon})\in K$ be a maximum point of this function. Then $$\lim_{arepsilon o 0^+} (x_{arepsilon}, t_{arepsilon}) = (\hat{x}, \hat{t}),$$ and if $\varepsilon>0$ is small enough, $(x_{\varepsilon},t_{\varepsilon})\in\operatorname{int} K$ and $$\psi_t(x_{\varepsilon}, t_{\varepsilon}) + H(x_{\varepsilon}/\varepsilon, D_x \psi(x_{\varepsilon}, t_{\varepsilon}) + Dw(x_{\varepsilon}/\varepsilon)) \le 0.$$ For some $arepsilon_j o 0^+$, we may assume that for some $\hat{y}\in\mathbb{T}^n$, $$\lim_{j o\infty}x_{arepsilon_j}/arepsilon_j=\hat{y}\pmod{\mathbb{Z}^n}$$ Sending $\varepsilon_j \to 0$ + yields $$\psi_t(\hat{x},\hat{t}) + H(\hat{y},D_x\psi(\hat{x},\hat{t}) + Dw(\hat{y})) \leq 0,$$ while we had $$H(y,D_x\psi(\hat x,\hat t)+D_yw(y))=\overline{H}(D_x\phi(\hat x,\hat t))$$ for $y\in\mathbb T^n.$ Thus, $$\psi_t(\hat{x},\hat{t}) + \overline{H}(D_x\psi(\hat{x},\hat{t})) \le 0,$$ proving that v is a subsolution of $v_t + \overline{H} = 0$. In general, we have only the Lipschitz regularity of \boldsymbol{w} and we need to use the doubling variable argument. Similarly, we conclude that v is a supersolution of $v_t + \overline{H} = 0$. Thus, v = u. page:5.12 # Homogenization of Hamilton-Jacobi equations II Consider the equation (1) $$u_t + H(x, x/\varepsilon, D_x u) = 0$$ in $\mathbb{R}^n \times (0, \infty)$, where - $ightharpoonup H \in C(\mathbb{R}^n imes \mathbb{T}^n imes \mathbb{R}^n).$ - ▶ H(x, y, p) is bounded and uniformly continuous on $\mathbb{R}^n \times \mathbb{T}^n \times B_R$ for every R > 0. - H is coercive, i.e., $$\lim_{|p| o \infty} H(x,y,p) = \infty$$ uniformly in (x,y) . The cell problem is: given $(x,p)\in\mathbb{R}^{2n}$, we solve $(c,w)\in\mathbb{R} imes C(\mathbb{T}^n)$ such that (2) $$H(x, y, p + D_y w(y)) = c$$ for $y \in \mathbb{T}^n$. #### Theorem 1 Under the above hypotheses on H, there exists a solution (c,w) for each $(x,p)\in\mathbb{R}^{2n}$. The constant c is unique and defines a function $\overline{H}(x,p)$. That is, $\overline{H}(x,p)=c$. A standard proof goes this way: consider the discounted problem - (3) $\lambda w + H(x,y,p+D_yw) = 0$ in $\mathbb{T}^n,$ with $\lambda > 0,$ and send $\lambda o 0^+.$ - 1) Choose C>0 so large that $|H(x,y,p)| \leq C$ and observe that $\lambda^{-1}C$ (resp. $-\lambda^{-1}C$) is a super (resp. sub) solution of (3). Perron's method yields a solution w_{λ} of (3). - 2) By comparison, $|w_{\lambda}| \leq \lambda^{-1}C$ (and hence, $\lambda |w_{\lambda}| \leq C$) on \mathbb{T}^n . - 3) By the coercivity, choose L>0 so that if |q|>L, then H(x,y,p+q)>C for all (x,y). Since $H(x,y,p+D_yw_\lambda)\leq -\lambda w_\lambda\leq C$, we have $|Dw_\lambda|\leq L$. This implies that w_λ is Lipschitz continuous with Lipschitz bound L. - 4) Fix $y_0\in\mathbb{T}^n$. the family $\{w_\lambda-w_\lambda(y_0)\}_{\lambda>0}$ is unif-bounded and equi-Lipschitz. We may choose $\lambda_j\to 0^+$ so that, as $\lambda_j\to 0^+$, $$egin{aligned} \lambda_j w_{\lambda_j}(y_0) & ightarrow -c \; (\exists c \in \mathbb{R}), \ w_{\lambda_j} - w_{\lambda_j}(y_0) & ightarrow w \; (\exists w \in \mathrm{Lip}(\mathbb{T}^n)). \end{aligned}$$ To repeat, as $\lambda_j ightarrow 0^+$, $$egin{aligned} \lambda_j w_{\lambda_j}(y_0) & ightarrow -c \ (\exists c \in \mathbb{R}), \ \overline{w}_j := w_{\lambda_j} - w_{\lambda_j}(y_0) ightarrow w \ (\exists w \in \mathrm{Lip}(\mathbb{T}^n)). \end{aligned}$$ Then: $$\lambda_j \overline{w}_j + H(x, y, p + D_y \overline{w}_j) = -\lambda_j w_{\lambda_j}(y_0).$$ In the limit $k \to \infty$, $$H(x,y,p+D_yw)=c$$ for $y\in\mathbb{T}^n$. page:6.3 We have used the following regularity results. #### Theorem 2 Let $\Omega\subset\mathbb{R}^n$ be open and convex. Let $F\in C(\Omega imes\mathbb{R}^n)$ satisfy the condition that $\exists R>0$ such that $$F(x,p) > 0$$ if $|p| > R$. If $v\in \mathrm{USC}(\Omega)$ is a subsolution of F(x,Du)=0 in Ω , then $|v(x)-v(y)|\leq R|x-y|$ for all $x,y\in\Omega$. PROOF. Fix $z\in\Omega$ and r>0 so that $B_{5r}(z)\subset\Omega$. We claim that $$|v(x)-v(y)| \leq R|x-y| \ \ \forall x,y \in B_r(z).$$ This is enough to conclude the proof. page:6.4 Let $g:[0,4r)\to [0,\infty)$ be a smooth function such that g(t)=t for $0\le t\le 2r$, $g'(t)\ge 1$ for all $0\le t< 4r$, and $\lim_{t\to 4r^-}g(t)=\infty$. For each fixed $y\in B_r(z)$ and $\varepsilon>0$, consider the function $\phi:x\mapsto v(y)+(R+\varepsilon)g(|x-y|)$ on $B_{4r}(y)\subset B_{5r}(z)$. If $v(x)\leq \phi(x)$ on $B_{4r}(y)$, then $v(x)-v(y)\leq (R+\varepsilon)|x-y|$ for all $x\in B_r(z)\subset B_{2r}(y)$. page:6.5 Otherwise, The slope of $$\phi \geq R + \varepsilon$$, $F(x,p) > 0$ if $|p| > R$. Hence, $$F(x, D\phi(x)) > 0.$$ # Theorem 3 Let $F \in C(\mathbb{R}^n \times \mathbb{R}^n)$ and a < b. Assume that $F \in \mathrm{BUC}(\mathbb{R}^n \times B_R)$ for any R > 0. Let $v, w \in \mathrm{B}(\mathbb{R}^n)$ be a subsolution of F(x, Du) = a in \mathbb{R}^n and a supersolution of F(x, Du) = b in \mathbb{R}^n , respectively. Assume that either v or w is Lipschitz continuous in \mathbb{R}^n . Then, v < w in \mathbb{R}^n . PROOF. We consider only the case when $v \in \mathbf{Lip}$. Choose $\varepsilon > 0$ be such that $a + \varepsilon < b$. Choose $\delta > 0$ small enough so that $v_{\delta}(x) := v(x) - \delta \langle x \rangle$ is a subsolution of $F(x, Du) = a + \varepsilon$ in \mathbb{R}^n . This is possible since $v \in \mathbf{Lip}$ and $F \in \mathbf{UC}(\mathbb{R}^n \times B_R)$ for any R > 0. We only need to prove that $v_\delta \leq w_*$. By contradiction, we suppose that $\sup(v_\delta-w_*)>0$. We fix r>0 large enough so that $$v_\delta - w_* < 0$$ on $\mathbb{R}^n \setminus B_r$. Consider the function $$\Phi_k(x,y)=v_\delta(x)-w_*(y)-k|x-y|^2$$ on $\overline{B}_r imes\overline{B}_r$. Let (x_k,y_k) be a maximum point of Φ_k . Let $L>0$ be a Lipschitz bound of the function v_δ and note that $$\Phi_k(x_k, y_k) \ge \Phi_k(y_k, y_k),$$ which reads $$|k|x_k - y_k|^2 \le v_\delta(x_k) - v_\delta(y_k) \le L|x_k - y_k|.$$ This yields $$k|x_k-y_k| \leq L$$. With this estimate in hand, we go as in the proof of the previous comparison theorems, to find for sufficient large k, $$F(x_k,2k(x_k-y_k)) \leq a+arepsilon \;\;\;\; ext{ and } \;\;\; F(y_k,2k(x_k-y_k)) \geq b,$$ and, along a subsequence, $$\lim(x_k,y_k)=(x_0,x_0)$$ for some $x_0\in B_r$. We may assume that, after taking a further subsequence, $$\lim 2k(x_k-y_k)=p_0 \quad ext{for some } p_0\in\mathbb{R}^n.$$ Consequently, $$F(x_0, p_0) \le a + \varepsilon < b \le F(x_0, p_0).$$ This is a contradiction. page:6.8 ### Recall Theorem 1: ### Theorem 1 Under the hypotheses above on H, there exists a solution (c,w), for each $(x,p)\in\mathbb{R}^{2n}$, of (2) $$H(x, y, p + D_y w(y)) = c$$ for $y \in \mathbb{T}^n$. The constant c is unique and defines a function $\overline{H}(x,p)$. That is, $\overline{H}(x,p)=c$. PROOF OF THE UNIQUENESS. Let (c, w) and (d, v) be solutions of (2). If c < d, then, by Theorem 3 (the comparison theorem), $$w+C \leq v \quad \text{in } \mathbb{T}^n,$$ where C is an arbitrary constant, which is a contradiction. Hence, we
