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Abstract. We study convex Hamilton-Jacobi equations H(x,Du) = a and
ut + H(x,Du) = a in a bounded domain Ω of Rn with the Neumann type
boundary condition Dγu = g in the viewpoint of weak KAM theory, where
γ is a vector field on the boundary ∂Ω pointing a direction oblique to ∂Ω.
We establish the stability under the formations of infimum and of convex
combinations of subsolutions of convex HJ equations, some comparison and
existence results for convex and coercive HJ equations with the Neumann type
boundary condition as well as existence results for the Skorokhod problem.
We define the Aubry-Mather set associated with the Neumann type boundary
problem and establish some properties of the Aubry-Mather set including the
existence results for the “calibrated” extremals for the corresponding action
functional (or variational problem).

1. Introduction

Let Ω be an open connected subset of Rn with C1 boundary. We denote by Γ
its boundary ∂Ω. We consider the Hamilton-Jacobi (HJ for short) equation with
the Neumann type (or, in other words, oblique) boundary condition

H(x,Du(x)) = a in Ω(1.1)

Dγu(x) = g(x) on Γ.(1.2)

Here a is a constant, H is a given continuous function on Ω×Rn, called a Hamilton-
ian, u represents the unknown function on Ω, Du denotes the gradient (ux1 , ..., uxn),
Dγu = Dγu(x) denotes the directional derivative γ(x)·Du(x) at x, γ is a continuous
vector field: Γ→ Rn, and g is a given continuous function on Γ.

In addition to the continuity assumption on H, g, γ, we make the following
standing assumptions.

(A1) H is a convex Hamiltonian, i.e., for each x ∈ Ω the function H(x, ·) is convex
on Rn.

(A2) H is coercive. That is, lim
|p|→∞

H(x, p) =∞. for all x ∈ Ω.

(A3) γ is oblique to Γ. That is, for any x ∈ Γ, if ν(x) denotes the outer unit
normal vector at x, then ν(x) · γ(x) > 0.
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We consider the initial-value problem with the Neumann type (oblique) boundary
condition

ut(x, t) +H(x,Du(x, t)) = a for (x, t) ∈ Ω× (0, T ),(1.3)

Dγu(x, t) = g(x) for (x, t) ∈ Γ× (0, T ),(1.4)

u(x, 0) = u0(x) for x ∈ Ω,(1.5)

where 0 < T ≤ ∞ and a ∈ R are given, u represents the unknown function on
Ω × [0, T ), Du denotes the spatial gradient of u, Dγu = γ ·Du, and u0 is a given
continuous function on Ω.

We call (1.1) and (1.3) convex Hamilton-Jacobi equations if H is a convex Hamil-
tonian.

The study of weak solutions (i.e., viscosity solutions) of problems (1.1), (1.2) and
(1.3)–(1.5) goes back to Lions [Lio85], and the theory of existence and uniqueness of
viscosity solutions of such boundary or initial-boundary value problems including
the case of second-order elliptic or parabolic equations has been well-developed.
We refer for the developments to [Lio85, LT91, BL91, DI90, CIL92, Bar93] and
references therein. However, if problem (1.1), (1.2) has a solution, then it admits
clearly multiple solutions and therefore the problem is a bit out of the scope of such
developments. Indeed, problem (1.1), (1.2) has a solution only if a is assigned a
specific value.

The problem of finding a pair (a, u) ∈ R × C(Ω) for which u is a solution of
(1.1), (1.2) is called an ergodic problem in terms of optimal control or an additive
eigenvalue problem, and it is also part of weak KAM theory. See [LPV88] for a
classical fundamental work on the ergodic problem for (1.1) in the periodic setting
and also [Fat08, BCD97].

