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HAMILTON-JACOBI EQUATIONS AND OPTIMAL CONTROL

Example 1
Consider the eikonal equation

w/(2)| =1 in (~1,1),

with boundary condition u(—1) = u(1) = 0. No C* solution.

This is a Hamilton-Jacobi equation.

This appears in geometric optics and describes the wave front.
In the above case, the light sources are located at = %1 and
the speed of light is assumed to be one.

The right solution should be
u(x) =1 — |z| = min{x — 1,1 — x} = dist (x, {£1}). The
set {x : u(x) = a} is the set of points where the light arrives
after time a coming from {%1}.

In view of the theory of differential equations, this gives a big
problem.

No classical solution, but 3 a right solution.

What is a good generalised (weak) solution?
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People tried to find a good notion of generalized solutions in the
class of Lipschitz functions which satisfy the given equation in the
almost everywhere sense.

v/ ()] =1 ae (—1,1) and u(—1) =u(1l) =0.

Some a.e. solutions
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e Semi-concave a.e. solutions: Kruzkov (after entropy solutions for
conservation laws by Oleinik, Douglis ) — No downward
pointing corner.

The existence of solutions can be a problem in general.
e Viscosity solutions: Crandall-Lions, Crandall-Evans-Lions

Based on the maximum principle: if u, ¢ € C1 and u — ¢
takes a maximum (or minimum) at x, then u/(x) = ¢'(x).

Definition 2 (Preliminary)

u € C(—1,1) is a (viscosity) subsolution of |u’| = 1 (or
|lu’| < 1)in (—1,1) if, whenever ¢ € C*(—1,1) and
(u — @) (&) = max(u — ¢), we have

|¢'(2)| < 1.
For the definition of (viscosity) supersolution, we replace

(max, <) by (min, >). (Viscosity) solution is defined as a
function which has both sub and super solution properties.

page:1.3



max(u — ¢) =0

min(u — ¢) =0

Let u = dist (z, {1}) and ¢ € C'(—1,1). Assume that
max(u — ¢) = (u — ¢)(&) for some &. If & # 0, then
uw'(2) = ¢/ (&) and |¢'(2)| = |u/'(2)| = 1. If & = 0, then
|¢'(#)] < 1.

Instead, if min(u — ¢) = (u — @) (&), then & # 0 and
|¢'(2)] = 1.
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e For classical smooth solutions,

W' =1 «— —|u|=-1.
This is not true for viscosity solutions. For instance,
u = dist (z, {x1}) (resp., u = — dist (z, {x£1})) is a
viscosity solution to |u’/| = 1 (resp., —|u’| = —1), but not to
—|u'| = =1 (resp., |u/| = 1).
e The vanishing viscosity method: when "right” solutions may
have singularities, a classical argument to pick up a "right”solution
(physically meaning solution) is to introduce an artificial viscosity
to the equation. In our example, we consider

—eu' (x)+|u'| =1 in (—=1,1), and wu(£1l) =0, withe > 0.
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This has a C? solution
||

us(x) =1+ ce": — |z| —ee™ <.

1+ e=1/2, 1/10, 1/100

dist (z, {£1}) = lim w.(x); "viscosity” solution.
e—0t
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Example 3
Given two functions f : R® Xx C — Rand g : R® x C — R",

X(t) = g(X(t), a(t)), X(0) =z,
J(x, ) = /0 e MF(X(t), a(t))dt

Here, X (t) is the solution of the Cauchy problem for the ODE
given by g, J(x, ) is the cost functional, which gives the criteria
for the choice of the control ae. The constant A > 0 is the
so-called discount factor, and the effect of the running cost f is
decreasing with the factor e~** as the time proceeds.

We assume that C is a compact subset of R™, the functions
fs g are continuous on R™ x C, and there exists a constant
C > 0 such that for all z,y € R", ¢ € C,

|f(z, )| V|g(z,c)| < C,
|f(z,¢c) — f(y,c)| VIg(x,c) — g(y,c)| < Clx — y|.
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The set of all measurable functions a : [0, 00) — C is denoted
by C. For any a € C, the Cauchy problem

X(t) = g(X(8),a(t)), X(0) ==z €R"

has a unique solution X (t) = X (t; ¢, ), and the cost functional
J(x, o) is well defined.
The value function V' on R™ is defined by

V(z) = clxréfc' J(x, ).
Note:
@l < [ T oM F(X (1), at))|dE < C/A,
0

and
[V (z)| < C/A.
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Since
X (t;2,0) — X(ty, )| < |z — yle®,

we have
T oo
|J(x, ) — J(y, )| < / e MOz — y|dt + 20/ e Mdt
0 T
< O(Jz — y|e®T + e *T) vT > 0.

If we choose T' > 0 so that |z — y|eCT = e 7 (i.e.,
el = |x — y|~Y/(C+X), the O term becomes
O(|z — y|M(€+M). The value function V is in BUC(R™).
Optimal control theory:
» Find a € C such that V(z) = J(x, a). optimal control!

» Find the value of V.
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Bellman equation The Bellman equation should characterize the
value function V.

r({lé':léc()\u(w) —g(z,¢) - Du(x) — f(xz,c)) =0 inR".

(Du = (0u/8x1,...,0u/dxy,) gardient of u.) If we write
H(z,p,r) = Igleaé((}\’l“ —g(z,c)-p— f(z,¢))
= Ar + Iggg(—g(w, c)-p— f(z,c)),
then the above equation reads H (x, Du(x),u(x)) = 0.
If C = B1(0) C R™, g(z,c) =c, f(x,c) =1and XA =0
(against to the tentative assumption), then
H(z,p,7) = H(p) = |p| =1 (|Du(z)| =1 =0).
Similarly, if C = B1(0) C R™, g(z,c) = g(z)c,
f(xz,c) = f(x) and A = 0, then
H = |g(z)|lp| — f(=) (Ig(z)llp| — f(z) = 0).
Removing the compactness assumption on C, if C = R"™, g = ¢,
f=1lcl?/2+ 1, and X = 0, then
H=1p—1 (4Duf>—1=0).
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A remark is: the Hamiltonians H (x, p, ) for Bellman equations
are convex in p.
Assume that C = {c} (a singleton). Write

f(x) = f(x,¢), g(x) = g(x, c). Assume evrything are smooth.
Then, for = > 0,

V(z) = /OT e_)‘tf(X(t))dt—k/oo e F(X(1))dt

_ / e NF(X ()dt + e / T e N p(X (4 7))t

= / e F(X()dt + e TV (X (7)),
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and
o= [ " e (X (8)dt + e TV (X (7)) — V(X(0)

— /OT (e_)‘tf(X(t)) + jt (e"‘tV(X(t))>) dt

= [T e (X (E) = AVX @) + DVX(®) - 9(X (1) .
It follows that

AV(z) —g(x) - DV(x) — f(x) =0 Vo € R".

If we start with this PDE, the formula of V is a consequence of
the so-called characteristic method applied to this PDE.
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EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY
SOLUTIONS 1
Consider the first-order PDE

(1) F(z,Du(x),u(x)) =0 in Q2 CR".
Definition 1
Let €2 be an open set C R™ and F € C(©2 X R™ X R, R). Let

u € C(2,R). We call w a (viscosity) subsolution (resp.,
supseroslution) of (1) if for any (¢, z) € C1(Q,R) X € such that

max(u — ¢) = (u — ¢)(x) (resp., min(u — ¢) = (u — ¢)(x),
F(z, Dg(z),u(z)) < 0 (resp., F(z, Dg(),u(x)) > 0).

When w is both a (viscosity) sub and supersolution of (1), we call
u a (voscosity) solution of (1).
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u — ¢ max at &

(3

¢ — u min at &

u is tested from above by ¢ at &; ¢ is an upper tangent to u at
&; u is touched from above by ¢ at Z,...

» Subsolution for u € USC(Q, R U {—o0}); supersolution
foru € LSC(©2,RU {o0}).

> ¢ € C=(Q).

» max, min — strict max, strict min.
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Remark 2

1) In general, when w is a (viscosity) solution of
F(x, Du,u) = 0, u may not be a (viscosity) solution of
—F(x, Du,u) = 0. Reverse inequalities.

2) In general, when w is a (viscosity) solution of

F(x, Du,u) = 0, v := —u may not be a (viscosity) solution of
F(x,—Dv,—v) = 0. Testing from the reverse side.
3) Set v := —u. Then w is a (viscosity) solution of

F(x, Du,u) = 0 if and only if v is a (viscosity) solution of
—F(x,—Dv,—v) = 0.
Let p € C1, 4 := —¢, and & € Q.

(u — ¢)(2) = max(u — ¢) <= (v+ ¢)(Z) = min(v + @)
> (v—)(&) = min(v — ¢),

and

F(3, Do(&),u(&)) <0 <= —F(&,—D(@), —v(&)) > 0.
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Theorem 1
The value function V' defined above is a viscosity solution of

(2) Au+ meagc(—g(a:,c) - Du — f(x,c)) =0 inR".

Theorem 2 (DPP)
Let ¢ € R™ and 7 : C — [0, 0o] be a mapping. Then

V(2) = inf /OT e ME(X (1), a(t))dt + e~V (X (1)).

We write

H(x,p,7) = Ar + rggg(—g(w, c)-p— f(z,c)).
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Proof of Theorem 2:

J(x,a) = /OT e MF(X(t), a(t))dt

+ e /oo e MF(X (T +t),a(r + t))dt,
J(x, ) 2 V(z), 0
/Ooo e M F(X (7 + 1), alr + t))dt = J(X(7), (7 +-))
2 V(X(7))-
Proof of Theorem 1: Since C is compact and f, g are
continuous, H is continuous. We only check the supersolution

property by a contradiction argument. Let ¢ € C* and
min(V — ¢) = (V — ¢)(&) for some & € R™. Suppose that

H(z,D¢(£),V(2)) < O.

Replacing ¢ by ¢ + min(V — ¢), we may assume that
min(V — ¢) = 0. Thatis, V(&) = ¢(&).
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V(z) = inf /OT e MF(X (1), a(t))dt + e V(X (1)).

PROOF  Set
W) = inf [ e NFX (@), al®)dt + e VX (D).
Choose o € C so that
V(z) ~ J(z, @),

and compute

7(x) o)
J(zya) = / e F(X(t), o(t))dt + / e (X (b), a(t))dt

(@)

7()
- /0 ™M (X (1), a(t))dt



+ e M@ /00 _Asf(X(s + 17(a)), a(s + 7(a))ds

_ / e ME(X (1), a(t))dt
+ _AT(O‘)J(X(T(Q)), a(T(O’.) + ))

T()
> / e MF(X (1), at))dt + e XTOV (X (1(a)))

> W(x).

Hence,
V(x) > W(x).

Choose av € C so that
() N
W(z) ~ / e MF(X(t), a(t))dt+e V(X (7(a))).
0
Choose 3 € C so that

V(X (1(o)) = J(X(7()), B).
Then



W(x) ~ /OT(Q) e MF(X (1), a(t))dt + e O I (X (7)), B)

-/ " e (x (0, eyt

e [N X (1 X (r(), 9), 6(0)
- / e M F(X (1), a(t))dt

4 e AT@) /T N e~ Ms—7(0)) o

X F(X (s — (), X(r(a)), 8), B(s — 7(a))ds

_ /OT(Q) e M (X (), a(t))dt

+f Z) eMF(X (t — (e), X (r(e), B), B(t — 7(a)))dt

Set



B0 fort € [0, T())
v(t) = {ﬂ(t —1(av)) fort € [T(ax),0),

and note that

X(t,x, ) fort € [0, 7()),

Hhma) = {X(t —7(0), X(r(@),) for t € [r(00),50),

to find that

()
W(x) = /0 e_Atf(X(t,ZB, 7). (¢))dt

+/oo e Mf(X(t,z,7),(t))dt
(a)

= J(z,7) > V(2).