have c > d. By symmetry, we have d > c. page:6.9 ### Theorem 5 Under the above hypotheses on H, the effective Hamiltonian \overline{H} has the properties: - ▶ $\overline{H} \in \mathrm{BUC}(\mathbb{R}^n \times B_R)$ for every R > 0. - $ightharpoonup \overline{H}$ is coercive, i.e., $$\lim_{|p| o \infty} \overline{H}(x,p) = \infty$$ uniformly in $x \in \mathbb{R}^n$. 1) We have $$\overline{H}(x,p)=\min\{c\in\mathbb{R}:\exists z\in \mathrm{Lip}(\mathbb{T}^n) ext{ s.t. } \ H(x,y,p+Dz)\leq c ext{ in } \mathbb{T}^n\}.$$ Let $w\in \operatorname{Lip}(\mathbb{T}^n)$ be a solution of $H(x,y,p+Dw(y))=\overline{H}(x,p)$ in \mathbb{T}^n . If $c\geq \overline{H}(x,p)$, then $H(x,y,p+Dw(y))\leq c$ (subsolution) in \mathbb{T}^n . If $z\in \operatorname{Lip}(\mathbb{T}^n)$ be a subsolution of $H(x,y,p+Dz(y))\leq c$ in \mathbb{T}^n , with $c<\overline{H}(x,p)$, then, by the comparison theorem, $z+C\leq w$ in \mathbb{T}^n for all $C\in\mathbb{R}$, which is impossible. Thus, the formula above is valid. 2) Set $$m_0 := \inf H > -\infty.$$ Then $$\overline{H}(x,p) \geq m_0 \quad ext{for all } (x,p) \in \mathbb{R}^{2n}.$$ (H(x,y,p+Dw(y)) = c, with $c < m_0$, cannot have a solution w.) Fix R>0. Set $$M_R = \sup_{x,y,|p| \le R} H(x,y,p).$$ Note that z(y) = 0 satisfies $$H(x, y, p + Dz(y)) \le M_R$$, if $|p| \le R$ and that $$\overline{H}(x,p) \leq M_R$$ for all $x \in \mathbb{R}^n, \ p \in B_R$. Thus, \overline{H} is bounded on $\mathbb{R}^n imes B_R, \;\; orall R > 0.$ 3) Fix R>0 and let $M_R>0$ be as above. There is L>0 such that $$H(x, y, r) - M_R > 0$$ if $|r| > L$. Fix any $(x,p)\in\mathbb{R}^n imes B_R$. Let w be a solution of $$H(x,y,p+Dw(y))=\overline{H}(x,p)$$ in \mathbb{T}^n . Since $H(x, y, p + Dw(y)) \leq M_R$ (subsolution), the function w is in $\operatorname{Lip}(\mathbb{T}^n)$, with Lipschitz constant $\leq L + |p| \leq L + R$. 4) Set K=2R+L+1 and note that $H\in \mathrm{UC}(\mathbb{R}^{2n} imes B_K)$. $$orall arepsilon > 0, \, \exists \delta \in (0,1)$$ such that for all $(x',p') \in B_\delta(x,p)$, $$H(x',y,p'+Dw(y)) \leq H(x,y,p+Dw(y)) + arepsilon,$$ iah sasuras which assures $$H(x',y,p'+Dw(y)) \leq \overline{H}(x,p)+arepsilon \;\; ext{ for all } (x',p') \in B_{\delta}(x,p),$$ and $$\overline{H}(x',p') \leq \overline{H}(x,p) + \varepsilon$$ for all $(x',p') \in B_{\delta}(x,p)$. Notice that δ can be chosen uniformly in (x, p, w) in the above. Thus, \overline{H} is uniformly continuous on $\mathbb{R}^n \times B_R$, $\forall R > 0$. 5) Let w be a solution of $$H(x,y,p+Dw(y))=\overline{H}(p)$$ in \mathbb{T}^n . w takes a maximum at some $y_0 \in \mathbb{T}^n$, and then $$H(x, y_0, p) \le \overline{H}(x, p).$$ Since H is coercive, this shows that \overline{H} is coercive. ### Theorem 6 Assume in addition that $p\mapsto H(x,y,p)$ is convex. Then $p\mapsto \overline{H}(x,p)$ is convex. PROOF. To check this, let $oldsymbol{v}$ and $oldsymbol{w}$ be solutions of $$H(x,y,p+Dv(y))=\overline{H}(x,p) \quad \text{in } \mathbb{T}^n,$$ $H(x,y,q+Dw(y))=\overline{H}(x,q) \quad \text{in } \mathbb{T}^n.$ page:6.13 Let $heta \in (0,1)$. Assuming that $v,w \in C^1$, we observe that $$egin{split} Hig(x,y, heta(p+Dv(y))+(1- heta)(q+Dw(y))ig) \ &\leq heta H(x,y,p+Dv(y))+(1- heta)H(x,y,q+Dw(y)) \ &\leq heta \overline{H}(x,p)+(1- heta)\overline{H}(x,q). \end{split}$$ In general, we deduce (a.e. subsolution or the doubling variable argument) that $\theta v + (1-\theta)w$ is a subsolution of $$H(x,y,\theta p+(1-\theta)q+Du(y))\leq \theta \overline{H}(p)+(1-\theta)\overline{H}(q) \ \ \text{in} \ \mathbb{T}^n,$$ which proves that $$\overline{H}(x, \theta p + (1 - \theta)q) \le \theta \overline{H}(x, p) + (1 - \theta)\overline{H}(x, q).$$ page:6.14 ### Theorem 7 Assume - ▶ $H \in \mathrm{BC}(\mathbb{R}^n \times B_R)$ for every R > 0; - ▶ *H* is coercive, i.e., $$\lim_{|p|\to\infty} H(x,p) = \infty \quad \text{uniformly in } x;$$ ▶ $h \in \operatorname{Lip} \cap \operatorname{B}(\mathbb{R}^n)$. Then there is a solution $u \in \mathrm{Lip}(\mathbb{R}^n imes [0,\infty))$ of (4) $$\begin{cases} u_t + H(x,D_x u) = 0 & \text{in } \mathbb{R}^n \times (0,\infty), \\ u(\cdot,0) = h & \text{on } \mathbb{R}^n. \end{cases}$$ REMARK. The Lipschitz constant of u is bounded by a constant which depends only on the "structural bounds" for H and the Lipschitz constant of h. $$\sup_{\mathbb{R}^n imes B_R} |H|, \quad \inf_{\mathbb{R}^n imes (\mathbb{R}^n \setminus B_R)} H, \quad ext{with } R > 0.$$ PROOF. Let $C_h>0$ be a Lipschitz bound for h. Set $$C = C_{h,H} := \sup_{|p| \le C_h} |H(x,p)|.$$ Note that f(x,t)=h(x)-Ct and g(x,t)=h(x)+Ct are in \mathcal{S}^- and \mathcal{S}^+ , respectively. Moreover, $f(x,t) \leq h(x) \leq g(x,t)$ and f(x,0) = h(x) = g(x,0) for all (x,t). Perron's method yields a solution u such that $f \leq u_* \leq u \leq u^* \leq g$ on $\mathbb{R}^n \times (0,\infty)$. These inequalities imply $$u(x,0):=\lim_{t o 0^+}u(x,t)=h(x)\quad ext{for all }x\in\mathbb{R}^n.$$ Note: $$u(x,t)=\sup\{v(x,t):v\in\mathcal{S}^-,\,v\leq g\ ext{ on }\mathbb{R}^n imes(0,\infty)\},$$ $u\in\mathrm{USC}(\mathbb{R}^n imes[0,\infty))$, and $u(x,t)=\max\{v(x,t):v\in\mathcal{S}^-,\,v\leq g\ ext{ on }\mathbb{R}^n imes(0,\infty)\}.$ Fix any $\delta > 0$. Note $$(x,t)\mapsto u(x,\delta+t)\in\mathcal{S}^-,\ \leq g(x,t+\delta)=g(x,t)+C\delta.$$ Hence, $$u(x,t) \ge u(x,t+\delta) - C\delta$$ and $u(x, \delta + t) \le u(x, t) + C\delta$. Set $$u^\delta(x,t) = egin{cases} f(x,t) & ext{if } t \in [0,\delta], \ -C\delta + u(x,t-\delta) & ext{if } t > \delta. \end{cases}$$ Observe: $u^\delta \in \mathcal{S}^-$ and $u^\delta \leq g$. Hence, $$u(x, \delta + t) \ge u^{\delta}(x, \delta + t) = u(x, t) - C\delta,$$ and $t\mapsto u(x,t)$ is Lipschitz continuous with Lipschitz bound C. This implies that $|u_t|\leq C$, $u_t\geq |u_t|-2|u_t|\geq |u_t|-2C$, and $$|u_t|+H(x,D_xu)-2C\leq 0$$ in $\mathbb{R}^n imes (0,\infty)$. Since F(x,t,p,q):=|q|+H(x,p)-2C is coercive, u is Lipschitz continuous on $\mathbb{R}^n\times(0,\infty)$. #### Theorem 8 Let $0 < T < \infty$. Assume that $H \in \mathrm{BUC}(\mathbb{R}^n imes (0,T) imes B_R)$ for every R > 0. Consider (5) $$u_t + H(x, t, D_x u) = 0 \quad \text{in } \mathbb{R}^n \times (0, T).$$ Let v, w be a sub and super-solution of (5). Assume that v, w are bounded, $v, -w \in \mathrm{USC}$, and $v(x, 0) \leq w(x, 0)$ for all $x \in \mathbb{R}^n$. Assume moreover either v or w is Lipschitz continuous. Then, $v \leq w$ on $\mathbb{R}^n \times (0, T)$. REMARK. The Lipshictz regularity assumption above can be replaced by the existence of a Lipschitz continuous solution u such that $v(x,0) \leq u(x,0) \leq w(x,0)$. $\ensuremath{\mathrm{REMARK}}.$ In the doubling variable argument, we consider the function $$\Phi_k(x,t,y,s)=v(x,t)-w(y,s)-k[|x-y|^2+(t-s)^2]$$ and its maximum point (x_k,t_k,y_k,s_k) . If $v\in ext{Lip}$, then $\Phi_k(x_k,t_k,y_k,s_k)>\Phi_k(y_k,s_k,y_k,s_k)$ yields $$k[|x_k - y_k|^2 + (t_k - s_k)^2] \le v(x_k, t_k) - v(y_k, s_k)$$ $$\le C(|x_k - y_k| + |t_k - s_k|),$$ and $$k[|x_k - y_k| + |t_k - s_k|] \le C'.