Weak KAM theory concerns the link between the HJ equation (1.1) in a domain
Ω, with an appropriate boundary condition on its boundary ∂Ω, and the Lagrangian
flow generated by the Lagrangian L given by L(x, ξ) = supp∈Rn(ξ ·p−H(x, p)), (or
the extremals (minimizers) to the action functional associated with L). We refer
[Fat97, E99, Fat08, Eva04] for pioneering work and further developments. We refer
to [IM07] for some results in this direction on HJ equations with the state-constraint
boundary condition.

A typical application of weak KAM theory to the evolution equation (1.3) is in
the study of the long-time behavior of solutions of (1.3) with appropriate initial
and boundary conditions. For these applications we refer to [Fat98, Roq01, DS06,
Ish08, II09, Mit08a, Mit08b].

Our purpose in this paper is to establish some theorems concerning weak KAM
theory for convex Hamilton-Jacobi equations. Indeed, we define the critical value
(or the additive eigenvalue) and the Aubry-Mather set associated with (1.1), (1.2)
and establish some of basic properties of the Aubry-Mather set, representation for-
mulas for solutions of (1.1), (1.2) and the existence of extremals (or minimizers)
for variational formulas of certain types of solutions of (1.1), (1.2). Our approach
is relatively close to that of [FS04, FS05] in view of weak KAM theory. The paper
[Ser07] by O.-S. Serea deals with HJ equations on a convex domain with homo-
geneous Neumann condition in view of weak KAM theory. The requirements on
the Lagrangian in [Ser07] (see the conditions (7)–(10)) seem very restrictive. On
the other hand, no regularity on the domain other than the convexity is posed in
[Ser07]. In some special cases, the state-constraint problem for (1.1) is equivalent to
the Neumann type problem (1.1), (1.2), and thus some results in [IM07] are related
to those obtained here. For this equivalence, we refer for instance to [CL90].

This paper is organized as follows. In the next section, we establish the stability
under the formations of infimum and of convex combinations of subsolutions of
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(1.1), (1.2) and of (1.3)–(1.5). In Section 3 we establish comparison results for sub
and supersolutions of (1.1), (1.2) and of (1.3)–(1.5). Section 4 is devoted to the
Skorokhod problem in Ω with reflection direction γ, which is essential to formulate
variational representations for solutions of (1.1), (1.2) and of (1.3)–(1.5), and we
establish results concerning existence and stability of solutions of the Skorokhod
problem. In Section 5, we prove the existence of a solution of the initial-boundary
value problem (1.3)–(1.5) as well as a variational formula for the solution. In Section
6, we introduce the critical value and the Aubry-Mather set associated with (1.1),
(1.2), study basic properties of the Aubry-Mather set and establish representation
formulas, based on the Aubry-Mather set, for solutions of (1.1), (1.2). In Section
7 we establish the existence of “calibrated” extremals for the variational problem
associated with (1.1), (1.2).

Notation: Let ei, with i = 1, 2, ..., n, denote the unit vector of Rn having unity as
its ith coordinate. We a∧b and a∨b for min{a, b} and max{a, b}, respectively. For
A ⊂ Rn, Lip(A, Rm) (resp., BUC(A, Rm) and UC(A, Rm)) denotes the space of
Lipschitz continuous (resp, bounded uniformly continuous ans uniformly continu-
ous) functions on A with values in Rm. For brevity, we may write Lip(A), BUC(A)
and UC(A) for Lip(A, Rm), BUC(A, Rm) and UC(A, Rm), respectively. We write
Ac to denote the complement of A. For given function g on A with values in Rm, we
write ‖g‖∞ = supx∈A |g(x)|. For an interval I, we denote by AC(I) or AC(I,Rn)
the space of absolutely continuous functions on I with values in Rn. For given func-
tion w : A→ R w∗ and w∗ denote respectively the upper and lower semicontinuous
envelopes of w defined on Q. Regarding the definition of (viscosity) solutions, we
adopt the following convention: for instance, we consider (1.1), (1.2). a function
u : Ω → R is a subsolution (resp., a supersolution) provided that u is bounded
above (resp., bounded below) and whenever (x, φ) ∈ Ω×C1(Ω) and u∗ − φ (resp.,
u∗−φ) attains a maximum (resp., a minimum) at x, H(x, Dφ(x)) ≤ a (resp., ≥ a)
if x ∈ Ω and either H(x, Dφ(x)) ≤ a (resp., ≥ a) or Dγφ(x) ≤ g(x) (resp., ≥ g(x))
if x ∈ Γ. A bounded function u : Ω→ R is a solution if it is both a subsolution and
a supersolution. In a more general situation where a candidate of solutions, u, is
defined on a set which is not necessarily compact, the requirement on u regarding
the boundedness to be a solution (resp., subsolution or supersolution) is that it is
locally bounded (resp., locally bounded above or locally bounded below).