Thus, W (x) > V (x). The proof is complete. B



By continuity, for some » > 0,
H(z,D¢(z), dp(x)) < 0 Vx € B,(2).
Define 7 : C — [0, co] by
T=7(a):=inf{t > 0: X(t;2,a) € OB, ()}.
By DPP, for each € > 0, da € C such that
V(&) +e> / e ME(X (8), a(t))dt + e TV (X (7).
0
Note that
V(2) = ¢(2), V(X(7)) = o(X(7)),
and, since | X| = |g(X)| < C,
r>z,

which implies
T

T (o]
/ e Mdt > / e Mdt.
0 0
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We replace € by

T

[e}
e/ e Mdt,
0
to obtain

b(#)-+e /0 e Mgy s, /0 T e ME(X (1), a(t))di+e= (X (1)),
and, if 0 < e K 1,
o< [ "o (e = F(X (), a() + AB(X (1)
— g(X (1), a(t)) - DO(X (t)) ) dt
< /OT e—”(s + H(X(t), Do(X (L)), ¢(X(t)))dt <o.

Hence, a contradiction.
Theorem 1 is an existence theorem.
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If we write
H(m,p) = Izleaé((_g(m7 C) Y Za f(m7 C)),

then
|H (z,p) — H(y,p)| < Clz — y|(|p| + 1),

|H (x,p) — H(z,q)| < C|p — q|.

Under the above hypotheses on a general H, consider the HJ
equation

(2) Au+ H(x,Du) =0 inR".

Theorem 3 (Comparison theorem)

Let v, w € BC(R™) be sub and super solutions of (2),
respectively. Then, v < w in R™.

The value function V' is a unique solution in the class BC(R™).
A PDE characterization of value functions.
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1) Fix any € > 0. Set v(x) = v(x) — e(x), where
(x) = (|z|? + 1)/2. Note:

Ave + H(x,Dv.) < Av+ H (:c Dv — <m>>

< v + H(xz,Dv) 4 Ce.
Replace ve by ve = v — e({x) + A71C), to get
Ave + H(x, Dve) < Av — eC + H(x,Dv) +eC < 0.
Enough to show that ve < w inR™foralle >0 (0 < e K 1).
2) Fix € > 0. Since v, w are bounded,
lim (ve — w)(x) = —oo.

|| —
Choose R > 0 so that

(ve —w)(x) <0 Vx € R"\ Bpg.
3) To complete the proof, we argue by contradiction. Suppose:
sup(ve — w) > 0,
R'n

which implies
S := sup(ue — w) > 0.
Bgr
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4) If we have w € C?, by chance, then, by the viscosity
properties,

Ave(z)+H (x, Dw(x)) < 0, and Aw(x)+H (xz, Dw(x)) >0

at any maximum point @ of v — w. (ve is tested by w from
above and w is tested by w itself from below. ) Subtracting one
from the other yields

A(ve — w)(x) < 0 at any maximu point  of ve — w.

This is a contradiction: AS < 0.

5) In the general situation, a standard technique to overcome
the lack of regularity is the so-called doubling variable method. For
k € N, consider the function

<I)k:(wa y) = Us(x) - w(y) - klw - y|2

on K := Br X Bpg. Let (g, yr) be a maximum point of this
function.
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6) Observe that

max ®;, > max P (x, ) = max(ve — w) = S,
K :BEFR §R

and hence,
S < @y (ks yr) = ve(@r) —w(yr) —k|zr—yi|* < C1—k|or—yi|*.
We may assume by passing to a subsequence that for some
(zo;Yo) € K,
lim(zg, yr) = (20, Yo)-
Since {k|zr — yr|?}x is bounded, we find that
Lo = Yo,
and, moreover, from the above,
S < ve(wo) — w(wo) — lim sup klak — el

which implies that

(ve —w)(xo) =S and lilgn k|lxy — yr|? = 0.
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The first identity above implies that 9 € Bpg (interior point).
Passing to a subsequence, we may assume that

Tk, Yr € Br Vk.

Note that the functions

x = Bp(x,yr) = ve(x) — k|lx — yr|? — w(yr),

y = —®p(z,y) = w(y) + kly — ox|* — ve (k)
take, respectively, a max at € = xg and min at y = yg. By the
viscosity properties,

Ave(zk) + H(xk, 2k(zr — yr)) < 0,
Aw(yk) + H(yk, —2k(yx — xx)) > 0.

Hence,

0 > A(ve(xr) —w(yx))+ H (xp, 2k(xr —yr)) — H (yr, 2k(xr —Yr))
> AS — Clzr — yr|(2k|xr — yr| + 1).

In the limit K — oo, AS < 0, a contradiction.
page:2.12



e Dirichlet problem. Let 2 C R™ be an open set. Let f, g be as
above. We introduce a function h on 9€2, which is called the
pay-off in the framework of optimal control. The cost functional is:

J(z,a) = /0 " e NF(X (1), a(t))dt + e Th(X (7)),

where 7 = inf{t > 0 : X (t) € R™ \ Q}, called the exit time.
The value function V is given by

V(z) = ;réfc' J(x, ).

The continuity of V' can be a big issue.

h>1
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When everything goes fine, u = V satisfies the Dirichlet
problem

Au + max.ec(—g(z, ¢) - Du— f(z,c)) =0 in £,
u=h on 91N.

In the above choice of 7, X have to stop at the first hitting time
to 99Q.
Another possible choice of T is:

F=inf{t >0: X(t) € R"\ Q}.
Here X stays in Q until it first exits from €.
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EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY
SOLUTIONS II
Consider the time-evolution problem

(1) ut + H(x, Dzu) =0 in R™ X (0,00).

If we set F(x,t,p,q) := q+ H(x,p) for
(xz,t) € R™ x (0,00), (p,q) € R™ X R, then the above
time-evolution PDE can be written as F'(z, Du) = 0. The
previous definition of viscosity solutions makes sense for the
current problem.

If H is given as before by

H(z,p) = max(—g(z,c) - p - f(2,¢)),
then our PDE can be written as
r(rzleag((—g(w,c) - Dyu — (—1)us — f(z,c)) = 0.
In view of optimal control, the dynamics is described by
X (s) = g(X(s); a(s)), T(s) = =1, X(0) ==, T(0) =t,
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and the cost functional is:
t
T@,ta) = [ £(X(s),als)ds +h(X (),

where h € BC(R"™).

t
(z,1)
/%( (s),T(s))
@) T

A kind of the Dirichlet problem: 7 = t.
The value function is now:

(2) V(x,t) = ,;Iég J(z, t, ).
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Theorem 1

Assume that f, g satisfy the Lipschitz condition as before
and that h € BC(R™). Then,

» for any 0 < T' < oo, the value function V, given by (2),
is bounded and continuous on R™ x [0, T'].

» u = V is a (viscosity) solution of the Cauchy problem

(3) wut+ H(x,Dzu) =0 inR" x (0,00),
(4) u(-,0) = h on R"™,

where H (z, p) = maxcEC(_g($7 c)-p— f(z,0)).

This can be regarded as an existence result for the Cauchy
problem (3) — (4). Here h is the initial data.

We have a comparison theorem which covers the above Cauchy
problem, and the consequence is that V' is a unique solution of

(3)-(4).
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Let H be a (general) continuous function on
R™ X [0, 00) X R™ such that for some constant C' > 0,

|H(a:,t,p) - H(a:ataQ)l S C|p - Q|a
|H(z,t,p) — H(y,s,p)| < C(lz —y| + [t — s|)(Ip| +1).
Let 0 < T < oo. Consider the HJ equation

(5) ut + H(x,t, Dyu) =0 inR™ x [0,T).

Theorem 2

Under the above assumptions on H, let
v, w € BC(R™ X [0,T)) be, respectively, a sub and
supersolution of (5). Assume moreover that
v(x,0) < w(x,0) for all z € R™. Then, v < w in
R™ x [0,T).
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PROOF.

1) Enough to show that forany 0 < S < T, v < w on
R™ x [0, S). Fix any S > 0.

2) Fix any € > 0. Set ve(z,t) = v(x,t) — e(x), where
(x) = (Jz|*> + 1)*/2. Enough to show that v, < w on
R™ X [0, S). Note that

Vet + H(x,t, Dyv.) < vy + H(z,t, Dyv) 4 Ce.
Replace ve by ve(x,t) = v(x,t) — 6{(x) — Cet, and note that
Vet + H(z,t, Dyve) < vy — Ce + H(zx,t, Dyv) + Ce < 0.

Replace again ve by v(z,t) — e(x) — Cet — g=;, and note that

Vet+H(x,t, Dv.) < vi— ;—Ce+H(z,t, Dv)+Ce < —n,

€
(5§ —1)
where n = eS—2.

Enough to show that v. < w on R™ x [0, S).
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5) We argue by contradiction: suppose that sup(ve — w) > 0
and will get a contradiction. Since

lim (ve — w)(x,t) = —oo uniformly in ¢,
|| —o00

lim (ve — w)(z,t) = —oo uniformly in x,
t—S—

(ve — w)(x,0) < 0 for all x € R",
JdR > 0,6 > 0 such that
(ve—w)(z,t) < 0 forall (z,t) € (R"X[0,85))\(BrXx(d,S—6)).
In particular,

max (ve —w)= _max (ve —w) > 0.
BrXx[8,5—6] BRrX(8,5—9)

6) If we C1, then, at any maximum point of v — w,
wy + H(x,t, Dw) < —n,
wy + H(x,t, Dw) > 0,
which yields a contradiction.
In the general case, we use the doubling variable method, to

obtain a contradiction.
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‘I)k(wata Y, 5) = 'Us(wat) - w(ya S) - k:(lx - y|2 + |t - 8|2)'
(ks trs Yy Sk) @ max point of @y
lim (xkvtka Yk, sk) == ($0$ g, to, tO),
k— oo
(ve — w) (@0, to) = max(ve — w),
lim k(|zx — yk|® + |t — sx|?) = 0,
k— oo
2(ty — sk) + H(xk, tr, 2k(xr — yr)) < —n,
2(ty — sk) + H(yk, sk, 2k(zr — yr) > 0.

—n > H(xk,y tky .. .) — H(Yky Sky - - -)
> —C(lzk — yr| + |t — skl) (2k|zk — yk| +1) — 0



EXISTENCE, UNIQUENESS AND STABILITY OF VISCOSITY
SOLUTIONS III
e Stability:
Well-posedness (Hadamard) = existence, uniqueness, stability.
Consider the general first-oder PDE

(1) F(x,Du,u) =0 in €,
where © C R™ is an open set and F € C(£2 X R™ X R).

Theorem 1

Let {ur} be a sequence of continuous functions on €2
converging to a fucntion uw in C'(R2). If every uy is a
(viscosity) subsolution (resp., supersolution, solution) of (1),
then so is the function u.