$$ This is the *boundedness of the gradient* of our test functions, which allows us to take the limit as $k \to \infty$: $$egin{aligned} 2(t_k-s_k) + H(x_k,t_k,2k(x_k-y_k)) & \leq -\eta, \ 2(t_k-s_k) + H(y_k,s_k,2k(x_k-y_k)) & \geq 0. \end{aligned}$$ ### Theorem 9 Assume that $h \in \mathrm{BUC}(\mathbb{R}^n)$. Then there exists a unique solution u_{ε} on $\mathbb{R}^n \times [0, \infty)$ of the Cauchy problem $$egin{cases} u_t + H(x,x/arepsilon,D_x u) = 0 & ext{in } \mathbb{R}^n imes (0,\infty), \ u(\cdot,0) = h \end{cases}$$ such that $u_{\varepsilon} \in \mathrm{BUC}(\mathbb{R}^n \times [0,T])$ for every T>0. Also, there exists a unique solution u on $\mathbb{R}^n \times [0,\infty)$ of $$egin{cases} u_t + \overline{H}(x,D_x u) = 0 & ext{in } \mathbb{R}^n imes (0,\infty), \ u(\cdot,0) = h & ext{on } \mathbb{R}^n, \end{cases}$$ such that $u \in \mathrm{BUC}(\mathbb{R}^n \times [0,T))$ for every T>0. Furthermore, as arepsilon o 0+, $u_{arepsilon}(x,t) o u(x,t)$ locally uniformly on $\mathbb{R}^n imes [0,\infty)$. ### Long-time behavior of solutions I Example 1 Let $\lambda > 0$. Consider the HJ equation (1) $$u_t + \lambda u + |D_x u|^2 - f(x) = 0 \quad \text{in } \mathbb{T}^n \times (0, \infty).$$ The Hamiltonian H is: $$H(x, p, u) = \lambda u + |p|^2 - f(x),$$ where $f \in C(\mathbb{T}^n)$. If there is a solution $u_0 \in C(\mathbb{T}^n)$ of $$(2) H(x, D_x u_0, u_0) = 0 in \mathbb{T}^n,$$ then $u(x,t) = u_0(x)$ is a solution of (1). Let $v \in C(\mathbb{T}^n \times [0,\infty))$ be another solution of (1). By comparison, we have (3) $$\|(u-v)(\cdot,t)\|_{\infty} < \|(u-v)(\cdot,0)\|_{\infty}e^{-\lambda t}$$ for all $t>0$. Indeed. $$w(x,t) := v(x,t) + ||u(\cdot,0) - v(\cdot,0)||_{\infty} e^{-\lambda t}$$ satisfies $$w_t + \lambda w + |D_x w|^2 - f(x) = v_t + \lambda v + |D_v|^2 - f(x) = 0,$$ $u(\cdot, 0) \le w(\cdot, 0),$ and, by the comparison theorem, $u(x,t) \leq w(x,t)$. Similarly, we have $v(x,t) \leq u(x,t) + \|u(\cdot,0) - v(\cdot,0)\|_{\infty} e^{-\lambda t}$. ### Theorem 1 Problem (2) has a unique solution $u_0 \in \operatorname{Lip}(\mathbb{T}^n)$. For any $h \in C(\mathbb{T}^n)$, the Cauchy problem for (1) with initial condition $u(\cdot,0)=h$ has a unique solution $u \in C(\mathbb{T}^n \times [0,\infty))$. Moreover, as $t \to \infty$, $$v(x,t) o u_0(x)$$ uniformly and exponentially on \mathbb{T}^n . - ullet The conclusion of the above theorem holds true if $oldsymbol{H}$ is replaced by a general continuous Hamiltonian $oldsymbol{H}$: - $u\mapsto H(x,p,u)-\lambda u$ is nondecreasing for some $\lambda>0$. - lacksquare For some C>0 and for all $x,y\in\mathbb{T}^n,p\in\mathbb{R}^n,u\in\mathbb{R}$, $$|H(x, p, u) - H(y, p, u)| \le C|x - y|(|p| + 1).$$ page:7.2 # Example 2 (Barles-Souganidis) Consider the HJ equation $$|u_t+|u_x+2\pi|-2\pi=0 \quad ext{in } \mathbb{T}^1 imes [0,\infty).$$ n=1. The function $u(x,t)=\sin 2\pi(x-t)$ is a
classical solution. The point is $$|u_x+2\pi| = |2\pi\cos 2\pi(x-t)+2\pi| = 2\pi\cos 2\pi(x-t)+2\pi.$$ $t\mapsto \sin 2\pi(x-t)$ is periodic with minimal period 1. In this example, the Hamiltonian is given by $$H(x,p) = H(p) = |p + 2\pi| - 2\pi.$$ Note that $p\mapsto H(x,p)$ is convex and coercive. $$\lim_{|p| o \infty} H(p) = \infty$$. # Example 3 (Namah-Roquejoffre) Consider $$(4) u_t + |D_x u|^2 - f(x) = 0 \text{in } \mathbb{T}^n \times [0, \infty).$$ Assume that for some $x_0 \in \mathbb{T}^n$ and all $x \in \mathbb{T}^n$, $$(5) f(x) \ge f(x_0) = 0.$$ Set $$v_0(x) = \sup\{v(x) : v \in \mathcal{S}^-, v(x_0) = 0\},$$ where \mathcal{S}^- denotes the set of all subsolutions of $$H(x,Du) := |Du|^2 - f(x) = 0 \text{ in } \mathbb{T}^n.$$ It follows that $0 \le v_0(x) \le o(|x-x_0|)$. $(|Dv_0(x)| \leq \sqrt{f(x)}.)$ Moreover, the function v_0 is a solution of H(x,Du)=0 in \mathbb{T}^n . page:7.4 Let $u\in C(\mathbb{T}^n\times[0,\infty))$ be a solution of (4). Note that $H(x_0,p)\geq 0$ for all $p\in\mathbb{R}^n$. Hence, $u_t(x_0,t)\leq 0$ for all $t\in(0,\infty)$ and, therefore, $t\mapsto u(x_0,t)$ is nonincreasing. This monotonicity property is valid for any zero point $\in\mathbb{T}^n$ of f. That is, if we set $Z=f^{-1}(0)=\{x:f(x)=0\}$, then $t\mapsto u(x,t)$ is nonincreasing for all $x\in Z$. Select C>0 so that $v_0-C\leq u(\cdot,0)\leq v_0+C$ on \mathbb{T}^n . By the comparison theorem, $v_0-C\leq u(x,t)\leq v_0(x)+C$ for all $(x,t)\in\mathbb{T}^n\times[0,\infty)$. By Theorem 9 in the last lecture, u is uniformly continuous on $\mathbb{T}^n \times [0,\infty)$. Thus, the family $\{u(\cdot,t):t\geq 0\}$ is unif-bounded and equi-continuous on \mathbb{T}^n . page:7.5 The monotonicity on Z of u and the unif-boundedness and equi-continuity properties, together with AA theorem, assure that for some function $u_0\in C(\mathbb{T}^n)$, as $t\to\infty$, - $lacksquare u(x,t) ightarrow u_0(x)$ uniformly and monotonically for $x \in Z$, - $ullet u(x,t) o u_0(x)$ uniformly for $x \in \mathbb{T}^n$ along a sequence of t. At this point, it is not clear if u_0 is a solution of H(x,Du)=0 in \mathbb{T}^n . Define $$w^\pm(x,t)\!=\!egin{cases} \sup \{u(x,t\!+\!s):s\geq 0\} \;\; ext{for all}\;(x,t)\in\mathbb{T}^n\! imes\![0,\infty). \end{cases}$$ The function w^+ (resp., w^-) is a subsolution (resp., a supersolution) of $w_t + H(x, D_x w) = 0$ in $\mathbb{T}^n \times (0, \infty)$, they are bounded, uniformly continuous on $\mathbb{T}^n \times [0, \infty)$, $t \mapsto w^+(x,t)$ (resp., $t \mapsto w^-(x,t)$) is nonincreasing (resp., nondecreasing) for all $x \in M$, and $w^+(x,t) = u(x,t)$ (resp., $w_0^\pm \in C(\mathbb{T}^n)$, $w^\pm(x,t) o w_0^\pm(x)$ uniformly and monotonically on \mathbb{T}^n . $w^-(x,t)=u_0(x)$) on $Z\times [0,\infty)$. Thus, as $t\to\infty$, for some It follows that $w_0^\pm=u_0$ on Z and that w_0^+ (resp., w_0^-) is a subsolultion (resp., supersolution) of H(x,Du)=0 in \mathbb{T}^n . Also, by the definition of w_0^\pm , we have $w_0^+\geq w_0^-$ on \mathbb{T}^n . Once we have shown that $w_0^+=w_0^-$ on \mathbb{T}^n , we see easily that $u_0=w_0^\pm$ on \mathbb{T}^n , which implies that as $t\to\infty$, $$u(x,t) o u_0$$ uniformly on \mathbb{T}^n . We claim that $w_0^+ = w_0^-$ on \mathbb{T}^n . It is enough to prove that $$w_0^+ \leq w_0^-$$ on $\mathbb{T}^n \setminus Z$. By adding a large constant to w_0^\pm , we may assume that both w_0^\pm are positive functions. Let $\theta \in (0,1)$ and set $w_\theta = \theta w_0^+$. Note that $$H(x, Dw_{\theta}) = \theta^{2} |Dw_{0}^{+}|^{2} - f(x) = \theta^{2} H(x, Dw_{0}^{+}) - (1 - \theta^{2}) f(x),$$ and that $$w_{\theta}(x) < w_0^-(x)$$ on Z . Let Z_{δ} be the closed δ -neighborhood of Z $(\delta>0)$ such that $$w_{\theta}(x) < w_0^-(x) \quad \text{for all } x \in Z_{\delta}.