2. Basic propositions on convex HJ equations

In this section we establish the stability of the operations of infimum and of
convex combinations subsolutions of convex HJ equations. We remark that these
stability properties, without boundary condition, is the main technical observations
in the theory of lower semicontinuous viscosity solutions due to Barron-Jensen
[BJ90].

To localize problems (1.1), (1.2), or (1.3)–(1.5), let U be an open subset of Rn
and set ΩU = U ∩ Ω, ΓU = U ∩ Γ and Σ := ΩU ∪ ΓU = U ∩ Ω.

2.1. Propositions without the coercivity assumption. In this subsection we
do not assume the coercivity of H. That is, in this subsection we assume only (A1)
and (A3). Let f ∈ C(Σ). We consider the HJ equation

(2.1)

{
H(x,Du) = f(x) in ΩU ,

Dγu(x) = g(x) on ΓU ,

and establish the following theorems.

Theorem 2.1. Let S ⊂ Lip(Σ) be a nonempty family of subsolutions of (2.1). Set

u(x) = inf{v(x) : v ∈ S} for x ∈ Σ
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and assume that u ∈ C(Σ). Then u is a subsolution of (2.1).

Theorem 2.2. For k ∈ N let fk ∈ C(Σ) and let uk ∈ Lip(Σ) be a subsolution of
(2.1), with fk in place of f , and {λk}k∈N a sequence of nonnegative numbers such
that

∑
k∈N λk = 1. Assume that the sequences {uk}k∈N and {fk}k∈N are uniformly

bounded on compact subsets of Σ. Set

u(x) =
∑

k∈N
λkuk(x) and f(x) =

∑

k∈N
λkfk(x) for x ∈ Σ.

Then u is a subsolution of (2.1).

Before going into the proof of the above two theorems, we give two remarks. (i)
If V is an open subset of Rn satisfying V ∩ Ω ⊂ U and u is a subsolution (resp.,
a supersolution) of (2.1), then u is a subsolution (resp., a supersolution) of (2.1),
with V in place of U . (ii) If Uα are open subsets of Rn for α ∈ Λ, where Λ is an
index set, and the inclusion

Ω ⊂
⋃

α∈Λ

Uα

holds and u : Ω→ R is a subsolution of (2.1), with U := Uα, for any α ∈ Λ, then u
is a subsolution (resp., a supersolution) of (2.1), with Ω and Γ in place of ΩU and
ΓU .

In the rest of this subsection we are devoted to proving Theorems 2.1 and 2.2.
It is well-known (see for instance [BJ90, FS04]) that, if ΓU = ∅, the assertions of
Theorems 2.1 and 2.2 are valid. Thus, in order to prove the above two theorems,
because of their local property together with the C1 regularity of Ω, we may assume
by use of a C1 change of variables that for some constant r > 0,
(2.2)
U = intB(0, r), ΩU = {(x′, xn) ∈ U : xn < 0}, ΓU = {x = (x′, xn) ∈ U : xn = 0}.
Here and later, for x = (x1, ..., xn) ∈ Rn, we put x′ = (x1, ..., xn−1) and x = (x′, xn).