PROOF. Only the subsolution case. Let ¢ € C1(£2) and assume
that max(u — ¢) = (u — ¢)(&). By adding the function
|z — £|2 to ¢ (notice that D|z — £|? = 0 at * = &), we may
assume that max is a strict max.

page:4.1



Choose 0 < r < 1 so that B,(&) C Q. Let x be a
maximum point of (ux — @)|g, (). Because of the uniform

convergence on B,.(&) and the strict max,
limx, = .
k

We may assume that xp € B, (&) (interior point). Since uy is a
subsolution, we have

F(xi, Dé(xr), ur(zr)) < O.
Sending k — oo yields

F(2, D$(2),u(Z)) < 0.
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The following is a straightforward generalization of the above
theorem.

Theorem 2

Let {ur} be a sequence of continuous functions on
converging to a fucntion u in C(R2). Let {F}} be a sequence
of continuous functions on 2 X R™ X R converging to a
function F in C(£2 X R™ x R). If each ug is a (viscosity)
subsolution (resp., supersolution, solution) of
Fi.(x, Du,u) = 0 in €2, then w is a (viscosity) subsolution
(resp., supersolution, solution) of F(x, Du,u) = 0 in £,

Let v, w € C(N) be subsolutions of (1) and consider the
function v V w = max{v,w}. This function v V w is also a
subsolution of (1).




Let F be a family of subsolutions of (1). In general,
w(x) := sup{v(x) : v € F}

does not define a continuous function on Q. w(x) can be 4o00.
Given a function f on €2 which is locally bounded (above), we
define the upper semicontinuous envelope f* by

f*(z) := inf{g(z) : g € C(Q), f < g on O}
= lim sup{f(y) : |y —z| < r}.

Similarly, the lower semicontinuous envelope f, of f is defined by

f«(x) :=sup{g(x) : g € C(Q),f > g on Q}
= Tl_i{(r)g inf{f(y) : ly —z| <r}

It follows

f* € USC(RN), f.€ LSC(), f.<f< "
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Definition 1

Let u : 2 — R be a locally bounded function. We call u a
(viscosity) subsolution (resp., supersolution) of (1) if w* (resp.,
u,) satisfies the requirement of being a subsolution (resp.,
supersolution) of (1). We call u a solution if it is both a
subsolution and a supersolution of (1).

Theorem 3
Let F be a family of subsolutions of (1). Set

u(x) = sup{v(x) : v € F} forx € Q.

Assume that u is locally bounded in 2. Then w is a
subsolution of (1).

e An assertion parallel to the above for supersolutions holds.
e If u is a subsolution of (1), then v = —w is a supersolution of
—F(x,—Dv,—v) = 0in 2, and vice versa.
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PICTORIAL PROOF:

Theorem 4

Let {vk}ken C USC(£2) and locally uniformly bounded
in Q. Let vy be a subsolution of (1) for any k. Assume
VE > Vg1 on 2 for all k. Set

v(x) = lién vi(x) = irlif vg(x) forx € Q.

Then, v is a subsolution of (1).
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¢(2) = u*(Z),
o(z) > u*(z) + & — &%,
(v — @) (zk) = max(vy, — @),
vi(2) > u*(2) — 3,
v, < ut.
(vp — @) (zx) < (u* — @) (x1) < —|a — &%,
|
(vi — D) (zx) > (vg — ) (&) > —5-

Hence,
lilgn T = &, lilgn v () = ¢(T) = u* ().

F(xg, Dé(xx),vi(2x)) <0 = F(&, Dop(2),u”(£)) < 0.



CORRECTION OF THE PREVIOUS SLIDE
The choice of vy, (and yg):

limy, =2,  v(ys) > (&) — %
d(2) = u™ (&),
P(x) > u*(x) + | — 2%,
(vg — @) (zx) = max(vy, — ¢),
v < u*.
(v — @) (zr) < (u* — @) (xr) < —|zi — 23,
I
(vy — &) (@k) > (vj — ) (yk) 2 —%-

Hence,
liin T = &, liin v (zk) = () = u™(&).

F(zk, Db(r), vi(@r)) <0 = F(&, D(@),u* (&) < 0.



PROOF. Let ¢ € C1(Q) and
max(v — ¢) = (v — ¢)(&) = 0 (a strict max).

Then, sup(vg — @) J 0 as kK — oo. Look at (vg — ¢) 4, which
is in USC(£2) and | 0 as k — oo. Dini's lemma implies that the
convergence is locally uniformly on €2. The situation is now same
as in the first stability theorem.

Theorem 5 (Barles-Perthame, half-relaxed limits)

Let {vk }ren be a sequence of functions on €, which is
locally uniformly bounded in €. Let vg be a subsolution of
(1) for any k. Set

v(z) = rl_i)I(I)lJr sup{ve(y) : k> I, |[y—z| < r} forz € Q.

Then, v is a subsolution of (1).
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PrRoOOF. Let & = R™. Let » > 0. Note that for any
¢ € B,(0), ¢ — vi(€ + x) is a subsolution of
inf F(x+n,Du(x),u(x)) =0 in Q.
nEBr(O)
So,  — sup{vr(y) : k > %, ly — x| < r} is a subsolution of
the above HJ equation. The stability under monotone convergence
(Theorem 4) completes the proof. O

Theorem 6 (Perron’s method)

Let f, g be, respectively, a sub and supersolution of (1).
Assume f € LSC(f2) and g € USC(f2) and that f < g in
Q. Set

u(x) =sup{v(z) :v eS8, f<v<g in N} forx € Q,

where 8~ = the set of all subsolutions of (1). Then u is a
solution of (1).
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PROOF. Since, by definition, u is a pointwise sup of a family of
subsolutions, it is a subsolution.

Let ¢ € C! and min(u, — ¢) = (ux — @) (&) for some
& € Q. Assume that min = a strict min. Two cases:

Case 1: ¢(&) = g«(&). Then, ¢ < us < g« in Q. ¢ touches
g« from below at &. Since g € ST, where ST = the set of all
supersolultions of (1), we find that F(&, D¢(&), g«(£)) > 0
(F(&, Dp(2), un(2)) > 0).

Case 2: (&) < g«(&). Suppose by contradiction that
F(#, Do(2), 6(2)) < 0.

G+

The function max{u, ¢ 4+ €} (0 < € K 1) is against the
maximality of w. O
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Let H be a Hamiltonian satisfying the Lipschitz condition: for
some constant C' > 0,

|H($,t,p) - H(:Bataq)l S C|p_ Q|,
|H(z,t,p) — H(y,s,p)| < C(lz —y| + [t — s|)(Ip| + 1).

Theorem 7

Let H = H (x, p) satisfy the above Lipschitz condition as
well as the boundedness: |H (z,0)| < C. Let A > 0. There
exists a solution uw € BC(R™) of

(2) Au+ H(x,Du) =0 inR".

PROOF. Set f(x) = —C/A, g(x) = C/X. Then f, g are,
respectively, a sub and super solultion of (2). Set
u(@) = sup{v(z) i v €S, f<v < g inR",

where 8~ =the set of all subsolutions of (2). By Perron’s
method, w is a solution of (2).
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By the comparison theorem, applied to a subsolution u* and a
supersolution u,, we find that u* < u, in R™, from which
u < u* <ue <wuinR™. Thatis, u = u* = u, and hence,

u € C(R™). O

Theorem 8

Let H satisfy the above Lipschitz condition and the
boundedness: |H (x,t,0)| < C. Let h € BC(R™). Then
there exists a solution u € C(R™ X [0, 00)), bounded on
R™ x [0,T] for any T' > 0, of

3) us + H(x,t, Du) =0 inR"™ X (0,00),
u(-,0) = h onR".

PROOF. We may assume that |h(x)| < C. Set
go(ac,t) = C(l + t) and fo = —do,
and note that f, g are, resp., a sub and super solutions of
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Want to have a sub and super solutions f, g such that
f(-,0) = g(-,0) = h. Fixany y € R™, € > 0 and choose a
constant A(y,e) > 0 so that

|h(z) — h(y)| < e+ A(y,e)|x — y| V.
Note:
|H(z,t,p)| < |H(z,t,0)| + Clp| < C(1+ |p|).
and choose a constant B(y,e) > 0 so that if |p| < A(y,e€),
|H (x,t,p)| < B(y,¢)-
Set

gyﬁ(x’t) = h(y) +e+ A(y,e)|z — y| + B(y, e)t,
fye(z,t) = h(y) — (e + A(y, €) |z — y| + B(y,e)t),

and note that fy ¢, gy are, resp., a sub and super solution of our
HJ equation.
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Moreover, we have
fye(@,t) < h(z) < gye(w,t) V(z,i),
|fy,s(ya 0) - h(y)l = |gy,s(ya 0) - h'(y)l = €.
Finally, define g, f : R™ X [0,00) — R by

g(x,t) = go(zx,t) A 1yn€f Gy.e(z,t),

f(z,t) = fo(z,t) Vv s;lep fy,e(x,t).

Then,

gesSt, fes8 , ge USC, fe€ LSC,

f,g are bounded on R™ x [0,T] VT < oo,

f(z,t) < h(z) < g(=,t) V(z,t), f(-,0) =h=gC(:0).
Perron’s method yields a solution w such that f < u < g, which
implies that u*(+,0) = wu«(+,0) = h on R™. The comparison
theorem shows that 4* = u, = v and u € C. O
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HOMOGENIZATION OF HAMILTON-JACOBI EQUATIONS I
(Lions-Papanicolaou-Varadhan)
Consider the HJ equation

(1) ug+ |Du|? — f(x/e) =0 in R™ x (0,00), with € > 0,
together with initial condition
(2) u(x,0) = h(x) forx € R".
The Hamiltonian H is:
H(z,p) = |p|* — f(=),
where f € C(T™) is assumed, and our HJ equation reads
ut + H(x/e, Dgyu) = 0.

The main question here is: If u. is a solution of the above HJ
equation, what happens with u. as € — 0+.
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NN\ @) =sinzma,
\/\/\/\/\/\/\/\ f(5x) =sin5 - 27z,
MMM /(.00) — 51100 - 2

e Formal expansion:
Suppose that we have an expansion

ue(x,t) = uo(x, t) + eus(x/e,t) + e®uz(x/e,t) + -+ - .
Insert this into the HJ equation, to get
0 = uo(x,t) + eupt(z/e,t) + O(?)
+ H(x/e, Dyuo(x,t) + Dyuq(x/e,t) + O(e)).
Because of a high oscillation when e — 0+, one may look at x/e

as if an independent variable y.
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Then, in the limit € — 0+, the above asymptotic identity
suggests that for some ug, u1,

ue(x,t) = uo(x,t) ase — 0+,
wo,t + H(y, Dyuo(x,t) + Dyuq(y,t)) =0 forall z,y,t.

If we have a solution ug, u1 of the above identity, we are in a
good shape to conclude the above convergence. Thus, the
question is how to find wg, w1 which satisfy

wo,t + H(y, Dyuo(x,t) + Dyuq(y,t)) =0 forall z,y,t.
If we can write
H(p) = H(y,p + Dyus(y, 1)),
then the above equation can be stated as

Uo,¢t + H(Dqu) = 0.
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Here a big question is when we can write

H(p) = H(y,p + Dyu1(y,1)).
We consider this as a solvability problem: given p € R™, find
(e, v) € R x C(T™) such that
(3) H(y,p+ Dv(y)) =c inT"

(In fact, a crucial point is not the periodicity of v, but the
sublinear growth of v. ) Notice that the correspondence:
(c,v) ¢+ (H(p),ur).