$$ Set $U_{\delta}:=\mathbb{T}^n\setminus Z_{\delta}$. There exists $\eta>0$ such that $f(x)>\eta$ for all $x\in U_{\delta}$. Note that $$(1-\theta^2)f(x) > (1-\theta^2)\eta \quad \text{on } U_{\delta},$$ and hence, $w_{ heta}$ is a subsolution of $$H(x,Du) \leq -(1-\theta^2)\eta$$ in U_{δ} . By the comparison principle, we have $$w_{ heta} \leq w_0^-$$ on U_{δ} (and on \mathbb{T}^n). ### Theorem 2 Let u be a solution of (4). Assume (5) $(f \ge f(x_0) = 0)$. Then, for some $u_0 \in C(\mathbb{T}^n)$, as $t \to \infty$, $$u(x,t) o u_0(x)$$ uniformly on \mathbb{T}^n . One can replace $H(x,p)=|p|^2-f(x)$ by a general continuous H(x,p) which satisfies: - $lackbox{ } p\mapsto H(x,p)$ is convex for every $x\in\mathbb{T}^n$. - $ightharpoonup p\mapsto H(x,p)$ is coercive for every $x\in\mathbb{T}^n$. - $ullet \min_{p\in\mathbb{R}^n} H(x,p) = H(x,0) \ \ \forall x\in\mathbb{T}^n, \ \max_{x\in\mathbb{T}^n} H(x,0) = 0.$ Some convenient technical theorems are as follows. ### Theorem 3 Let $\Omega\subset\mathbb{R}^n$ be an open set. Let F=F(x,p,u) is a continuous convex (in p) Hamiltonian on $\Omega\times\mathbb{R}^n\times\mathbb{R}$. Let $u\in\operatorname{Lip}(\Omega)$. Then $$u \in \mathcal{S}^-(F) \iff u \in \mathcal{S}^-_{ae}(F).$$ $m{\circ}\ {\cal S}^-=$ the set of all viscosity subsolutions, ${\cal S}^-_{ m ae}=$ the set of all a.e. subsolutions $(F(x,Du(x),u(x))\leq 0$ a.e.). PROOF. Local property! We may assume that Ω is bounded (and convex). 1) Assume that $u \in \mathcal{S}^-(F)$. Since $u \in \operatorname{Lip}$ and is differentiable a.e. in Ω . Fix any differentiability point x of u, and choose $\phi \in C^1(\Omega)$ such that ϕ tests u from above at x. Note that $D\phi(x) = Du(x)$. Then, since $u \in \mathcal{S}^-$, $$0 \geq F(x, D\phi(x), u(x)) = F(x, Du(x), u(x)).$$ 2) Assume now that $u \in \mathcal{S}^-_{ae}(F)$. Since $u \in \operatorname{Lip}$, it is differentiable a.e. in Ω and the derivative Du is identified with the distributional derivative of u. Choose a constant M>0 so that $|u(x)|+|Du(x)|\leq M$ a.e. We may assume that F is uniformly continuous on $\Omega\times B_{M+1}\times [-M-1,M+1]$ (if needed, replace Ω by a smaller one). For each $0<\varepsilon\ll 1$, choose $\delta(\varepsilon)>0$ so that $$F(x,Du(y),u(x))\leq F(y,Du(y),u(y))+arepsilon$$ a.e. $y\in\Omega, orall x\in B_{\delta(arepsilon)}(y).$ Mollifying the above with a standard kernel (and using the convexity), to get $$F(x, u_{\varepsilon}(x), u(x)) \leq \varepsilon$$ in Ω , where u_{ε} is the mollified function of u. Now, u_{ε} is a classical (hence, viscosity) subsolution of $F(x,Du_{\varepsilon}(x),u(x))\leq \varepsilon$. In the limit as $\varepsilon\to 0$, we see that $u\in \mathcal{S}^-(F)$. We write $\mathcal{S}_{\mathrm{BJ}}^-(F)$ for the set of all functions $u\in\mathrm{Lip}(\Omega)$ such that if $\phi\in C^1(\Omega)$ touches from below at $x\in\Omega$, then $F(x,D\phi(x),u(x))\leq 0$. (Barron-Jensen) ### Theorem 4 Let $\Omega\subset\mathbb{R}^n$ be an open set. Let F=F(x,p,u) is a continuous convex (in p) Hamiltonian on $\Omega\times\mathbb{R}^n\times\mathbb{R}$. Let $u\in\mathrm{Lip}(\Omega)$. Then $$u \in \mathcal{S}^-(F) \iff u \in \mathcal{S}^-_{\mathrm{BJ}}(F).$$ PROOF. We need to show that $$u \in \mathcal{S}^-_{\mathrm{ae}}(F) \iff u \in \mathcal{S}^-_{\mathrm{BJ}}(F).$$ The previous proof applies to show this claim. A consequence of the above is: # Theorem 5 Let $\Omega \subset \mathbb{R}^n$ be an open set. Let F = F(x,p,u) be a continuous convex (in p) Hamiltonian on $\Omega \times \mathbb{R}^n \times \mathbb{R}$. Let $\mathcal{F} \neq \emptyset$ be a locally unif-bounded, equi-Lipschitz continuous collection of subsolutions of F = 0 in Ω . Then the function $$u(x) := \inf\{v(x) : v \in \mathcal{F}\}$$ is in $\mathcal{S}^-(F)$. page:7.12 PROOF. The proof is parallel to that of the assertion that the pointwise \sup of a family of subsolutions is a subsolution: replace "touching from above" and " \sup " by "touching from below" and " \inf ", respectively, which is also parallel to that of the theorem saying that the pointwise \inf of a family of supersolutions is a supersolution: replace \geq by \leq . Remark. Roughly speaking, if u is differentiable at y and it is a subsolution of F=0, then $$F(y, Du(y), u(y)) \leq 0.$$ Indeed, we may choose a continuous function ω on [0,1] such that $\omega(0)=0,\,\omega(t)\geq0,$ and $$u(x)-u(y) \leq p \cdot (x-y) + \omega(|x-y|)|x-y| \quad \text{if } x \in B_1(y),$$ where p=Du(y). We may assume that ω is nondecreasing. page:7.13 Note that $$\omega(t)t \leq \int_t^{2t} \omega(r) dr$$ for all $t \in [0, 1/2]$. Setting $$\psi(t) = \int_t^{2t} \omega(r) dr \quad ext{for all } t \in [0,1/2],$$ and $$\phi(x)=u(y)+p\cdot(x-y)+\psi(|x-y|)\quad\text{for all }x\in B_{1/2}(y),$$ we observe that $\phi \in C^1(B_{1/2}(y))$, $D\phi(y)=p$, $$u(x) \leq \phi(x) \; \forall x \in B_{1/2}(y) \quad \text{and} \quad u(y) = \phi(y).$$ Extending ϕ smoothly outside $B_{1/3}(y)$ so that $u(x) \leq \phi(x)$ on the domain of definition of u. We now find that $$0 \ge F(y, D\phi(y), u(y)) = F(y, Du(y), u(y)).$$ In the above discussion, the differentiability can be weakened as follows: $$u(x)-u(y)\leq p\cdot (x-y)+o(|x-y|)$$ as $x o y$ for some $p\in\mathbb{R}^n$. If this is the case and u is a subsolution of $F=0$, then $F(y,p,u(y))<0.$ The set of all $p \in \mathbb{R}^n$ for which the above asymptotic relation hold is called the *superdifferentials* of u at y and is denoted by $D^+u(y)$. By making the upside-down in the above discussion, we define $D^-u(y)$, called the *subdifferentials* of u at y. ### Theorem 6 Let $\Omega \subset \mathbb{R}^n$ be an open set and $u:\Omega \to \mathbb{R}$ locally bounded. Let $F \in C(\Omega \times \mathbb{R}^n \times \mathbb{R})$. The function u is a (viscosity) subsolution (resp., supersolution) of F(x,Du,u)=0 in Ω if and only if $$F(x,p,u^*(x))\leq 0 \quad ext{for all } p\in D^+u^*(x)$$ (resp., $F(x,p,u_*(x))>0 \quad
ext{for all } p\in D^-u_*(x)).$ ## Long-time behavior of solutions II Long-time behavior of solutions to a general HJE (1) $$u_t + H(x, D_x u) = 0 \text{ in } \mathbb{T}^n \times (0, \infty).$$ Assumptions on H: - $ightharpoonup H \in C(\mathbb{T}^n \times \mathbb{R}^n).$ - $ightharpoonup p\mapsto H(x,p)$ is coercive for every (uniformly) x. i.e., $$\lim_{r\to\infty}\inf_{|p|>r}H(x,p)=\infty.$$ Recall the following theorem (the proof was done for bounded functions on \mathbb{R}^n). ### Theorem 1 Let $h \in \operatorname{Lip}(\mathbb{T}^n)$. Under the above assumptions, there is a solution $u \in \operatorname{Lip}(\mathbb{T}^n \times [0,\infty))$ of (2) $$\begin{cases} u_t + H(x, D_x u) = 0 & \text{in } \mathbb{T}^n \times (0, \infty), \\ u(\cdot, 0) = h & \text{on } \mathbb{T}^n. \end{cases}$$ Note also that the comparison principle holds for sub and super solutions of (1), which is crucial to establish the following theorem. ### Theorem 2 Let $h \in C(\mathbb{T}^n)$. Under the above assumptions, there is a solution $u \in \mathrm{UC}(\mathbb{T}^n \times [0,\infty))$ of (2) $$\begin{cases} u_t + H(x, D_x u) = 0 & \text{in } \mathbb{T}^n \times (0, \infty), \\ u(\cdot, 0) = h & \text{on } \mathbb{T}^n. \end{cases}$$ PROOF. Choose a sequence $h_k \in \operatorname{Lip}(\mathbb{T}^n) \to h$ in $C(\mathbb{T}^n)$ and let $u_k \in \operatorname{Lip}(\mathbb{T}^n \times [0,\infty)$ be the solution of the Cauchy problem (2) with h replaced by h_k . Choose a monotone sequence $\varepsilon_k \to 0^+$ so that $$||h_j(x) - h_k||_{\infty} \le \varepsilon_k \ \forall j > k.