We set Rn+ = Rn−1 × (0, ∞) and define the function ζ ∈ C∞(Rn+ × Rn) by

ζ(y, z) =
1
2

∣∣∣z − z · en
y · en y

∣∣∣
2

+
1
2

(z · en)2.

We writeDz′ for the gradient operator with respect to the variables z′ = (z1, ..., zn−1).
For instance, we write Dz′ζ = (ζz1 , ..., ζzn−1).

Lemma 2.3. The function ζ ∈ C∞(Rn+ × Rn) has the properties:




ζ(ξ, tz) = t2ζ(ξ, z) for (ξ, z, t) ∈ Rn+ × Rn × R,
ζ(ξ, z) > 0 for (ξ, z) ∈ RN+ × (Rn \ {0}),
ξ ·Dzζ(ξ, z) = ξnzn for (ξ, z) ∈ Rn+ × Rn.

Proof. We observe that

Dzζ(ξ, z) = z − zn
ξn
ξ − z · ξ

ξn
en +

|ξ|2zn
ξ2
n

en + znen,

and
ξ ·Dzζ(ξ, z) = ξnzn.

It is now obvious that the function ζ has all the required properties. �

We note by the homogeneity of the functions ζ(ξ, ·) that
(2.3)

C−1
0 |z|2 ≤ ζ(ξ, z) ≤ C0|z|2, |Dξζ(ξ, z)| ≤ C0|z|2, |Dzζ(ξ, z)| ≤ C0|z|

for all (ξ, z) ∈ Rn+ × Rn and for some constant 1 < C0 <∞.
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By assumption (A3) and (2.2), we have infx∈ΓU γ(x) · en > 0. We restrict the
domain of definition of γ to ΓU and then extend that of the resulting vector field to
Rn so that γ ∈ BUC(Rn,Rn) and γ−1

0 ≤ γ · en ≤ |γ| ≤ γ0 on Rn for some constant
γ0 > 1. Let ω be the modulus of continuity of γ.

By mollification, we may choose a family of functions {γδ}δ∈(0, 1) ⊂ C∞(Rn, Rn)
so that |γ(x)−γδ(x)| ≤ ω(δ), |γδ(x)−γδ(y)| ≤ ω(|x−y|) and |Dγδ(x)| ≤ C1ω(δ)/δ
for all x, y ∈ Rn and δ ∈ (0, 1) and for some constant C1 > 1. Here |A| :=
max{|Aξ| : ξ ∈ Rn, |ξ| ≤ 1} for n × n real matrix A. We may also assume that
γ−1

0 ≤ γδ · en ≤ |γδ| ≤ γ0 on Rn.
For δ ∈ (0, 1) we set ψδ(x, y) = ζ(γδ(x), x− y) and note that

Dxψ
δ(x, y) = (Dγδ(x))TDξζ(γδ(x), x− y) +Dzζ(γδ(x), x− y),

Dyψ
δ(x, y) = −Dzζ(γδ(x), x− y),

where AT denotes the transposed matrix of the matrix A. From these we get
(2.4)

|Dxψ
δ(x, y) +Dyψ

δ(x, y)| = |(Dγδ(x))TDξζ(γδ(x), x− y)| ≤ C0C1ω(δ)|x− y|2
δ

.

Given a bounded function u on Σ, for δ > 0 let uδ ∈ C(Rn) denote the sup-
convolution of u with kernel function δ−1ψδ, i.e.,

uδ(x) = sup
y∈Σ

(
u(y)− 1

δ
ψδ(x, y)

)
.

For s ∈ (0, r] we set

(2.5)

{
Ωs = {x = (x1, ..., xn) ∈ intB(0, s) : xn < 0},
Γs = {x = (x1, ..., xn) ∈ intB(0, s) : xn = 0}.

In particular, we have ΩU = Ωr, ΓU = Γr, Σ = Ωr ∪ Γr and Σ = Ωr.