The problem of solving a solution (¢, v) is called a cell problem.
(Aslo, ergodic problem, additive eigenvalue problem, weak KAM
problem)

Example 1
Consider the case n = 1 and f(x) = — cos(27x). The case
p=0:
|ve(2)|? = ¢ — cos(2mx).
For the solvability, RHS> 0 <—= ¢ > 1.
page:5.4



When v is a solution of
(3" H(y,p + Dv(y)) =c inR",
then w(y) = p -y + v(y) is a solution of
H(y, Dw(y)) =c¢ in R™.

The sublinear growth of the solution v identifies the p term in the
equation.



If ¢ > 1, then RHS > ¢ — 1 > 0, which implies NO periodic
(viscosity) solution: any function is tested from below at its
minimum point, if any, by constant functions.

Thus, c = 1. If ¢ = 1, then

|ve(z)| = /1 — cos(2wx) = V2| sin(wx)).

Integrate, to get

2
v(x) = constant £ cos(mx) for0 <z <1.
™

Lo A
N

NO
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The periodic function

2 1
v(z) = - cos(mx) for — 2 <z< -,

with period 1, is a viscosity solution for p = 0 and ¢ = 1.
For general p € R, we have to solve

lp + vz| = /e — cos(2mx),

with ¢ > 1, which reads

vy = —p £ /¢ — cos(27x).
Letc =1 and
2
v(x) := —pw—|—£(1—cos(7ra:)).
™
Note that v(0) = 0 and solve
v(—1) =0,

to find that

—p=ﬁ- SN

™

-
o




2\/_

So, as far as |p| < , the problem

|p + vz|?> = 1 — cos(2mx)
has a periodic viscosity solultion. Moreover, if |p| > 2‘/_

|p + vz|? = ¢ — cos(27x)

has a periodic solution v only when ¢ > 1.
We will know that if v is a (viscosity) solution of

|p + vz| = V2|sinmx|,

then v is Lipschitz continuous and satisfies the equation in the a.e.
If it is periodic with period 1, then

= \/ifolsinﬂ'ccd:z: = zﬂﬁ,

1
|p + vz|dx
/0 > ’fol(p+v:c)dw‘ = |pl.
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As a function of p, ¢ = H(p) and, in the above case of f,

=1 if |p| < 22,

> 1 otherwise .

H(p) {

In homogenization theory, H is called the effective Hamiltonian.

Some properties of H:
» H is a continuous function on R.
» H is a convex function on R.

» H is coercive on R. That is, limy,_,o H(p) = oo.
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Theorem 1

Assume that h € BUC(R™). Then there exists a unique
solution ue on R™ X [0, co) of the Cauchy problem (1) — (2)
such that u, € BUC(R™ X [0,T]) for every T' > 0. Also,
there exists a unique solution w on R™ X [0, co) of

" {uz —|—0§{£Dhmu) = (; in R x (0, c0),
u(-,0) = on R"™,

such that u € BUC(R™ x [0,T)) for every T' > 0.
Furthermore, as € — 0+,

ue(x,t) — u(x,t) locally uniformly on R™ x [0, c0).
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e The main steps in the proof of the convergence:
> Show that {uc}ce(0,1) is unif-bounded and equi-continuous
on R™ x [0,T] VT > 0.
> vi=limj Ue; for some £; — 0+, where the
convergence is locally uniform on R™ X [0, c0).
» Show that v = u.
e Method of purterbed test functions (Evans).
To show the last step of the above list, we need to prove that v
is a solution of vy + H(Dgv) = 0 in R™ x (0, c0).
Let b € C1(R™ x (0, 00)) and assume that v — 1) takes a
strict maximum at (&, #). Fix a compact neighborhood
K C R™ x (0,00) of (2,1).
Classical argument: Let (x¢,t:) € K be a maximum point of
ue — ¥ on K. We have

lim (zc,t.) = (&, ).
e—0+
For sufficiently small € > 0, we have (x¢,t.) € int K and

"/’t(wea te) + H(we/e, D:c¢(3367 te)) <o0.
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This way, we can show that v is a subsolultion of
vy + miny H(y, Dyv) = 0 and a supersolution of
vy + maxy H(y, Dyv) = 0. This is not enough to conclude that
v =u.

The formal exapansion suggests that v(x,t) 4+ ew(x/e) should
be a good approximation of ue.

Set p = Dyp(&,1). Let w € C(T™) be a solution of

H(y,p + Dyw(y)) = H(p) fory € T".
Temporarily, we assume that w € C' and consider the function
ue(z,t) — P(x,t) — ew(x/e).

Let (zc,t:) € K be a maximum point of this function. Then
lim (zc,t.) = (&, 1),
e—0+

and if € > 0 is small enough, (z¢,tc) € int K and

¢t(mev te) + H(we/sa Dw'l;b(mev te) + D'w(me/s)) <o.
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For some €; — 0+, we may assume that for some § € T",

lim x;/e; =9 (modZ"™)

j—oo
Sending €; — 0+ yields
Yu(2,£) + H(§, Dotp(2, 1) + Dw(g)) <0,

while we had

H(y’ Dm'ﬁb("%v f) + Dyw(y)) = H(Dw¢(fﬁ7 E)) for y € T".

Thus,
P (&, 1) + H(Dgp(&,t)) <0,

proving that v is a subsolution of v; + H =0.

In general, we have only the Lipschitz regularity of w and we
need to use the doubling variable argument.

Similarly, we conclude that v is a supersolution of v; + H = 0.
Thus, v = u. O
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HOMOGENIZATION OF HAMILTON-JACOBI EQUATIONS 11
Consider the equation
(1) ut + H(x,x/e, Dyu) =0 in R™ X (0,00),
where
» H e C(R™ x T™ x R™).
» H(x,y,p) is bounded and uniformly continuous on
R™ x T™ x Bp for every R > 0.
» H is coercive, i.e.,

lim H(x,y,p) = oo uniformly in (x,y).
|p|—o0

The cell problem is: given (z,p) € R2", we solve
(c,w) € R x C(T™) such that
(2) H(z,y,p + Dyw(y)) =c fory € T".

Theorem 1

Under the above hypotheses on H, there exists a solution
(¢, w) for each (x,p) € R2™. The constant c is unique and
defines a function H (x,p). That is, H(z,p) = c.
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A standard proof goes this way: consider the discounted problem
3) Aw+H(z,y,p+ Dyw) =0 inT", with A >0,

and send A — 0+.

1) Choose C > 0 so large that |H (x,y,p)| < C and observe
that A=1C (resp. —A~1C) is a super (resp. sub) solution of (3).
Perron’s method yields a solution wy of (3).

2) By comparison, |wx| < A71C (and hence, A|wy| < C) on
™.

3) By the coercivity, choose L > 0 so that if |g| > L, then
H(xz,y,p+ q) > C for all (z,y). Since
H(x,y,p+ Dywy) < —Awx < C, we have |[Dwy| < L. This
implies that wy is Lipschitz continuous with Lipschitz bound L.

4) Fix yo € T™. the family {wx — wx(yo) }a>o0 is
unif-bounded and equi-Lipschitz. We may choose A; — 0+ so
that, as A; — 0+,

Ajw}\j (yo) = —c (3c € R),
wx; — wx;(Yo) = w (Jw € Lip(T")).
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To repeat, as Aj — 0+,

Ajwa; (o) — —c (e € R),

wj 1= wx; — wx; (Yo) = w (Jw € Lip(T")).
Then:

Ajwj + H(z,y,p + Dyw;) = —Ajwx;(yo)-
In the limit kK — oo,

H(xz,y,p+ Dyw) =c fory € T".
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We have used the following regularity results.

Theorem 2
Let 2 C R™ be open and convex. Let F € C(Q2 X R™)
satisfy the condition that 3R > 0 such that

F(x,p) >0 if|p| > R.

If v € USC(N) is a subsolution of F'(x, Du) = 0 in €2,
then |v(z) —v(y)| < R|lx — y| forall z,y € Q.

PROOF. Fix z € @ and r > 0 so that Bs,.(z) C 2. We claim
that
[v(z) —v(y)| < Rlz —y| Va,y € Br(2).

This is enough to conclude the proof.
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graph of g

|
|
|
|
|
|
|
|
|
:
|
0 4r

Let g : [0,47) — [0, 00) be a smooth function such that
g(t) =tfor0 <t <2r g'(t) >1forall 0 <t < 4r, and
limy_, 4,- g(t) = oo.
For each fixed y € B,.(z) and € > 0, consider the function
¢:x— v(y)+ (R+¢e)g(|lz — y|) on Bar(y) C Bsr(2).
If v(x) < ¢(x) on Byr(y), then
v(z) —v(y) < (R+¢€)|x — y| for all z € B,(z) C Bar(y).
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Otherwise,
The slope of ¢ > R + ¢,

F(z,p) >0 if [p| > R.
Hence,

F(z,D¢(x)) > 0.

Theorem 3

Let FF € C(R™ x R™) and a < b. Assume that
F € BUC(R™ x BR) for any R > 0. Let v,w € B(R"™)
be a subsolution of F'(x, Du) = a in R™ and a supersolution
of F(x, Du) = b in R™, respectively. Assume that either v
or w is Lipschitz continuous in R™. Then, v < w in R™.
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PRrROOF. We consider only the case when v € Lip. Choose

g€ > 0 be such that a + € < b. Choose § > 0 small enough so
that vs(x) := v(x) — d(x) is a subsolution of

F(x,Du) = a + e in R™. This is possible since v € Lip and
F € UC(R™ x BR) for any R > 0.

We only need to prove that v < w,. By contradiction, we
suppose that sup(vs — wy) > 0. We fix » > 0 large enough so
that

vs —wx <0 onR"™\ B,.
Consider the function
By (z,y) = vs(z) — wi(y) — klz — y|?
on B, X B,. Let (z,yx) be a maximum point of ®j. Let
L > 0 be a Lipschitz bound of the function vs and note that

Pp (s Yr) 2> Pr(Yr, Yi),
which reads
klzr — yi|® < vs(xx) — vs(yr) < Llzk — yl-
This yields
klzy — yr| < L.



With this estimate in hand, we go as in the proof of the previous
comparison theorems, to find for sufficient large k,

F(xk,2k(xr —yr)) < a-+e and F(yk,2k(xr —yr)) > b,
and, along a subsequence,
lim(zk, y) = (xo,x0) for some xg € B,.
We may assume that, after taking a further subsequence,
lim 2k(xr — yx) = po for some pg € R™.
Consequently,
F(xo,po) < a+¢e <b < F(xo, po)-

This is a contradiction. O
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Recall Theorem 1:

Theorem 1
Under the hypotheses above on H, there exists a solution
(¢, w), for each (x,p) € R?™, of

(2) H(xz,y,p+ Dyw(y)) =c fory € T".

The constant c is unique and defines a function H(x,p).
Thatis, H(xz,p) = c.

PROOF OF THE UNIQUENESS. Let (¢, w) and (d,v) be
solutions of (2). If ¢ < d, then, by Theorem 3 (the comparison

theorem),
w+C<wv inT?,

where C' is an arbitrary constant, which is a contradiction. Hence,
we have ¢ > d. By symmetry, we have d > c. O
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Theorem 5

Under the above hypotheses on H, the effective
Hamiltonian H has the properties:

» H € BUC(R™ x BR) for every R > 0.