$$ By the comparison principle, if j > k, then $$|u_j(x,t) - u_k(x,t)| \le \varepsilon_k \ \forall (x,t).$$ That is, for some $u \in \mathrm{UC}(\mathbb{T}^n \times [0,\infty))$, $$\lim_k u_k(x,t) = u(x,t)$$ uniformly on $\mathbb{T}^n imes [0,\infty).$ The function u is a solution of (2). Limit problem: (3) $$H(x,Du)=c \text{ in } \mathbb{T}^n.$$ This ergodic problem has a solution $(c, u) \in \mathbb{R} \times \operatorname{Lip}(\mathbb{T}^n)$. The ergodic constant c is uniquely determined. We follow the argument due to Barles-Souganidis. The argument has been modified (or simplified) by Barles-HI-Mitake. Another important approach is the one due to Davini-Siconolfi (after Fathi). page:8.3 We add another requirement on H: There exist constants $\eta_0>0$ and $\theta_0>1$ and for each $(\eta,\theta)\in(0,\eta_0) imes(1,\theta_0)$ a constant $\psi=\psi(\eta,\theta)>0$ such that for all $x,p,q\in\mathbb{R}^n$, if $H(x,p)\leq c$ and $H(x,q)\geq c+\eta$, then $$H(x, p + \theta(q - p)) \ge c + \eta\theta + \psi.$$ This is a kind of strict convexity of H. Indeed, if $p \mapsto H(x,p)$ is strictly convex, one can show that the above condition is satisfied. Indeed, if H is strictly convex, since $q = \theta^{-1}(p + \theta(q - p)) + (1 - \theta^{-1})p$, $c + \eta \le H(x,q) < \theta^{-1}H(x,p + \theta(q - p)) + (1 - \theta^{-1})H(x,p)$ $< \theta^{-1}H(x,p + \theta(q - p)) + (1 - \theta^{-1})c$, i.e., $$H(x, p + \theta(q - p)) > c + \theta\eta.$$ page:8.5 #### Theorem 3 Let $h \in C(\mathbb{T}^n)$ and c be the ergodic constant. Let $u = u(x,t,h) \in \mathrm{UC}(\mathbb{T}^n \times [0,\infty))$ be the solution of the Cauchy problem (2). Then, for some $h_{\infty} \in \mathcal{S}(H-c) \cap \mathrm{Lip}(\mathbb{T}^n)$, as $t \to \infty$, $$u(x,t,h)+ct ightarrow h_{\infty}(x)$$ uniformly in \mathbb{T}^n . OUTLINE OF PROOF. By the comparison principle, $$||u(\cdot,t,h)-u(\cdot,t,g)||_{\infty} \leq ||h-g||_{\infty}.$$ we may assume that $h\in \mathrm{Lip}(\mathbb{T}^n)$ and $u\in \mathrm{Lip}(\mathbb{T}^n imes [0,\infty))$. Note that the function v=u(x,t,h)+ct is a solution of $v_t+H-c=0$. By rewriting H for H-c, we henceforth assume that c=0. Fix a $v_0 \in \mathcal{S}(H)$. By choosing C>0 so that $$v_0 - C \le h \le v_0 + C$$ on \mathbb{T}^n . we have by the comparison principle, $$|u(x,t,h)-v_0(x)|\leq C$$ $\forall (x,t).$ $$u(\cdot,\cdot,h)\in (\mathrm{Lip}\cap\mathrm{B})(\mathbb{T}^n imes[0,\infty)).$$ We assume by adding a constant to v_0 that $$u(x,t) - v_0(x) \ge 0 \quad \forall (x,t).$$ Let $heta, \eta, \psi$ be as in the above condition on H. Define $$w(x,t) = \sup_{s \geq t} [u(x,t) - v_0(x) - \theta(u(x,s) - v_0(x) + \eta(s-t))]$$ Let M>0 be a Lipschitz bound of u and v_0 . Define $$\omega(r) = \max\{|H(x,p) - H(x,q)| : p,q \in \overline{B}_R, \ |p-q| \le r\},$$ where $R=(2 heta_0+1)M$. page:8.7 ### Theorem 4 The function $oldsymbol{w}$ is a subsolution of $$\min\{w, w_t - \omega(|D_x w|) + \psi\} \leq 0 \quad \text{in } \mathbb{T}^n \times (0, \infty).$$ In particular, setting $$m(t) = \max_{x} w(x, t),$$ we have $$\min\{m, m_t + \psi\} \le 0.$$ The last inequality implies that for a finite time au>0, $$m(t) \leq 0 \ \forall t \geq \tau$$. Then, for any $t \geq \tau$, $x \in \mathbb{T}^n$, $s \geq t$, $$u(x,t) - v_0(x) \le \theta(u(x,s) - v_0(x) + \eta(s-t)).$$ The constant $au= au_{ heta,\eta}$ depends on $heta,\eta$. (AA theorem) $\exists t_j o \infty$ such that for some $u_\infty \in \mathrm{Lip}(\mathbb{T}^n)$, $$u(x,t_j,h) \rightarrow u_{\infty}(x)$$ in $C(\mathbb{T}^n)$. Then, we have $$egin{aligned} u(x,t+t_j,h) & ightarrow u(x,t,u_\infty) & orall (x,t).\ \left(\|u(\cdot,t,u(\cdot,t_j,h)) - u(\cdot,t,u_\infty)\|_\infty ight. \ &\leq \|u(\cdot,t_j,h) - u_\infty\|_\infty & orall t \geq 0 \quad ext{by comparison.} \end{aligned}$$ Hence, for all $t \geq 0$, $s \geq t$, $x \in \mathbb{T}^n$, $$u(x, t, u_{\infty}) - v_0(x) \le \theta(u(x, s, u_{\infty}) - v_0(x) + \eta(s - t)).$$ This holds for any $heta \in (1, heta_0)$ and $\eta > 0$. Thus, $$u(x, t, u_{\infty}) - v_0(x) \le u(x, s, u_{\infty}) - v_0(x)$$ if $s \ge t$. That is, $t\mapsto u(x,t,u_\infty)$ is nondecreasing. Monotone in t. (AA theorem) $\exists h_\infty \in \mathrm{Lip}(\mathbb{T}^n)$ such that $$h_{\infty}(x) = \lim_{t \to \infty} u(x, t, u_{\infty})$$ in $C(\mathbb{T}^n)$. Since $$||u(\cdot, t + t_j, h) - u(\cdot, t, u_{\infty})||_{\infty}$$ $$< ||u(\cdot, t_j, h) - u_{\infty}||_{\infty} \quad \forall t > 0,$$ we have $$h_{\infty}(x) = \lim_{t \to \infty} u(x, t, h)$$ in $C(\mathbb{T}^n)$. Since $$\|u(\cdot,t+t_j,h)-h_\infty\|_\infty o 0$$ as $j o\infty$, we find that $$\partial_t h_\infty + H(x,D_x h_\infty) = 0$$ and $h_\infty \in \mathcal{S}(H)$. \Box OUTLINE OF THE PROOF OF THE VI: $$\min\{w,w_t-\omega(|D_xw|)+\psi\}\leq 0,\quad\text{where}$$ $$w(x,t):=\sup_{s>t}[u(x,t)-v_0(x)-\theta(u(x,s)-v_0(x)+\eta(s-t))].$$ Fix any $(x,t)\in\mathbb{T}^n imes(0,\infty)$. If $w(x,t)\leq 0$, we have VI at (x,t). Assume that w(x,t)>0. Suppose that $u\in C^1$ and $v_0\in C^1$ and that for some s>t, $$w(x,t) = u(x,t) - v_0(x) - \theta(u(x,s) - v_0(x) + \eta(s-t)),$$ and show that $$w_t - \omega(|D_x w|) + \psi \leq 0.$$ Set $$p = Dv_0(x), \quad q = D_x u(x, s), \quad r = D_x u(x, t),$$ $a = u_t(x, s), \quad b = u_t(x, t).$ We have $$H(x,p) \leq 0. \ a + H(x,q) \geq 0, \ b + H(x,r) \leq 0.$$ The function $$-w(x',t') + u(x',t') - v_0(x') - \theta(u(x',s') - v_0(x') + \eta(s'-t'))$$ ≤ 0 and attains the maximum value 0 at (x,t,s), which yields $$egin{aligned} D_x w(x,t) &= r - p - heta(q-p), \ w_t(x,t) &= b + heta\eta, \ 0 &= - heta(a+\eta). \end{aligned}$$ $$a+H(x,q)\geq 0$$ and $a+\eta=0$ yield $H(x,q)>\eta.$ This and $H(x,p) \leq 0$, the key assumption on H, $$H(x, p + \theta(q - p)) \ge \theta \eta + \psi.$$ Since $r = D_x w(x,t) + p + \theta(q-p)$, $$H(x,r) = H(x, D_x w(x,t) + p + \theta(q-p)).$$ Note: $$|r| = |D_x u(x,t)| \le M \le R , |p+\theta(q-p)| \le (1+2\theta)M \le R.$$ Hence, $$H(x,r) \geq H(x,p+ heta(q-p)) - \omega(|D_x w(x,t)|) \ \geq -\omega(|D_x w(x,t)|) + heta \eta + \psi.$$ Now, $$w_t(x,t) = b + \theta \eta,$$ $0 > b + H(x,r) > b - \omega(|D_x w|) + \theta \eta + \psi$ yield $$0 > w_t - \omega(|D_x w|) + \psi.$$ page;8.12 # Example 1 (Non-convex H) Note that constant functions are solutions of H=0. Hence, c(H)=0. Since H is "strictly convex" on $\{H>0\}=\{f>1\}$, our key condition is satisfied. page:8.13 The key condition implies that $\{p: H(x,p) \leq c\}$ is convex. The key assumption requires a kind of "strict convexity" of H in a neighborhood of $\{p: H(x,p) \leq c\}$ in $\{p: H(x,p) > c\}$. page:8.14 The following condition replaces the key condition: There exist constants $\eta_0>0$ and $\theta_0>1$ and for each $(\eta,\theta)\in(0,\eta_0)\times(1,\theta_0)$ a constant $\psi=\psi(\eta,\theta)>0$ such that for all $x\in\mathbb{T}^n,\,p,q\in\mathbb{R}^n$, if $H(x,p)\leq c$ and $H(x,q)\geq c-\eta$, then $$H(x, p + \theta(q - p)) \ge c - \eta\theta + \psi.