Lemma 2.4. Let µ > 0 and 0 < ε < r. Let u ∈ Lip(Σ) be a viscosity subsolution
of (2.1), with f := 0 and g := −µ. Then there is a constant δ0 > 0, independent of
u, such that if 0 < δ < δ0, then v := uδ is a viscosity subsolution of

(2.6) H(x,Dv(x)) = ε in Ωr−ε.

Moreover, if 0 < δ < δ0, then

(2.7) D+
γ u

δ(x) ≤ ε for x ∈ Γr−ε,

where

D+
γ v(x) := lim sup

t→0+

v(x)− v(x− tγ(x))
t

.

Proof. Let 0 < δ < 1. Let R > 0 be a Lipschitz constant of u. We may assume by
extending by continuity that u ∈ Lip(Σ), so that for each x ∈ Rn there is a point
y ∈ Σ such that

(2.8) uδ(x) = u(y)− 1
δ
ψδ(x, y).

Fix x ∈ Ωr−ε ∪ Γr−ε and y ∈ Σ so that (2.8) holds. We collect here some basic
estimates. As is standard, we have uδ(x) ≥ u(x) and

1
δ
ψδ(x, y) = u(y)− uδ(x) ≤ u(y)− u(x) ≤ R|x− y|.

Noting by (2.3) that ψδ(x, y) ≥ C−1
0 |x− y|2, we get

(2.9) |x− y| ≤ C2δ,
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where C2 := C0R. It follows from (2.4) that

(2.10) |Dxψ
δ(x, y) +Dyψ

δ(x, y)| ≤ C3ω(δ)δ,

where C3 := C0C1C
2
2 . By Lemma 2.3, we get

(2.11) γδ(x) ·Dyψ
δ(x, y) = −γδn(x)(xn − yn).

Also, we get

|Dyψ
δ(x, y)| ≤C0|x− y| ≤ C4δ,(2.12)

|Dxψ
δ(x, y)| ≤ |Dyψ

δ(x, y)|+ |Dxψ
δ(x, y) +Dyψ

δ(x, y)| ≤ C4δ,(2.13)

where C4 := C0C2 + C3ω(1).
We now show that uδ is a subsolution of (2.6) if δ > 0 is sufficiently small. Let

φ ∈ C1(Ωr−ε) and x ∈ Ωr−ε. We assume that uδ − φ attains a strict maximum
at x, and choose a point y ∈ Σ = Ωr so that (2.8) holds. We choose a constant
δ1 ∈ (0, 1) so that C2δ1 < ε and assume in what follows that 0 < δ < δ1. By
(2.9), we have |x − y| < ε. Hence, we have ∂Ωr \ Γr. Since y ∈ Ωr, we have two
possibilities: y ∈ Ωr or y ∈ Γr.

Now we treat the case where y ∈ Ωr. Then we have

Dφ(x) ∈ D+uδ(x), Dφ(x) +
1
δ
Dxψ

δ(x, y) = 0 and
1
δ
Dyψ

δ(x, y) ∈ D+u(y),

where D+h(x) denotes the superdifferential of the function h at x. Using this
last inclusion, we get H(y,Dyψ

δ(x, y)/δ) ≤ 0. According to (2.12) and (2.13), we
have |Dyψ

δ(x, y)|/δ ≤ C4 and |Dφ(x)| = |Dxψ
δ(x, y)|/δ ≤ C4. Let ωH denote the

modulus of continuity of the function H restricted to Ω × B(0, C4). Using (2.10)
and (2.9), we obtain

0 ≥H
(
y,

1
δ
Dyψ

δ(x, y)
)
≥ H(x,Dφ(x))− ωH(|x− y|)− ωH(C3ω(δ))

≥H(x, Dφ(x))− ωH (C2δ)− ωH(C3ω(δ)).