» H is coercive, i.e.,

lim H(x,p) = oo uniformly in z € R™.

|p|—o0

1) We have

H(x,p) = min{c € R : 3z € Lip(T") s.t.
H(xz,y,p+ Dz) <c inT"}.

Let w € Lip(T™) be a solution of
H(z,y,p + Dw(y)) = H(z,p) in T. If ¢ > H(x, p), then
H(x,y,p + Dw(y)) < c (subsolution) in T™. If z € Lip(T™)
be a subsolution of H(x,y,p + Dz(y)) < cin T™, with
c < F(az,p), then, by the comparison theorem, z + C < w in
T™ for all C' € R, which is impossible.
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Thus, the formula above is valid.
2) Set
myg := inf H > —oo.

Then
H(x,p) > mg forall (x,p) € R?".

(H(x,y,p + Dw(y)) = ¢, with ¢ < my, cannot have a
solution w.)
Fix R > 0. Set

Mpgr = sup H(z,y,p).
x,y,|p|<R

Note that z(y) = O satisfies

H(.’B, Y,p+ Dz(y)) < Mg, if |p| <R
and that

H(xz,p) < Mg forallz € R", p € Bg.

Thus,
H is bounded on R™ x Br, VR > 0.
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3) Fix R > 0 and let Mg > 0 be as above. There is L > 0
such that
H(xz,y,7) — Mg >0 if|r| > L.
Fix any (x,p) € R™ X Bpg. Let w be a solution of
H(z,y,p+ Dw(y)) = H(z,p) inT".
Since H(z,y,p + Dw(y)) < Mg (subsolution), the function w
is in Lip(T™), with Lipschitz constant < L + |p| < L + R.
4) Set K = 2R+ L+ 1 and note that H € UC(R?"™ x Bg).
Ve > 0, 36 € (0,1) such that for all (z’,p") € Bs(x, p),
H(z',y,p" + Dw(y)) < H(z,y,p + Dw(y)) + ¢,
which assures
H(z',y,p'+Dw(y)) < H(z,p)+e forall (2',p’) € Bs(x,p),
and
H(z',p') < H(z,p) +¢ forall (2/,p') € Bs(z, p).
Notice that & can be chosen uniformly in (x, p, w) in the above.

Thus, H is uniformly continuous on R® x Bgr, VR > 0.
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5) Let w be a solution of
H(z,y,p + Dw(y)) = H(p) in T".
w takes a maximum at some yo € T™, and then
H(x,yo0,p) < H(x,p).

Since H is coercive, this shows that H is coercive.

Theorem 6
Assume in addition that p — H (x,y,p) is convex. Then
p — H(x,p) is convex.

PROOF. To check this, let v and w be solutions of

H(z,y,p + Dv(y)) = H(z,p) inT",
H(z,y,q9 + Dw(y)) = H(z,q) inT".
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Let & € (0,1). Assuming that v,w € C1, we observe that

H(z,y,0(p + Dv(y)) + (1 — 0)(q + Dw(y)))
<60H(z,y,p+ Dv(y)) + (1 — 0)H(z,y,q + Dw(y))
S Hﬁ(m,p) + (1 - O)H(il}, q)'

In general, we deduce (a.e. subsolution or the doubling variable
argument) that v 4+ (1 — @)w is a subsolution of

H(z,y,0p+(1-0)g+Du(y)) < 6H(p)+(1-0)H(q) in T",
which proves that

H(z,0p+ (1 — 0)q) < 6H(z,p) + (1 — O)H(z,q). [
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Theorem 7
Assume

» H € BC(R™ x Bpg) for every R > 0;

» H is coercive, i.e.,

lim H(x,p) = oo uniformly in x;
|p|—o0

> h € LipNB(R™).
Then there is a solution © € Lip(R™ X [0, 00)) of

() ut + H(x, Dzu) =0 in R™ x (0, 00),
u(-,0) = h on R"™.

REMARK. The Lipschitz constant of u is bounded by a constant
which depends only on the "structural bounds” for H and the
Lipschitz constant of h.
sup |H|, inf H, with R > 0.
R™ X Bg R™ X (R™\BRr)
nace'6 TH



PRrROOF. Let Cp > 0 be a Lipschitz bound for h. Set

C =Chp,g:= sup |H(z,p)|.
|p|<Ch

Note that f(x,t) = h(x) — Ct and g(z,t) = h(x) + Ct are
in 8~ and ST, respectively.

Moreover, f(xz,t) < h(z) < g(=x,t) and
f(x,0) = h(x) = g(x,0) for all (x,t). Perron’s method yields
a solution u such that f < uy, < u < u* < gonR"™ X (0,00).
These inequalities imply

u(xz,0) := tgrgl+ u(x,t) = h(x) forall x € R™.
Note:
u(z,t) = sup{v(z,t) :rv eSS ,v<g onR" x (0,00)},
u € USC(R™ x [0,00)), and
u(z,t) = max{v(z,t) tv €S ,v<g onR" x (0,00)}.
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Fix any 6 > 0. Note
(z,t) » u(x,0+t) € S™, < gz, t+9) =g(x,t)+ C6.
Hence,

u(z,t) > u(x,t +6) — Co

and u(xz,6 +t) < u(zx,t) + C6.

Set

U5($,t) — f(m’t) !ftE [035]7
—Cd +u(x,t —9) ift>4.

Observe: u? € 8~ and u? < g.

t=20
h(z) slope= C
hz) = Co —C§ + ulz,t — )
slope= —C'
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Hence,
u(z,d +t) > u(x,6 +t) = u(x, t) — C4,
and t +— u(x,t) is Lipschitz continuous with Lipschitz bound C.
This implies that |u¢| < C, ur > |ue| — 2|ue| > |ue| — 2C, and
|lug| + H(x, Dpu) — 2C < 0 in R™ X (0, 00).
Since F(z,t,p,q) := |q| + H(x,p) — 2C is coercive, u is
Lipschitz continuous on R™ X (0, c0). O

Theorem 8
Let 0 < T < oco. Assume that
H € BUC(R"™ x (0,T) x Bgr) for every R > 0. Consider

(5) ut + H(z,t,Dyu) =0 inR™ x (0,T).

Let v, w be a sub and super-solution of (5). Assume that
v, w are bounded, v, —w € USC, and v(z,0) < w(z,0)
for all € R™. Assume moreover either v or w is Lipschitz
continuous. Then, v < w on R™ x (0,T).
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REMARK. The Lipshictz regularity assumption above can be
replaced by the existence of a Lipschitz continuous solution w such
that v(z,0) < u(x,0) < w(x,0).
REMARK. In the doubling variable argument, we consider the
function
Py (z,t,y,5) = v(z,t) — w(y,s) — k[lz —y|* + (t — 5)?]
and its maximum point (g, tk, Yk, Sk). If v € Lip, then
P (Tks tis Yk Sk) = Pr(Yks Sks Yk» Sk)

yields

kllze — yel® + (tk — sk)?] < v(@k, te) — V(YK 5k)

< C(lzke — ykl| + |t — skl),
and
kllze — ye| + |te — skl] < C”.

This is the boundedness of the gradient of our test functions,

which allows us to take the limit as kK — oo:
2(ty — sx) + H(zg, tr, 2k(zr — yr)) < —1,

2(tk — sk) + H(yk, Sk, 2k(xk — yr)) > 0.
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Theorem 9
Assume that h € BUC(R™). Then there exists a unique
solution ue on R™ X [0, 00) of the Cauchy problem
ut + H(x,x/e, Dyu) =0 in R™ X (0, 00),
u(-,0) =h

such that u. € BUC(R™ X [0,T]) for every T' > 0. Also,
there exists a unique solution w on R™ X [0, c0) of

u; + H(z, Dyu) =0 in R™ x (0, 00),
u(-,0) = h onR",

such that u € BUC(R™ X [0,T)) for every T' > 0.
Furthermore, as € — 0+,

ue(x,t) — u(x,t) locally uniformly on R™ x [0, c0).
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LONG-TIME BEHAVIOR OF SOLUTIONS I

Example 1
Let A > 0. Consider the HJ equation

(1) wg+ Au+ |Dyu)?> — f(x) =0 in T™ x (0, 00).
The Hamiltonian H is:

H(z,p,u) = Au + |p|* — f(=),
where f € C(T™). If there is a solution ug € C(T™) of
(2) H(x, Dyugp,up) =0 inT",

then u(x,t) = wo(x) is a solution of (1).
Let v € C(T™ X [0, 00)) be another solution of (1). By
comparison, we have

(3) 1(w =)y 8)]loo < ||(w — ) (+,0)||cce™ > for all > 0.
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Indeed,
w(z,t) :=v(z,t) + [|[u(-,0) — v(:,0)|lce™™
satisfies

wi + Aw + |Dyw|? — f(x) = ve + Av + |Dy|? — f(x) = 0,
u(+,0) < w(-,0),

and, by the comparison theorem, u(x,t) < w(x,t). Similarly, we
have v(z,t) < u(z,t) + [|u(-,0) — U('aO)HOOe—At'



Theorem 1

Problem (2) has a unique solution ug € Lip(T™). For any
h € C(T™), the Cauchy problem for (1) with initial condition
u(+,0) = h has a unique solution u € C(T™ x [0, c0)).
Moreover, as t — oo,

v(x,t) = uo(x) uniformly and exponentially on T™.

e The conclusion of the above theorem holds true if H is replaced
by a general continuous Hamiltonian H':

» u — H(x,p,u) — Au is nondecreasing for some A > 0.
» For some C > 0 and for all z,y € T™,p € R™*,u € R,

|H($C,p, 'u') - H(y’pa u)l S Cl(l: - yl(lpl + 1)'
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Example 2
(Barles-Souganidis) Consider the HJ equation

ug + |ug + 27| — 20 =0 in T! x [0, 0).

n = 1. The function u(x,t) = sin 27w (x — t) is a classical
solution. The point is

|ugy+27| = |27 cos 2w (x —t) + 27| = 27 cos 2w (x —1t) + 2.

t — sin 27 (x — t) is periodic with minimal period 1.

In this example, the Hamiltonian is given by
H(z,p) = H(p) = |p + 27| — 2m.
Note that p — H (x, p) is convex and coercive.

lim H(p) = oo.
|p[—o00
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Example 3
(Namah-Roquejoffre) Consider

(4) ug + |Dgul? — f(x) =0 in T" X [0, 00).
Assume that for some g € T™ and all x € T™,

(5) (@) > f(wo) = 0.
Set
vo(x) = sup{v(x) : v € §7,v(xo) = 0},
where 8§~ denotes the set of all subsolutions of
H(z, Du) := |Du|?> — f(z) = 0in T".
It follows that 0 < vo(x) < o(|x — xo)).

(| Dvo(x)| < +/f(x).) Moreover, the function vg is a solution of
H(xz,Du) =0in T™,
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Let u € C(T™ X [0,00)) be a solution of (4). Note that
H(xg,p) > 0 for all p € R™. Hence, ut(xo,t) < 0 for all

t € (0,00) and, therefore, t — u(xo,t) is nonincreasing. This
monotonicity property is valid for any zero point € T™ of f. That
is, if we set Z = f~1(0) = {z : f(x) = 0}, then t — u(x,t)
is nonincreasing for all x € Z.