$$ # Vanishing discount problem for Hamilton-Jacobi equations I Let $\lambda > 0$. Consider the stationary problem (1) $$\lambda u + H(x, Du) = 0 \quad \text{in } \mathbb{T}^n.$$ In view of optimal control theory, the constant λ is called a discoutn factor. Here we study the asymptotic behavior of the solution u_{λ} of (1) as $\lambda \to 0^+$. Assumptions on H: - $ightharpoonup H \in C(\mathbb{T}^n \times \mathbb{R}^n).$ - H is coercive, i.e., $$\lim_{r o\infty}\inf_{\mathbb{T}^n imes(\mathbb{R}^n\setminus B_r)}H(x,p)=\infty.$$ ▶ H is convex, i.e., $p \mapsto H(x,p)$ is convex, $\forall x \in \mathbb{R}^n$. page:9.1 #### Theorem 1 PDE (1) has a unique solution u_{λ} in the class $\operatorname{Lip}(\mathbb{T}^n)$. The comparison principle is valid for sub and super solutions in the class $\mathbf{B}(\mathbb{T}^n)$. REMARK. $\exists C>0$ (independent of $\lambda>0$) such that $$\lambda |u_{\lambda}(x)| \leq C.$$ $\exists M>0$ such that $$|p| > M \implies -C + H(x, p) > 0.$$ Since u_{λ} is a subsolution of $$-C + H(x, Du) \le 0$$ in \mathbb{T}^n , M is a Lipschitz bound of u_{λ} . M can be chosen independently of λ . The above observations imply together with AA theorem that for a sequence $\lambda_k \to 0^+$, u_{λ_k} "converge" to a function $u_0 \in C(\mathbb{T}^n)$ and for some constant c (the ergodic
constant), u_0 is a solution of (2) $$H(x,Du)=c \text{ in } \mathbb{T}^n.$$ The main result is roughly stated as follows. ## Claim 2 The whole family $\{u_{\lambda}\}_{\lambda>0}$ "converges" to a function u_0 in $C(\mathbb{T}^n)$. (Davini-Fathi-Iturriaga-Zavidovique) • Mather measures play an important role in the proof. page:9.3 - 1) $\exists M>0$ such that $\|Du_{\lambda}\|_{\infty}\leq M$ for all $\lambda>0$. - 2) u_{λ} is the value function of the optimal control system: $$\begin{cases} H(x,p) = \sup_{\xi} (\xi \cdot p - L(x,\xi)), \\ \dot{X}(t) = -\alpha(t) \ \ X(0) = x, \\ J(x,\alpha) = \int_{0}^{\infty} e^{-\lambda t} L(X(t),\alpha(t)) dt. \end{cases}$$ That is, $$egin{align} u_{\lambda}(x) &= \inf_{X(0)=x} \int_0^{\infty} e^{-\lambda t} L(X(t), -\dot{X}(t)) dt \ &= \inf_{Y(0)=x} \int_{-\infty}^0 e^{\lambda t} L(Y(t), \dot{Y}(t)) dt. \end{split}$$ 3) $\xi \mapsto L(x,\xi)$ has a superlinear growth: $$L(x,\xi) \geq \xi \cdot rac{A\xi}{|\xi|} - H(x, rac{A\xi}{|\xi|}), \;\; orall A>0, \xi eq 0.$$ $\forall |p| \leq M, \; \exists \rho > 0 \; \text{such that}$ $$H(x,p) = \max_{|\xi| < \rho} \xi \cdot p - L(x,\xi).$$ Set $$H_\rho(x,p) := \max_{|\xi| \le \rho} \xi \cdot p - L(x,\xi).$$ u_{λ} is a solution of $$\lambda u + H_{\rho}(x, Du) = 0$$ in \mathbb{T}^n , and $$u_{\lambda}(x) = \inf_{X(0)=x,\,|\dot{X}(t)| \leq ho} \int_0^{\infty} e^{-\lambda t} L(X(t),-\dot{X}(t)) dt.$$ 4) Set $K = K_{\rho} =: \mathbb{T}^n \times \overline{B}_{\rho}$. Let $M = M(\mathbb{T}^n \times \mathbb{R}^n)$ denote the set of all finite Borel measures μ on $\mathbb{T}^n \times \mathbb{R}^n$. Set $$\begin{split} \mathsf{M}_{\rho} &= \mathsf{M}_{\rho}(\mathbb{T}^n \times \mathbb{R}^n) = \{ \mu \in \mathsf{M} : \operatorname{supp} \mu \subset K_{\rho} \}, \\ \mathsf{M}_{\rho}^+ &= \mathsf{M}_{\rho}^+(\mathbb{T}^n \times \mathbb{R}^n) = \{ \mu \in \mathsf{M}_{\rho} : \mu \geq 0 \}. \end{split}$$ Set $$\mathcal{C}_ ho(x)=\{X\in C([0,\infty),\mathbb{T}^n):X\in \mathrm{AC}[0,T], orall T>0, \ X(0)=x,\;|\dot{X}(t)|\leq ho\; ext{a.e.}\;\}.$$ Given $z \in \mathbb{T}^n$ and $X \in \mathcal{C}(z)$, consider the functional $$C(K) ightarrow \phi \mapsto \int_0^\infty e^{-\lambda t} \phi(X(t), -\dot{X}(t)) dt \in \mathbb{R}.$$ Note: $$\left|\int_0^\infty e^{-\lambda t}\phi(X(t),-\dot{X}(t))dt\right|\leq \|\phi\|_\infty\int_0^\infty e^{-\lambda t}dt=\lambda^{-1}\|\phi\|_\infty.$$ Each $z\in\mathbb{T}^n$ and $X\in\mathcal{C}(z)$ define a continuous linear functional on C(K), an element of $C^*(K)$, and by Riesz' theorem, $\exists \mu\in\mathsf{M}_\rho$ such that $$\lambda \int_0^\infty e^{-\lambda t} \phi(X(t), -\dot{X}(t)) dt = \int_K \phi(x, \xi) \mu(dx, d\xi).$$ If $\phi=1$ (resp., $\phi\geq 0$), then $$\lambda \int_0^\infty e^{-\lambda t} \phi(X(t),-\dot{X}(t)) dt = 1 \; (ext{resp.}, \; \geq 0).$$ Hence, $\mu \in \mathsf{M}_{\rho}^+$ and a probability measure. Let $\mathsf{P}_{\rho}=\{\mu\in\mathsf{M}_{\rho}^{+}:\mu(K)=1\}$. If we write $\mu_{z,X}$ for the measure defined above, then $$\lambda u_{\lambda}(z) = \inf_{X \in \mathcal{C}(z)} \int_{K} L(x,\xi) \mu_{z,X}(dx,d\xi).$$ P_{ρ} has a good stability property: the compactness in the weak-star convergence in $C^*(K)$ (the weak convergence in the sense of measures). The Banach-Alaoglu theorem. On the other hand, the implication of "convergence" of $\{X_k\}$ to the functionals $$\int_0^\infty e^{-\lambda t} \phi(X_k(t), -\dot{X}_k(t)) dt$$ is not easy. What is the limit? $$\mu_{z,X_k} \stackrel{\mathsf{weak}^*}{\longrightarrow} \mu = \mu_{z,X} \; (\exists X \in \mathcal{C}(z)?).$$ Want to replace $\{\mu_{z,X}:X\in\mathcal{C}(z)\}$ by a good $G\subset\mathsf{P}_ ho$ such that $$\lambda u_{\lambda}(z) = \inf_{\mu \in G} \int_{K} L\mu(dx, d\xi).$$ $G = \mathsf{P}_{\rho}$ is too big. 5) Note that if $u_\lambda \in C^1(\mathbb{T}^n)$, then $$\lambda u_{\lambda}(x) + \xi \cdot Du_{\lambda}(x) \leq L(x,\xi) \ \ \forall (x,\xi) \in K.$$ Integrate both sides by $\mu=\mu_{z,X}$, to get $$\int_K (\lambda u_\lambda(x) + \xi \cdot Du_\lambda(x)) \mu(dx, d\xi) \leq \int_K L(x, \xi) \mu(dx, d\xi).$$ Compute that $$\begin{split} &\int_K (\lambda u_\lambda(x) + \xi \cdot Du_\lambda(x)) \mu_{x,X}(dx, d\xi) \\ &= \lambda \int_0^\infty e^{-\lambda t} (\lambda u_\lambda(X(t)) - \dot{X}(t) \cdot Du_\lambda(X(t))) dt \\ &= \lambda \int_0^\infty \frac{d}{dt} \left(-e^{-\lambda t} u_\lambda(X(t)) \right) dt = \lambda u_\lambda(z). \end{split}$$ Hence, for any $\mu=\mu_{z,X}$, $$\int_{\mathcal{K}} L(x,\xi)\mu(dx,d\xi) \geq \lambda u_{\lambda}(z).$$ Let P_c denote the set of all (Borel) probability measures with compact support. Note: $P_{\rho} \subset P_c$. We introdue the condition on $\mu \in \mathsf{P}_{\mathrm{c}}$ that $\ orall \psi \in C^1(\mathbb{T}^n)$, (3) $$\lambda \psi(z) = \int_{\mathbb{T}^n imes \mathbb{R}^n} (\lambda \psi(x) + \xi \cdot D \psi(x)) \mu(dx, d\xi).$$ In general, " $u_{\lambda} \in C^1(\mathbb{T}^n)$ " does not hold, but the above condition always makes sense. We call $\mu \in \mathsf{P_c}$ a closed measure for (z,λ) if (3) holds. We write $\mathfrak{C}(z,\lambda)$ for the set of all closed measures for (z,λ) . Note that $\mathfrak{C}(z,\lambda)$ is irrelevant to our HJE. Since all $\mu_{z,X}$ are in $\mathfrak{C}(z,\lambda)$, we have $$\lambda u_{\lambda}(z) \geq \inf_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$ # Theorem 3 $$\lambda u_{\lambda}(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$ ロ ト 4 回 ト 4 差 ト 4 差 ト 9 Q C PROOF. 1) A first step is: $\forall \mu \in \mathfrak{C}(z,\lambda)$, (4) $$\lambda u_{\lambda}(z) \leq \int_{\mathbb{T}^n \times \mathbb{R}^n} L(x, \xi) \mu(dx, d\xi).