We choose a δ2 > 0 so that

ωH (C2δ2) + ωH(C3ω(δ2)) ≤ ε.
Thus, if y ∈ Ωr and 0 < δ < δ1 ∧ δ2, then we have

(2.14) H(x, Dφ(x)) ≤ ε.
Next, we turn to the case where y ∈ Γr. Then we have

Dφ(x) = −1
δ
Dxψ

δ(x, y) ∈ D+uδ(x) and
1
δ
Dyψ

δ(x, y) ∈ D+
Σu(y),

where D+
Σu(y) denotes the set of those p ∈ Rn for which

u(y + ξ) ≤ u(y) + p · ξ + o(|ξ|) as y + ξ ∈ Σ and ξ → 0.

By (2.11), we get

γδ(x) ·Dyψ
δ(x, y) = −γn(x)(xn − yn) = −γn(x)xn > 0.

Since |Dyψ
δ(x, y)|/δ ≤ C4 by (2.12), we get

γ(y) · 1
δ
Dyψ

δ(x, y) = γδ(x) · 1
δ
Dyψ

δ(x, y) +
(
γ(y)− γδ(x)

) · 1
δ
Dyψ

δ(x, y)

> − C4 (ω(|x− y|) + ω(δ)) ≥ −C4 (ω(C2δ) + ω(δ)) .

We select a δ3 > 0 so that C4 (ω(C2δ3) + ω(δ3)) < µ, and assume in the fol-
lowing that 0 < δ < δ1 ∧ δ3. Accordingly, we have γ(y) · 1

δDyψ
δ(x, y) > −µ.



WEAK KAM THEORY 7

Since u is a viscosity subsolution of (2.1), with f := 0 and g := −µ, we get
H
(
y, Dyψ

δ(x, y)/δ
) ≤ 0. Now, as in the previous case, we obtain

0 ≥ H (x, Dφ(x))− ωH(C2δ)− ωH(C3δ).

Consequently, if y ∈ ∂Ωr and 0 < δ < δ1 ∧ δ2 ∧ δ3, then we have (2.14). Thus we
see that if 0 < δ < δ1 ∧ δ2 ∧ δ3, then uδ is a subsolution of (2.6).

We now prove that (2.7) is valid if δ is sufficiently small. Let x ∈ Γr−ε, and
;choose a y ∈ Σ so that (2.8) holds. Then, for t > 0 sufficiently small, we have

uδ(x)− uδ(x− tγ(x)) ≤ −1
δ

(
ψδ(x, y)− ψδ(x− tγ(x), y)

)
.

Hence,

(2.15) D+
γ u

δ(x) ≤ −γ(x) · 1
δ
Dxψ

δ(x, y).

Using (2.12), (2.10) and (2.11), we compute that

−γ(x)·1
δ
Dxψ

δ(x, y) ≤ −γδ(x) · 1
δ
Dxψ

δ(x, y) + C4ω(δ)(2.16)

≤ γδ(x) · 1
δ
Dyψ

δ(x, y) +
γ0

δ
|Dxψ

δ(x, y) +Dyψ
δ(x, y)|+ C4ω(δ)

≤ γ0C3ω(δ) + C4ω(δ).

We select a δ4 > 0 so that (γ0C3 + C4)ω(δ4) < ε. From (2.15) and (2.16), we find
that if 0 < δ < δ4, then (2.7) holds.

Finally, setting δ0 = δ1 ∧ δ2 ∧ δ3 ∧ δ4, we conclude that if 0 < δ < δ0, then uδ is
a subsolution of (2.6) and satisfies (2.7). �

Lemma 2.5. Let µ > 0. Let u, v ∈ Lip(Σ) be subsolutions of (2.1), with f := 0
and g := −µ. Then u ∧ v is a subsolution of (2.1), with f = g = 0.