Select C' > 0 so that vg — C < u(+,0) < vg + C on T". By
the comparison theorem, vg — C < u(z,t) < vo(x) + C for all
(z,t) € T™ x [0, 00).

By Theorem 9 in the last lecture, u is uniformly continuous on
T™ X [0,00). Thus, the family {u(:,t) : ¢ > 0} is unif-bounded
and equi-continuous on T".

page:7.5



The monotonicity on Z of w and the unif-boundedness and
equi-continuity properties, together with AA theorem, assure that
for some function ug € C(T™), as t — oo,
» u(x,t) — uo(x) uniformly and monotonically for x € Z,
» u(x,t) — ug(x) uniformly for x € T™ along a sequence
of t.

At this point, it is not clear if ug is a solution of H(x, Du) = 0
in T™. Define

wt(z,t) = {_Suf}{u(w,t—l—s) : s > 0} forall (z,t) € T"X]0, 00).

The function w™ (resp., w™) is a subsolution (resp., a
supersolution) of wy + H (x, Dyw) = 0 in T™ X (0, c0), they
are bounded, uniformly continuous on T™ X [0, co),
t — wT(x,t) (resp., t = w~(x,t)) is nonincreasing (resp.,
nondecreasing) for all x € M, and wt(z,t) = u(x,t) (resp.,
w~ (z,t) = up(x)) on Z X [0,00). Thus, as t — oo, for some
w(:)t e C(T™),

wt(z,t) — w(:)t(ac) uniformly and monotonically on T™.
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It follows that 'w(:)t = ug on Z and that wy (resp., wy ) is a

subsolultion (resp., supersolution) of H(x, Du) = 0 in T™. Also,
by the definition of 'woi, we have 'wg' > wy on T™. Once we
have shown that w{)" = w, on T™, we see easily that ug = woi

on T™, which implies that as t — oo,
u(x,t) — ug uniformly on T™.

We claim that 'w("f = wg on T™. It is enough to prove that

wg <wy on T\ Z.

By adding a large constant to 'woi, we may assume that both 'woi

are positive functions. Let @ € (0,1) and set wg = Owy . Note
that

H(z, Dwg) = 02| Dw |2~ f(z) = 62H (x, Dwg )—(1—6?) f(x),

and that
we(x) < wy (x) on Z.
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Let Zs be the closed d-neighborhood of Z (& > 0) such that

we(x) < wy (x) forall x € Zs.
Set Us := T™ \ Zs. There exists 7 > 0 such that

f(x) >n forall x € Us.
Note that
(1—-6*f(x) > 1 —6*n onUs,

and hence, wg is a subsolution of

H(z,Du) < —(1 —6%)n in Us.
By the comparison principle, we have

wy < wgy on Us (and on T™).

Theorem 2
Let u be a solution of (4). Assume (5) (f > f(xo) = 0).
Then, for some ug € C(T™), as t — oo,

u(x,t) = uo(x) uniformly on T™.
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One can replace H(x,p) = |p|?> — f(x) by a general continuous
H (x, p) which satisfies:

» p — H(x,p) is convex for every & € T™.

» p— H(x,p) is coercive for every x € T™.

» minyepn H(x,p) = H(x,0) Vx € T™,
maxzcmn H(x,0) = 0.

Some convenient technical theorems are as follows.

Theorem 3
Let Q C R™ be an open set. Let F = F(x,p,u) is a

continuous convex (in p) Hamiltonian on © X R™ X R. Let
u € Lip(2). Then

u€ES (F) < uecS_(F).

e 8~ —the set of all viscosity subsolutions, S, =the set of all
a.e. subsolutions (F'(x, Du(x),u(x)) < 0 a.e.).

page:7.9



PROOF. Local property! We may assume that € is bounded (and
convex).

1) Assume that u € ST (F'). Since u € Lip and is
differentiable a.e. in €. Fix any differentiability point « of u, and
choose ¢ € C1(£2) such that ¢ tests u from above at . Note
that D¢ (x) = Du(x). Then, sinceu € S,

0 > F(z, D¢(zx),u(x)) = F(z, Du(z), u(z)).

2) Assume now that uw € S__(F'). Since u € Lip, it is
differentiable a.e. in 2 and the derivative Dwu is identified with the
distributional derivative of u. Choose a constant M > 0 so that
|lu(x)| + |Du(x)| < M a.e. We may assume that F' is
uniformly continuous on 2 X Bps41 X [—M — 1, M + 1] (if
needed, replace €2 by a smaller one). For each 0 < € < 1, choose
d(e) > 0 so that

F(x, Du(y),u(x)) < F(y, Du(y),u(y)) +¢
ae y € Q,Vx € Bs)(y)-
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Mollifying the above with a standard kernel (and using the
convexity), to get

F(z,uc(z),u(z)) <e inf,

where u, is the mollified function of u. Now, u. is a classical
(hence, viscosity) subsolution of F(x, Duc(x),u(x)) < e. In
the limit as e — 0, we see that u € S (F). O

We write Sg;(F') for the set of all functions u € Lip(£2) such
that if ¢ € C(£2) touches from below at = € €2, then
F(x,D¢(z),u(x)) < 0. (Barron-Jensen)

Theorem 4

Let @ C R™ be an open set. Let F = F(x,p,u) is a
continuous convex (in p) Hamiltonian on 2 X R™ X R. Let
u € Lip(2). Then

u€ S (F) <= ue€ Sg;(F).
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PrROOF. We need to show that
u€ S, (F) <= ué€ESg;(F).

The previous proof applies to show this claim. O
A consequence of the above is:

Theorem 5

Let @ C R™ be an open set. Let F = F(x,p,u) be a
continuous convex (in p) Hamiltonian on 2 X R™ X R. Let
F # 0 be a locally unif-bounded, equi-Lipschitz continuous
collection of subsolutions of F' = 0 in €2. Then the function

u(zx) := inf{v(x) : v € F}
isin ST(F).
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PROOF. The proof is parallel to that of the assertion that the
pointwise sup of a family of subsolutions is a subsolution: replace
"touching from above” and "sup” by "touching from below” and
"inf", respectively, which is also parallel to that of the theorem
saying that the pointwise inf of a family of supersolutions is a
supersolution: replace > by <. O
REMARK. Roughly speaking, if w is differentiable at y and it is a
subsolution of F = 0, then

F(y, Du(y),u(y)) < 0.

Indeed, we may choose a continuous function w on [0, 1] such
that w(0) = 0, w(t) > 0, and

u(x) —u(y) < p-(z—y) +w(z—y)lz -yl ifz e Bi(y),

where p = Du(y). We may assume that w is nondecreasing.
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Note that
2t
w(t)t < / w(r)dr forallt € [0, 1/2].
t
Setting

w(t) = /tztw(r)dr for all t € [0,1/2],
and
d(z) =u(y)+p-(z—y)+¥(z—y|) foralz € By/2(y),
we observe that ¢ € C*(By/2(y)), Dé(y) = p,
u(z) < ¢(x) Vo € Bija(y) and u(y) = ¢(y).

Extending ¢ smoothly outside By /3(y) so that u(x) < ¢(x) on
the domain of definition of w. We now find that

0 > F(y, Do(y), u(y)) = F(y, Du(y), u(y)).
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In the above discussion, the differentiability can be weakened as
follows:

u(z) —u(y) <p-(z—y)to(lz—yl) asz—y
for some p € R™. If this is the case and w is a subsolution of

F = 0, then
F(y,p,u(y)) < 0.

The set of all p € R™ for which the above asymptotic relation
hold is called the superdifferentials of u at y and is denoted by
D+ u(y). By making the upside-down in the above discussion, we
define D~ u(y), called the subdifferentials of u at y.

Theorem 6

Let & C R™ be an open set and u : £2 — R locally
bounded. Let F € C (2 X R™ x R). The function u is a
(viscosity) subsolution (resp., supersolution) of
F(x, Du,u) = 0 in Q if and only if

F(x,p,u*(x)) <0 forallp € Dtu*(x)
(resp., F(x,p,us(x)) > 0 forall p € D™ u.(x)).




LONG-TIME BEHAVIOR OF SOLUTIONS II
Long-time behavior of solutions to a general HJE
(1) ut + H(z, Dzu) =0 in T™ X (0, 00).
Assumptions on H':
» H € C(T™ x R™).
» p — H(x,p) is coercive for every (uniformly) x. i.e.,

lim inf H(x = 00o.
r—00 |p|>r (@:P)

Recall the following theorem (the proof was done for bounded
functions on R™).

Theorem 1
Let h € Lip(T™). Under the above assumptions, there is a
solution w € Lip(T™ X [0, 00)) of

) ut + H(x,Dzu) =0 in T™ X (0, 00),
u(-,0) =h onT™
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Note also that the comparison principle holds for sub and super
solutions of (1), which is crucial to establish the following theorem.

Theorem 2
Let h € C(T™). Under the above assumptions, there is a
solution u € UC(T™ X [0, 00)) of

) ut + H(x, Dzu) =0 inT™ X (0, c0),
u(+,0) =h onT™.

PRrROOF. Choose a sequence hy, € Lip(T™) — h in C(T™)
and let ux € Lip(T™ X [0, c0) be the solution of the Cauchy
problem (2) with h replaced by hg. Choose a monotone sequence
€r — 0+ so that

lhj(x) — hillo < ex Vi > k.
By the comparison principle, if 5 > k, then
|luj(x,t) — up(x,t)| < e V(x,t).
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That is, for some ©u € UC(T™ x [0, 00)),
lilgn ug(z,t) = u(x,t) uniformly on T™ X [0, 00).
The function w is a solution of (2). O
Limit problem:
(3) H(x,Du) =c inT".

This ergodic problem has a solution (¢, u) € R X Lip(T™). The
ergodic constant c is uniquely determined.

We follow the argument due to Barles-Souganidis. The argument
has been modified (or simplified) by Barles-HI-Mitake. Another
important approach is the one due to Davini-Siconolfi (after Fathi).
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We add another requirement on H':

» There exist constants 179 > 0 and 8¢ > 1 and for each
(n,0) € (0,m0) X (1,60) a constant 3 = 1p(n,6) >0
such that for all ,p,q € R", if H(z,p) < ¢ and
H(xz,q) > c+ n, then

H(z,p+6(q—p)) > c+nb+ .

This is a kind of strict convexity of H. Indeed, if p — H (x, p)
is strictly convex, one can show that the above condition is
satisfied.

Indeed, if H is strictly convex, since

gq=0"1(p+6(g—p)+1—-06"1)p,
c+n<Hzq) <6 H(z,p+0(q—p)) + (1— 6-)H(a,p)
<0 'H(xz,p+6(qg—p)) + (1 -0,

H(x,p+ 60(q —p)) > c+ 0.
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Theorem 3
Let h € C(T™) and c be the ergodic constant. Let
u = u(x,t,h) € UC(T™ X [0,00)) be the solution of the
Cauchy problem (2). Then, for some
hoo € S(H — ¢) N Lip(T™), as t — oo,

u(z,t,h) + ct — hoo(x) uniformly in T™.

OUTLINE OF PROOF. By the comparison principle,
(- t,h) —u(-st,9)lloo < [|h — glloo-
we may assume that h € Lip(T™) and u € Lip(T™ x [0, c0)).
Note that the function v = u(x, t, h) + ct is a solution of
vy + H — ¢ = 0. By rewriting H for H — ¢, we henceforth
assume that ¢ = 0.
Fix a vg € S(H). By choosing C > 0 so that
vg—C < h<vg+C onT"
we have by the comparison principle,
[u(@, t, h) — vo(@)] < C V(@ t).