$$ Since $u_\lambda\in \operatorname{Lip}(\mathbb{T}^n)$, it is a.e. differentiable and the pointwise derivative is identified with the distributional derivative. Let u_λ^ε and $(Du_\lambda)^\varepsilon$ be the mollified functions of u_λ and Du_λ , respectively, with the same millification kernel. We have $Du_\lambda^\varepsilon=(Du_\lambda)^\varepsilon$. H is uniformly continuous on $\mathbb{T}^n\times B_M$, and so $$\begin{split} \lambda u_\lambda(y) + H(x, Du_\lambda(y)) & \leq \delta(\varepsilon) \text{ a.e. } \{(x,y) \in \mathbb{T}^{2n}: |x-y| < \varepsilon\}, \\ \text{where } \delta(\varepsilon) & \to 0+ (\varepsilon \to 0+). \text{ By the convexity of } H \text{, we find} \\ \lambda u_\lambda^\varepsilon(x) + H(x, Du_\lambda^\varepsilon(x)) & \leq \delta(\varepsilon) \text{ on } \mathbb{T}^n. \end{split}$$ Integrate $$\lambda u^\varepsilon_\lambda(x) + \xi \cdot D u^\varepsilon_\lambda(x) \leq L(x,\xi) + \delta(\varepsilon),$$ by $\mu \in \mathfrak{C}(z,\lambda)$, to get $$\lambda u^arepsilon_\lambda(z) \leq \int_{\mathbb{T}^n imes\mathbb{D}^n} L(x,\xi) \mu(dx,d\xi) + \delta(arepsilon); \quad ext{hence, (4)}.$$ Recall that $$\lambda u_{\lambda}(z) \geq \inf_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi),$$ to conclued that $$\lambda u_{\lambda}(z) = \inf_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$ 2) The next and last step is to replace \inf by \min . Choose $\{X_k\}\subset \mathcal{C}(z)$ so that $$\int_K L(x,\xi) \mu_{z,X_k}(dx,d\xi) o u_\lambda(z).$$ By replacing by a subsequence, we may assume that $$\mu_{z,X_k} \stackrel{\mathsf{weak}^*}{\longrightarrow} \mu$$ for some $\mu \in \mathsf{P}_{\rho}$. 3) "Lower semicontinuity + weak* convergence" imply: $$\int_{K} L \, \mu(dx, d\xi) \leq \liminf_{k} \int_{K} L \, \mu_{z, X_{k}}(dx, d\xi) \; (= \lambda u_{\lambda}(z)).$$ 4) Need to check that μ is a closed measure for (z,λ) : $\forall \psi \in C^1(\mathbb{T}^n)$, $\phi(x,\xi):=\lambda \psi(x)+\xi\cdot D\psi(x)$ is in $C^1(K)$. Hence, $$\lambda \psi(z) = \int_K \phi(x,\xi) \mu_{x,X_k}(dx,d\xi) o \int_K \phi(x,\xi) \mu(dx,d\xi).$$ Thus, $\mu \in \mathfrak{C}(x,\lambda) \cap \mathsf{P}_{ ho}$ and $$\lambda u_{\lambda}(z) = \int_{T^n imes \mathbb{R}^n} L \mu(dx, d\xi).$$ - We call a minimizer $\mu \in \mathfrak{C}(z,\lambda)$ as generalized Mather measure for (z,λ) . We write $\mathfrak{M}(z,\lambda)$ for all minimizers $\mu \in \mathsf{P}_{\mathsf{c}}(z,\lambda)$. Also, called as a discounted Mather measure - One can show that $\mathfrak{M}(z,\lambda)\subset\mathsf{P}_{ ho}.$ page:9.12 ANOTHER APPROACH TO THE EXISTENCE OF MATHER MEASURES. Assume that $$L \in C(K)$$. For $\phi \in C(K)$, set $$H_{\phi}(x,p) := \max_{|\xi| \le ho} \xi \cdot p - \phi(x,\xi),$$ $F_{\lambda,\phi}(x,p,u) := \lambda u + H_{\phi}(x,p).$ Let Γ denote the set of all $(\psi,\phi)\in C(\mathbb{T}^n) imes C(K)$ such that $\psi\in\mathcal{S}^-(F_{\lambda,\phi})$. That is, $$\lambda \psi(x) + \xi \cdot D\psi(x) \le \phi(x,\xi)$$ for all $(x,\xi) \in K$. For fixed (z, λ) , let $$G(z,\lambda) = \{\phi - \lambda \psi(z) : (\psi,\phi) \in \Gamma\}.$$ Γ and $G(z,\lambda)$ are closed convex cones with vertex at the origin in $C(\mathbb{T}^n)\times C(K)$ and C(K), respectively. Let $G^*(z,\lambda)$ denote the dual cone, i.e., $$G^*(z,\lambda) := \{ \nu \in C^*(K) : \langle \nu, g \rangle \ge 0 \ \forall g \in G(z,\lambda) \}.$$ We invoke the Hahn-Banach theorem: - 1) $G(z,\lambda)$ has nonempty interior. Choose $(0,1)\in\Gamma$ so that $1\in G(z,\lambda)$. For any $\phi\in C(K)$ such that $\|\phi\|_{\infty}\leq 1$, we have $(0,1+\phi)\in\Gamma$ and $1+\phi\in G(z,\lambda)$. - 2) $L \lambda u_{\lambda}(z) \in \partial G(z,\lambda)$. Indeed, $L \lambda u_{\lambda}(z) \in G(z,\lambda)$ and $L \lambda u_{\lambda}(z) \frac{1}{k} \not\in G(z,\lambda)$ for all $k \in \mathbb{N}$. - 3) HB theorem $\implies \exists \nu \in C^*(K)$ such that, $\nu \neq 0$, and $\langle \nu, g (L \lambda u_\lambda(z)) \rangle \geq 0 \ \ \forall g \in G(z,\lambda).$ - 4) Select $g=t(L-\lambda
u_\lambda(z))$, t>0, in the above, to find $(t-1)\langle u,L-\lambda u_\lambda(z)\rangle\geq 0,$ and $$\langle \nu, L \rangle = \lambda u_{\lambda}(z) \langle \nu, 1 \rangle.$$ 5) Select $$g=L-\lambda u_\lambda(z)+f$$, with any $f\geq 0$, to find that $\langle u,f angle\geq 0, \ { m i.e.,}\ u\in {\sf M}_ ho^+.$ Set $$\mu:= rac{ u}{ u(K)}\in\mathsf{P}_{ ho}.$$ 6) Fix any $(\psi,\phi)\in\Gamma$ and note that $(\psi,\phi)+(L,u_\lambda)\in\Gamma$ and $\phi+L-\lambda(\psi+u_\lambda)(z)\in G(z,\lambda)$. Select $g=\phi+L-\lambda(\psi+u_\lambda)(z)$, to see $$\langle \mu, \phi \rangle \geq \lambda \psi(z).$$ Let $\psi \in C^1(\mathbb{T}^n)$. Choose $\phi = \lambda \psi(x) + \xi \cdot D\psi(x)$, to find $$\langle \mu, \lambda \psi + \xi \cdot D \psi(x) \rangle \geq \lambda \psi(z)$$ This is valid also for $-\psi$ in place of ψ . Hence, $$\lambda \psi(z) = \langle \mu, \lambda \psi + \xi \cdot D \psi \rangle \ \ \forall \psi \in C^1(\mathbb{T}^n).$$ 7) The conclusion: $$\mu \in \mathfrak{C}(z,\lambda)$$ and $\lambda u_{\lambda}(z) = \langle \mu, L angle = \int_{K} L \mu.$ EXERCISES. 1. Prove that Γ is a convex set. 2. Prove that if a>0, then $L-\lambda u_{\lambda}(z)-a\not\in G(z,\lambda)$. page:9.16 # Vanishing discount problem for Hamilton-Jacobi equations II Our HJE is as follows: (1) $$\lambda u + H(x, Du) = 0 \quad \text{in } \mathbb{T}^n.$$ Assumptions on H: - $ightharpoonup H \in C(\mathbb{T}^n \times \mathbb{R}^n).$ - H is coercive, i.e., $$\lim_{r o \infty} \inf_{\mathbb{T}^n imes (\mathbb{R}^n \setminus B_r)} H(x,p) = \infty.$$ lacksquare H is convex, i.e., $p\mapsto H(x,p)$ is convex, $orall x\in \mathbb{T}^n$. ## Theorem 1 $$\lambda u_{\lambda}(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$ The min is attained at $\mu \in \mathsf{P}_{\rho} \cap \mathfrak{C}(z,\lambda)$, where, for $\mu \in \mathsf{P}_{\rho}$, $\mathrm{supp}\, \mu \subset K = \mathbb{T}^n \times \overline{B}_{\rho}$ and ρ does not depend of $\lambda > 0$. The closedness of $\mu \in \mathfrak{C}(z,\lambda)$ is described as: $orall \psi \in C^1(\mathbb{T}^n)$, $$\lambda \psi(z) = \int_{\mathbb{T}^n imes \mathbb{R}^n} (\lambda \psi(x) + \xi \cdot D \psi(x)) \mu(dx, d\xi).$$ This condition is stable under the weak* convergence of sequences in P_{ρ} . For instance, if $\lambda_j \to 0^+$ and $$\mathsf{P}_{ ho}\cap\mathfrak{C}(z,\lambda_j) i\mu_j\stackrel{\mathsf{Weak}^*}{\longrightarrow}\mu$$, then (2) $$0 = \int_{\mathbb{T}^n \times \mathbb{R}^n} \xi \cdot D\psi(x) \mu(dx, d\xi) \ \forall \psi \in C^1(\mathbb{T}^n).$$ We call $\mu \in \mathsf{P}_c$ a *closed measure* (for $\lambda = 0$) if (2) holds. Let $\mathfrak{C}(0)$ denote the set of all closed measures $\mu \in \mathsf{P}_c$. page:10.2 Recall the ergodic problem: (3) $$H(x,Du)=c$$ in \mathbb{T}^n . We know the following. # Theorem 2 Let c be the ergodic constant. Then - $u_{\lambda} \max_{\mathbb{T}^n} u_{\lambda} o u_0$ in $C(\mathbb{T}^n)$ along a sequence $\lambda_i o 0^+$, - $lacksquare \lambda u_\lambda ightarrow -c ext{ in } C(\mathbb{T}^n) ext{ as } \lambda ightarrow 0^+,$ - u_0 is a solution of (3). We have a representation theorem for c. # Theorem 3 Let c be the ergodic constant. Then $$-c = \min_{\mu \in \mathfrak{C}(0)} \int_{\mathbb{T}^n \vee \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$ PROOF. 