Thus,
u(+,+,h) € (LipNB)(T™ x [0,00)).

We assume by adding a constant to vg that
u(x,t) —vo(x) > 0 V(x,t).
Let 8,7, 1 be as in the above condition on H. Define

w(z,t) = suplu(z, ) —vo(@) —O(u(@, s) —vo(@) +n(s—1))]

Let M > 0 be a Lipschitz bound of u and vg. Define
w(r) = max{|H(z,p)—H(z,q)| : p,q € Br, [p—q| <},
where R = (2609 + 1) M.
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Theorem 4
The function w is a subsolution of

min{w, wy — w(|Dgyw|) + ¢} <0 inT" x (0, 00).

In particular, setting
m(t) = max w(x,t),
we have
min{m,m; + ¥} < 0.
The last inequality implies that for a finite time 7 > 0,
m(t) <0 Vt> .
Then, forany t > 7, x € T, s > t,
u(xz,t) — vo(x) < 0(u(x,s) —vo(x) + n(s —t)).
The constant 7 = 7y, depends on 6, 7.
(AA theorem) 3t; — oo such that for some uo, € Lip(T"),

u(x,tj,h) — uss(x) in C(T").
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Then, we have
u(xz,t+tj,h) = u(z,t,uxs) V(x,t).
lu(t, u(-s t, k) — u(-st, too)lloo
( < JJu(sytj,h) —Usolloo VE>0 by comparison.)
Hence, forallt > 0,s > t, x € T,
u(z,t, Uoo) — vo(x) < O(u(x, s,uss) — vo(x) + n(s —t)).
This holds for any 8 € (1,6p) and n > 0. Thus,
u(x, t, uso) — vo(x) < u(x, s, us0) — vo(x) if s>t
That is, t — u(x,t, us) is nondecreasing. Monotone in ¢.
(AA theorem) Jhoo € Lip(T™) such that
hoo(x) = tlg& u(z,t,use) in C(TT).
Since
lu(-st+tj,h) — u(-st; too)|loo
< lutj, h) — usollo VE >0,
we have
ho(x) = tl_l)Iglo u(x,t,h) in C(T").
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Since
lu(-,t +tj,h) — hoollec = 0 as j — oo,
we find that Othoo + H(xy Dyhoo) = 0 and hoo € S(H). [
OUTLINE OF THE PROOF OF THE VI:

min{w, w; — w(|Dyw|) + ¢} <0, where
w(x,t) := Sl;[t)[’u(ib, t) —vo(x) — O(u(x,s) — vo(x) + n(s —t))].

Fix any (z,t) € T™ X (0,00). If w(z,t) < 0, we have VI at

(x,t).
Assume that w(x,t) > 0. Suppose that u € C! and vg € C?

and that for some s > ¢,
w(m7t) = u(wat) - UO(m) - a(u(m7 S) - UO(m) + 77(5 - t))?

and show that
wy — w(|Dyw|) + ¢ < 0.
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Set
p = Dvo(x), q = Dpu(xz,s), r = Dyu(x,t),

a = ui(x, s), b = us(x,t).
We have

H(z,p) < 0.
a—|—H($,q) >0,
b+ H(xz,r) < 0.

The function
—w(@!, ) tu(a’ ) —vo(a!) —O(u(’, ') —vo (@) +n(s'—t'))
< 0 and attains the maximum value 0 at (x, ¢, s), which yields

D;w(z,t) =r —p —6(q — p),
wi(z,t) = b+ 6n,
0= —6(a+n).
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a+ H(x,q) > 0and a +n = 0 yield
H(x,q) > n.
This and H(x,p) < 0, the key assumption on H,
H(z,p+6(q —p)) > 6n+ .
Since r = Dyw(x,t) + p + 0(q — p),
H(x,r) = H(x, Dyw(x,t) + p+ 0(q — p)).
Note:
7| = [Dgu(z,t)| < M < R, |[p+6(q—p)| < (1+20)M < R.
Hence,
H(z,7) > H(z,p + 0(q — p)) — w(|Daw(z,t)|)
> —w(|Dyw(x, t)]) + 01 + .
Now,
wi(x,t) = b+ On,
0> b+ H(z,r) > b— w(|Dywl]) + 6n +
yield
0 > wy — w(|Daw|) + . O
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Example 1 (Non-convex H)

n=1,

7 f(p) = max{%p2, min{p?,1}},
H(p) =f(p+1) -1
o ) P

Note that constant functions are solutions of H = 0. Hence,
c(H) = 0. Since H is "strictly convex” on
{H > 0} = {f > 1}, our key condition is satisfied.
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The key condition implies that {p : H(x,p) < c} is convex.
The key assumption requires a kind of "strict convexity” of H in
a neighborhood of {p : H(xz,p) < c} in {p : H(x,p) > c}.

page:8.14



The following condition replaces the key condition:

» There exist constants 79 > 0 and 89 > 1 and for each
(7’79) € (07 7’0) X (1700) a constant ¢ = ¢(7750) >0
such that for all x € T", p,q € R", if H(x,p) < ¢ and
H(xz,q) > ¢ — n, then

H(z,p+6(q—p)) >c—nb+ .
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VANISHING DISCOUNT PROBLEM FOR
HAMILTON-JACOBI EQUATIONS I
Let A > 0. Consider the stationary problem

(1) Au+ H(x,Du) =0 inT".

In view of optimal control theory, the constant A is called a
discoutn factor. Here we study the asymptotic behavior of the
solution uy of (1) as A — O+.

Assumptions on H:

» H € C(T™ x R™).

» H is coercive, i.e.,

li inf H = oo.
Am (z,p) = oo

» H is convex, i.e., p — H(x,p) is convex, V& € R™.
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Theorem 1

PDE (1) has a unique solution uy in the class Lip(T™).
The comparison principle is valid for sub and super solutions
in the class B(T").

REMARK. 3C > 0 (independent of A > 0) such that
Alua(z)| < C.
3AM > 0 such that
lp| > M =— —C + H(z,p) > 0.
Since u is a subsolution of
—C + H(xy,Du) <0 inT",

M is a Lipschitz bound of uy.
M can be chosen independently of A.
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The above observations imply together with AA theorem that for
a sequence A\, — 0+, uy, “converge” to a function ug € C(T")
and for some constant ¢ (the ergodic constant), ug is a solution of

(2) H(x,Du) =c inT".

The main result is roughly stated as follows.

Claim 2
The whole family {ux}a>o "converges’ to a function ug in
C(T™).

(Davini-Fathi-lturriaga-Zavidovique)
e Mather measures play an important role in the proof.
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1) 3M > 0 such that ||Duxl|lcc < M for all A > 0.
2) wy is the value function of the optimal control system:

H(ac,p) = Slgp(ﬁ *p— L(ZB, 5))’

X(t) = —a(t) X(0) =,

J(z,0) = /O e ML(X (1), a(t))dt.
That is,

us(z) = inf /0 T e ML(X (8), — X (1)) dt

0
= _inf ML(Y (t),Y .
Y(l(gzw/_ooe (Y (1), V'(t))dt

3) & — L(x,€) has a superlinear growth:
L(z, &) > ¢ |£| — H(z,%5), YA >0,6#0.

V|p| < M, 3p > 0 such that
H(z,p) = max§{-p — L(z,§).
1€1<p
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Set

H,(x,p) := fﬁ;";s +p — L(x,§).

w), is a solution of
Au+ H,(x,Du) =0 inT",

and

[e ]
uxr(x) = inf / e ML(X(t), — X (t))dt.
X (0)==, |X(t)|<p /o

4) Set K = K, =: T" X B,. Let M = M(T™ X R"™) denote
the set of all finite Borel measures g on T™ X R™. Set
M, = M,(T" x R") ={pnp €M : suppp C K,},
Mj:M;(T"an):{ueMp:uzﬂ}.
Set
Co(x) ={X € C([0,00),T") : X € AC[0,T],VT > 0,
X(0) =z, [X(H)| < pae. }.
page:9.5



Given z € T™ and X € C(z), consider the functional
C(K)> ¢— /Ooo e Mp(X (t), —X (t))dt € R.
Note:
[T e 0. ~XO)at] < ol [ Nt = Xl
Each z € T™ and X € C(z) define a continuous linear functional

on C(K), an element of C*(K), and by Riesz' theorem,
Jp € M, such that

> e M —X = T T .
AT e Nox O, X W)t = [ (@ Ou(dz, o)
If =1 (resp., ¢ > 0), then
)\/oo e Mp(X (t), —X (t))dt = 1 (resp., > 0).
0

Hence, u € M;)" and a probability measure.
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Let P, = {p € M;‘ : p(K) = 1}. If we write pu, x for the
measure defined above, then
Nur(z) = inf /K L, €)1z x (d, dE).
P, has a good stability property: the compactness in the weak-star
convergence in C*(K) (the weak convergence in the sense of
measures). The Banach-Alaoglu theorem. On the other hand, the
implication of " convergence” of { X} to the functionals

/0 e M (X (b), — X (1)) dt

is not easy. What is the limit?

k*
Xy S = pax (3X € C(2)7).

Want to replace {u.,x : X € C(z)} by a good G C P, such
that

Auy(z) :Iirelg/KLu(dcc,dg).

G = P, is too big.
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5) Note that if ux € C1(T™), then
)\u}\(m) + 5 : Du)\(m) S L(mv é) ‘v’(m, E) € K.
Integrate both sides by p = p, x, to get

/ (Aux(x) + € - Dus () p(da, d€) < / L(x, &) u(de, dE).
K K

Compute that
/K (Atx (@) + & - Dux(x)) i x (dz, dE)

= A/Ooo e M Aux(X(t)) — X (t) - Dux(X(t)))dt

— }\/Ooo jt (—e_Atu,\(X(t))> dt = Aux(z).

Hence, for any p = i x,

/ L=, &) pu(d, d€) > Aux(2).
K
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Let P, denote the set of all (Borel) probability measures with

compact support. Note: P, C P..
We introdue the condition on p € P that Vi € C1(T"),

®) MW@ = [ (W) +&- Dis@)n(da, o).

In general, "uy € C(T™)" does not hold, but the above
condition always makes sense.

We call p € P a closed measure for (z, A) if (3) holds. We
write €(z, A) for the set of all closed measures for (z, A). Note
that €(z, A) is irrelevant to our HJE. Since all . x are in
€(z, ), we have

) > nf [ D@ €u(de, o).
HEL(z,A) JTn xR

Theorem 3

)\uz:min/ L(x dx, d€).
)\( ) HEE(2A) JTn xR ( ,ﬁ)ﬂ( 9 5)




PROOF. 1) A first step is: Vu € €(z, A),
(4) Aun(z) < /T . L(x,&)p(dx,dE).

nx n
Since uy € Lip(T™), it is a.e. differentiable and the pointwise
derivative is identified with the distributional derivative. Let u§
and (Dwuy)® be the mollified functions of uy and Duy,
respectively, with the same millification kernel. We have
Du§ = (Dux)®. H is uniformly continuous on T™ X Bjy, and
so

Aux(y)+H(x, Dux(y)) < 6(e) ae {(z,y) € T*" : |x—y| < €},
where §(e) — 0+ (e — 0+). By the convexity of H, we find
Au§ () + H(xz, DuS(x)) < d(e) on T™.
Integrate
M (2) + € - Dug () < L(z, €) + 6(e),
by u € €(z,A), to get
Au§ (z) < / L(z,&)pu(dx,d€) + d(e); hence, (4).
Trn xR

n xR
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Recall that

Aux(z) > inf / L(x dx, d
A( )_;LEE(Z,A) S ( aE)N( s E)a

to conclued that

A — inf Lz, &) u(dz, d¢).
ur@) = ot [ D@ Ou(de, dg)

2) The next and last step is to replace inf by min. Choose
{Xk} C C(2) so that

/ L(z, €)1z x, (da, d€) = un(2).
K

By replacing by a subsequence, we may assume that

T X we_k) p for some p € P,

3) " Lower semicontinuity + weak* convergence” imply:

/ L pu(de, dg) < lim inf / L s x, (dm, d€) (= Aux(2)).
K K
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4) Need to check that p is a closed measure for (z, A):
Vi € CL(T™), ¢(a,€) := A(z) + & - Dyp() is in CL(K).

Hence,
Np(2) = [ bl Opex(de.de) > [ bl Ond, de).
Thus, p € €(x,A) NP, and
Aup(z) = / Lu(dz,d€).
T xRn
e We call a minimizer u € €(z, ) as generalized Mather
measure for (z, A). We write M(z, A) for all minimizers

p € Pe(z,A). Also, called as a discounted Mather measure
e One can show that M(z,A) C P,.

page:9.12



ANOTHER APPROACH TO THE EXISTENCE OF MATHER
MEASURES.
Assume that
L € C(K).

For ¢ € C(K), set
H¢($,p) = Tg%’;g i Za ¢(£E,§),
Fy¢(z,p,u) := Au + Hy(x, p).

Let T’ denote the set of all (¢, ) € C(T™) x C(K) such that
P ES™ (F)"¢,). That is,

Mp(@) + € - D(@) < $(@,€) for all (,€) € K.
For fixed (z, A), let
G(z,A) ={od — AY(z) : (¢,¢) €T}

I" and G(z, ) are closed convex cones with vertex at the origin in
C(T™) x C(K) and C(K), respectively.
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Let G*(z, ) denote the dual cone, i.e.,
G*(2,A) 1= {v € C*(K) : (v,9) > 0Vg € G(z,\)}.
We invoke the Hahn-Banach theorem:

1) G(z,A) has nonempty interior. Choose (0,1) € I" so that
1 € G(z,A). Forany ¢ € C(K) such that ||¢||co < 1, we have
(0,1+¢) €T and 1 + ¢ € G(z, \).

2) L — Aux(z) € 0G(z,A). Indeed, L — Aux(z) € G(z,A)
and L — Aux(z) — § & G(z,A) forall k € N.

3) HB theorem = Fr € C*(K) such that, v # 0, and

(vyg — (L — Aux(2))) =2 0 Vg € G(z,A).

4) Select g = t(L — Aux(z)), t > 0, in the above, to find
(t—1){(v, L — Aux(2)) > 0,

and
(vy LY = Aux(z) (v, 1).

page:9.14



5) Select g = L — Aux(z) + f, with any f > 0, to find that
(v, f) >0, ie, v E M;’.

Set

v
I P

T S

6) Fix any (¢, @) € I and note that (¢, @) + (L,uy) €T
and ¢ + L — X(Y + un)(2) € G(z, ). Select
g=¢+ L — A+ uy)(z), to see

(s @) 2 Atp(z).
Let 1p € C1(T™). Choose ¢ = A(x) + & - Dip(x), to find
(s A + & - Dp(x)) > Aip(2)
This is valid also for —a) in place of 1». Hence,
Ap(2) = (u, M + € - D) Vb € CH(T™).
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7) The conclusion:

pE €(z,A) and Aux(z) = (u,L) = /I<L/J,.

EXERCISES. 1. Prove that I is a convex set.
2. Prove that if @ > 0, then L — Aux(z) — a & G(z, A).
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VANISHING DISCOUNT PROBLEM FOR
HAMILTON-JACOBI EQUATIONS 11
Our HJE is as follows:

(1) A+ H(x,Du) =0 inT".

Assumptions on H':

» H € C(T™ x R™).

» H is coercive, i.e.,

lim

inf )H(w,p) = oo.

r—00 T x (R™\ By

» H is convex, i.e., p — H(x,p) is convex, V& € T™.

Theorem 1

Aux(z) =

min
HEE(2,A)

/ L(z, &) p(de, dE).
T xR™
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The min is attained at p € P, N €(z, A), where, for p € P,
suppu C K =T" X Ep and p does not depend of A > 0.
The closedness of pu € €(z, A) is described as: Vi € C(T™),

Mo(2) = [ (@) + € Di(a) u(de, de).

This condition is stable under the weak™* convergence of sequences
in P,. For instance, if A; — 0+ and

P, N&(z,Aj) D py We_ak) W, then

2 0= - Rné-Diﬁ(w)u(dw,dE) vy € CH(T™).

We call pu € P, a closed measure (for A = 0) if (2) holds. Let
€(0) denote the set of all closed measures u € Pe.
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Recall the ergodic problem:
(3) H(xz,Du) =c inT"™.
We know the following.

Theorem 2
Let ¢ be the ergodic constant. Then

> uy — maxyn u)x — ug in C(T™) along a sequence
)\j — 0+,
» Auy — —cin C(T™) as A — 0+,

> wug is a solution of (3).

We have a representation theorem for c.

Theorem 3

Let ¢ be the ergodic constant. Then

—c = min L(x dz, df).
min [ L@ Ou(ds,de)

I M a e )



PROOF. 1) Let ug € Lip(T™) be a solution of H = ¢ in T™.
We have || Dug||co < oco. By approximation,
Ju§ € C*(T™), 6(e) > 0 such that

—c+ H(x, Duj(x)) < é(e) in T,

ug — ug in C(T") (¢ — 0+),

d(e) — 0+ (e = 0+).
In particular,

—c+¢§- Du(e)(m) < L(z,€) + 6(e) V(z,§).

Integrating by p € €(0) and sending € — 0+ yield

—e< [ L@u(de,do).
T xR™

Thus,

—c < inf / L(x, dx, d§).
< nf | L@ oudr,de)
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2) Existence of a minimizer: Fix z € T™ and for each A > 0
choose pux € M(z,A) NP, so that

Aun(z) = /ﬂ‘"xR" L(z,&)pxr(dz,d).

Recall that
Iim Aux(z) = —c.
A—0+ )\( )

We can choose Aj — 0+ so that

eak™
K, A Mo € Pp.

As in the argument for a fixed A > 0, we find that po € €(0),
/ L po(dx,d€) < liminf L py;(dz,d€) = —c.
T™ XR™ J—=oo  JTnxR™

Hence, po is a minimizer:

—c = L po(dx, d€). O

T™ xR™
e Any minimizer p € €(0) is called a Mather measure. Denoted
by :t(0).
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Our purpose here is:

Claim 4
The whole family {ux}x>0 "converges” to a function uyg.

Formal expansion:

Auy & —c + Aug(xz) + Nug(x) +--- .
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Then,

ux = —A"te+ ug(x) + Aug(xz) + -+ ;
0=Au) + H(x,Duy) ~ —c+ H(x,Dug +---) +---,

and hence,
—c+ H(x, Dup) = 0.

02 —c+Aug+-+--+&:(Dup+ADuy +---) — L(z,§).
If po € M(0), then

/(—C—L)[,I,QZO, /E-(Dug—l—)\Dul—l—---)uon.

Hence,
02 /\/uouo, ie. /uouo <o.
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Theorem 5
The whole family {ux + A71c}aso converges to a solution
up in C(T™) of (3).

(Davini-Fathi-lturriaga-Zavidovique=2016)
PROOF. 1) Note that vy := uy + A~ !¢ satisfies

Avy + H(x, Dvy) = Aux + ¢+ H(x, Duy) = ¢ in T™.

If we set H.(x,p) = H(x,p) — ¢, then vy is a solution of

Avy + H. =0in T™. If ug is a solution of H = ¢ in T™, then it
is also a solution of H.(x, Dug) = 0 in T™. Note that the
Lagrangian corresponding to H., is given by

Lc(ma S) = Slll)ps ‘P — Hc(m’p) = L(:B, 5) + c.

Replacing (H, L) by (H¢, L.), we may assume that ¢ = 0.
We need to show that the solutions uy of Au + H(x, Du) = 0
in T™ converge to a solution ug of H(x, Du) = 0 in T™.
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2) Let vg € Lip(T™) be a solution of H = 0 in T™. Choose
Co > 0 so that ||vg|lco < Co. Note that

)\(’UO -|— Co) —|— H(:B, D’LLO) Z 0, A(’UO — C()) —|— H S 0 in Tn
By comparison,
Uo-l—CQz’U,)\Z’U()—CO in T™.

Hence,
lux(z)| < 2Co in T™,

and the family {ux} is unif-bounded on T™. Thus, the family
{ux} is unif-bounded and equi-Lipschitz continuous on T™.

3) Let V denote the set of all limit points in C(T™) of
{urx}r>o0 as A — 0+. We have ¥V # 0. Since

Auy — 0 in C(T") (A — 04),
we find that v € V is a solution of H = 0 in T™.
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We claim:
/'U(:B),u(d:r:,d{) <0 V(v,u) €V X MNM(0).

Let v € V and p € MY(0). Choose a sequence A; — 0+ such
that uy; converge to v in C(T™). Note that uy is a solution of

fI/(sc, Duy) =0 inT"™, (the ergodic constant = 0!)

where H(m,p) = sup¢(§ - p — L(z, &) + Aua(x)), which
implies that

0= min [ (D@ — Aur(@)v(de, de).
Since p € €(0),
0< [ (B(@) - Mur(@)u(da, d¢)
= - [ uan(de, o).
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Sending A = Aj — 0+, we find that

[ v(@u(dz, ) <o.

Let WV denote the set of all solutions w of H = 0 in T™ such
that

[ w@n(de,dg) <0 vuemo.

We have shown that
Y CW.
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4) We claim that
w<v onT"” V(w,v) E W XV,
which assures that for all v € V,
v(x) = max w(x) Ve € T".
In particular, if we set v(x) := maxy,ew w(x), then V = {v},
and, as A — 0+,
uyx — v in C(T™).
5) To show the above, fix any w € W, v € V. Choose
Aj — 0+ so that
ux; = v in C(T") (j — o0).

Fix any z € T™. Fix a pux € (2, A) NP, for each A > 0.
Note that

)\w—l—ﬁ(m,Dw) =0 inT",

where ﬁ(m,p) = supg(§ - p — L(z, §) — Aw(x)).
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By the formula

No(x) = min [ (L(@,) + Xu(e))u(d, d6),

we have

w(z) < / (L(2, €) + Mw(@))a
= Aux(z) + /\/'w(:c)uA

= Aux(z) + )\/w(a))uA.

By passing to a subsequence, we may assume that for some
Ho € M(0),

JT5N We—ak> po (A= Aj — 0+).

In the limit as A = A; — 0+,

w(z) < v(=) + [ w@no(de, d€) < v(z).

O
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e We have shown

lim wu)(x) = max w(x).
A—0+ A( ) weW ( )
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