1) Let $u_0 \in \operatorname{Lip}(\mathbb{T}^n)$ be a solution of H = c in \mathbb{T}^n . We have $\|Du_0\|_{\infty} < \infty$. By approximation, $\exists u_0^{\varepsilon} \in C^1(\mathbb{T}^n), \ \delta(\varepsilon) > 0$ such that $$\begin{cases} -c + H(x, Du_0^\varepsilon(x)) \leq \delta(\varepsilon) \ \text{ in } \mathbb{T}^n, \\ u_0^\varepsilon \to u_0 \ \text{ in } C(\mathbb{T}^n) \ (\varepsilon \to 0^+), \\ \delta(\varepsilon) \to 0^+ \ (\varepsilon \to 0^+). \end{cases}$$ In particular, $$-c + \xi \cdot Du_0^\varepsilon(x) \leq L(x,\xi) + \delta(\varepsilon) \ \ \forall (x,\xi).$$ Integrating by $\mu \in \mathfrak{C}(0)$ and sending $arepsilon o 0^+$ yield $$-c \leq \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x, \xi) \mu(dx, d\xi).$$ Thus, $$-c \leq \inf_{\mu \in \mathfrak{C}(0)} \int_{\mathbb{T}^n \times \mathbb{R}^n} L(x,\xi) \mu(dx,d\xi).$$ 2) Existence of a minimizer: Fix $z\in\mathbb{T}^n$ and for each $\lambda>0$ choose $\mu_\lambda\in\mathfrak{M}(z,\lambda)\cap\mathsf{P}_\rho$ so that $$\lambda u_{\lambda}(z) = \int_{\mathbb{T}^n imes \mathbb{R}^n} L(x,\xi) \mu_{\lambda}(dx,d\xi).$$ Recall that $$\lim_{\lambda o 0^+} \lambda u_\lambda(z) = -c.$$ We can choose $\lambda_i ightarrow 0+$ so that $$\mu_{\lambda_j} \overset{\mathsf{weak}^*}{\longrightarrow} \mu_0 \in \mathsf{P}_{ ho}.$$ As in the argument for a fixed $\lambda > 0$, we find that $\mu_0 \in \mathfrak{C}(0)$, $$\int_{\mathbb{T}^n imes\mathbb{R}^n}L\,\mu_0(dx,d\xi)\leq \liminf_{j o\infty}\int_{\mathbb{T}^n imes\mathbb{R}^n}L\,\mu_{\lambda_j}(dx,d\xi)=-c.$$ Hence, μ_0 is a minimizer: $$-c=\int_{\mathbb{T}^n imes\mathbb{D}^n}L\,\mu_0(dx,d\xi).$$ ullet Any minimizer $\mu \in \mathfrak{C}(0)$ is called a *Mather measure*. Denoted by $\mathfrak{M}(0)$. # Our purpose here is: ## Claim 4 The whole family $\{u_{\lambda}\}_{{\lambda}>0}$ "converges" to a function u_0 . Formal expansion: $$\lambda u_{\lambda} \approx -c + \lambda u_0(x) + \lambda^2 u_1(x) + \cdots$$ page:10.6 Then, $$u_{\lambda} pprox -\lambda^{-1}c + u_0(x) + \lambda u_1(x) + \cdots;$$ $0 = \lambda u_{\lambda} + H(x, Du_{\lambda}) pprox -c + H(x, Du_0 + \cdots) + \cdots,$ and hence, $$-c + H(x, Du_0) = 0.$$ $$0 \gtrapprox -c + \lambda u_0 + \cdots + \xi \cdot (Du_0 + \lambda Du_1 + \cdots) - L(x, \xi).$$ If $\mu_0\in\mathfrak{M}(0)$, then $$\int (-c-L)\mu_0 = 0, \quad \int \xi \cdot (Du_0 + \lambda Du_1 + \cdots) \mu_0 pprox 0.$$ Hence, $$0\lessapprox \lambda\int u_0\mu_0,$$ i.e., $\int u_0\mu_0\leq 0.$ page:10.7 ### Theorem 5 The whole family $\{u_{\lambda}+\lambda^{-1}c\}_{\lambda>0}$ converges to a solution u_0 in $C(\mathbb{T}^n)$ of (3). (Davini-Fathi-Iturriaga-Zavidovique=2016) PROOF. 1) Note that $v_{\lambda}:=u_{\lambda}+\lambda^{-1}c$ satisfies $$\lambda v_{\lambda} + H(x, Dv_{\lambda}) = \lambda u_{\lambda} + c + H(x, Du_{\lambda}) = c$$ in \mathbb{T}^n . If we set $H_c(x,p)=H(x,p)-c$, then v_λ is a solution of $\lambda v_\lambda+H_c=0$ in \mathbb{T}^n . If u_0 is a solution of H=c in \mathbb{T}^n , then it is also a solution of $H_c(x,Du_0)=0$ in \mathbb{T}^n . Note that the Lagrangian corresponding to H_c is given by $$L_c(x,\xi) := \sup_p \xi \cdot p - H_c(x,p) = L(x,\xi) + c.$$ Replacing (H,L) by (H_c,L_c) , we may assume that c=0. We need to show that the solutions u_λ of $\lambda u + H(x,Du) = 0$ in \mathbb{T}^n converge to a solution u_0 of H(x,Du) = 0 in \mathbb{T}^n . 2) Let $v_0\in \mathrm{Lip}(\mathbb{T}^n)$ be a solution of H=0 in \mathbb{T}^n . Choose $C_0>0$ so that $\|v_0\|_\infty\leq C_0$. Note that $$\lambda(v_0 + C_0) + H(x, Du_0) \ge 0, \ \lambda(v_0 - C_0) + H \le 0 \ \text{in } \mathbb{T}^n.$$ By comparison, $$v_0+C_0\geq u_\lambda\geq v_0-C_0$$ in \mathbb{T}^n . Hence, $$|u_{\lambda}(x)| \leq 2C_0$$ in \mathbb{T}^n , and the family $\{u_{\lambda}\}$ is unif-bounded on \mathbb{T}^n . Thus, the family $\{u_{\lambda}\}$ is unif-bounded and equi-Lipschitz continuous on \mathbb{T}^n . 3) Let $\mathcal V$ denote the set of all limit points in $C(\mathbb T^n)$ of $\{u_\lambda\}_{\lambda>0}$ as $\lambda\to 0^+$. We have $\mathcal V\neq\emptyset$. Since $$\lambda u_{\lambda} o 0$$ in $C(\mathbb{T}^n)$ $(\lambda o 0^+),$ we find that $v \in \mathcal{V}$ is a solution of H = 0 in \mathbb{T}^n . page:10.9 We claim: $$\int v(x)\mu(dx,d\xi) \leq 0 \ \ orall (v,\mu) \in \mathcal{V} imes \mathfrak{M}(0).$$ Let $v\in\mathcal{V}$ and $\mu\in\mathfrak{M}(0)$. Choose a sequence $\lambda_j\to 0^+$ such that u_{λ_j} converge to v in $C(\mathbb{T}^n)$. Note that u_λ is a solution of $$\widetilde{H}(x,Du_{\lambda})=0$$ in $\mathbb{T}^n,$ (the ergodic constant $=0!$) where $\widetilde{H}(x,p)=\sup_{\xi}(\xi\cdot p-L(x,\xi)+\lambda u_{\lambda}(x))$, which implies that $$0=\min_{ u\in\mathfrak{C}(0)}\int (L(x,\xi)-\lambda u_{\pmb{\lambda}}(x)) u(dx,d\xi).$$ Since $\mu \in \mathfrak{C}(0)$, $$egin{aligned} 0 & \leq \int (L(x,\xi) - \lambda u_\lambda(x)) \mu(dx,d\xi) \ & = -\lambda \int u_\lambda \mu(dx,d\xi). \end{aligned}$$ Sending $\lambda = \lambda_j o 0^+$, we find that $$\int v(x)\mu(dx,d\xi) \leq 0.$$ Let ${\mathcal W}$ denote the set of all solutions w of H=0 in ${\mathbb T}^n$ such that $$\int w(x)\mu(dx,d\xi) \leq 0 \ \ orall \mu \in \mathfrak{M}(0).$$ We have shown that $$\mathcal{V} \subset \mathcal{W}$$. page:10.11 4) We claim that $$w \leq v$$ on $\mathbb{T}^n \ orall (w,v) \in \mathcal{W} imes \mathcal{V},$ which assures that for all $v \in \mathcal{V}$, $$v(x) = \max_{w \in \mathcal{W}} w(x) \ \ \forall x \in \mathbb{T}^n.$$ In particular, if we set $v(x):=\max_{w\in\mathcal{W}}w(x)$, then $\mathcal{V}=\{v\}$, and, as $\lambda \to 0^+$, $$u_{\lambda} \to v$$ in $C(\mathbb{T}^n)$. 5) To show the above, fix any $w\in \mathcal{W}, v\in \mathcal{V}.$ Choose $\lambda_j o 0^+$ so that $$u_{\lambda_i} \to v \quad \text{in } C(\mathbb{T}^n) \ (j \to \infty).$$ Fix any $z\in\mathbb{T}^n$. Fix a $\mu_\lambda\in\mathfrak{M}(z,\lambda)\cap\mathsf{P}_ ho$ for each $\lambda>0$. Note that $$\lambda w + \widetilde{H}(x, Dw) = 0$$ in \mathbb{T}^n , where $H(x,p) := \sup_{\xi} (\xi \cdot p - L(x,\xi) - \lambda w(x))$. By the formula $$\lambda w(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \int (L(x,\xi) + \lambda w(x)) \mu(dx,d\xi),$$ we have $$egin{aligned} \lambda w(z) & \leq \int (L(x,\xi) + \lambda w(x)) \mu_{\lambda} \ & = \lambda u_{\lambda}(z) + \lambda \int w(x) \mu_{\lambda} \ & = \lambda u_{\lambda}(z) + \lambda \int w(x) \mu_{\lambda}. \end{aligned}$$ By passing to a subsequence, we may assume that for some $\mu_0 \in \mathfrak{M}(0)$,
$$\mu_\lambda \stackrel{\mathsf{weak}^*}{\longrightarrow} \mu_0 \ \ (\lambda = \lambda_j o 0^+).$$ In the limit as $\lambda = \lambda_i \rightarrow 0^+$, $$w(z) \leq v(z) + \int w(x) \mu_0(dx, d\xi) \leq v(z).$$ We have shown $$\lim_{\lambda o 0^+} u_\lambda(x) = \max_{w \in \mathcal{W}} w(x).$$ page:10.14