Proof. Fix any ε ∈ (0, r). In view of Lemma 2.4, there is a constant δ0 > 0 such
that if 0 < δ < δ0, then u := uδ, vδ are solutions of H(x,Du) ≤ ε in the viscosity
sense in Ωr−ε and satisfy D+

γ u ≤ ε on Γr−ε. As is well-known, since H(x, ·) is
convex, the function zδ := uδ ∧ vδ is a subsolution of H(x,Dzδ) ≤ ε in Ωr−ε.
Also, it is easy to see that D+

γ z
δ(x) ≤ ε for x ∈ Γr−ε. It is then easily checked

that zδ is a subsolution of (2.1), with ΩU := Ωr−ε, ΓU := Γr−ε, f(x) := ε and
g(x) := ε. Sending δ → 0 and setting z := u∧ v, we see by the stability of viscosity
property under uniform convergence that z is a viscosity subsolution of (2.1), with
ΩU := Ωr−ε, ΓU := Γr−ε, f(x) := ε and g(x) := ε. But, since ε ∈ (0, r) is arbitrary,
the function z is a viscosity subsolution of (2.1), with f := 0 and g := 0. �

Noting that for any u, v ∈ C(Σ), 0 < λ < 1 and x ∈ ΓU ,

D+
γ (λu+ (1− λ)v)(x) ≤ λD+

γ u(x) + (1− λ)D+
γ v(x),

we deduce that the argument of the above proof yields also the following lemma.

Lemma 2.6. Let µ > 0 and f1, f2 ∈ C(Σ). For i = 1, 2 let ui ∈ C(Σ) be a
subsolution of (2.1), (2.2), with f := fi and g := −µ. Let 0 < λ < 1 and set
u = λu1 + (1 − λ)u2 and f = λf1 + (1 − λ)f2. Then u is a subsolution of (2.1),
with g := 0.

Proof of Theorem 2.1. By the continuity of the function u, we may assume that S
is a sequence {uk}k∈N. Indeed, we can choose a sequence {Km}m∈N of compact
subsets of Σ such that Σ =

⋃
m∈NKm. By a compactness argument, we can choose

for each m ∈ N a sequence {vm,j}j∈N ⊂ S such that u(x) = inf{vm,j(x) : j ∈ N}
for x ∈ Km. Then we have u(x) = inf{vm,j(x) : j,m ∈ N} for x ∈ Σ. Relabeling
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{vm,j} appropriately, we find a sequence {uk} which replaces S in the following
argument.

Next, we fix any µ > 0. According to the C1 regularity of Ω and the continuity
of g, we may select ψµ ∈ C1(Ω) so that

g(x) + µ ≤ Dγψµ(x) ≤ g(x) + 2µ for x ∈ Γ.

Set vk(x) = uk(x) − ψµ(x) and v(x) = u(x) − ψµ(x) for x ∈ Σ and observe that
w := vk is a solution of

(2.17)

{
H̃(x,Dw) ≤ 0 in ΩU ,

Dγw(x) ≤ −µ on ΓU ,

where H̃ is the continuous function on Ω×Rn given by H̃(x, p) = H(x, p+Dψµ(x))−
f(x). By Lemma 2.5, we see that wk := v1 ∧ · · · ∧ vk is a solution of (2.17), with
µ replaced by 0. Since wk(x) → v(x) locally uniformly on Σ as k → ∞, by the
stability of the viscosity property under uniform convergence, we see that v is a
solution of (2.17), with µ := 0. This means that u is a subsolution of (2.1), with
g(x) replaced by g(x) + 2µ. Since µ > 0 is arbitrary, we conclude that u is a
subsolution of (2.1). �

Proof of Theorem 2.2. Since the property to be shown is local, by replacing U by
a smaller one, we may assume that the sequences {uk} and {fk} are uniformly
bounded on Σ. Set

vk(x) =
1∑k
j=1 λj

k∑

j=1

λjuj(x) and Fk(x) =
1∑k
j=1 λj

k∑

j=1

λjfj(x) for x ∈ Σ.

Assume that k is sufficiently large, so that
∑k
j=1 λj > 0, vk ∈ Lip(Σ) and Fk ∈

C(Σ). Moreover, using Lemma 2.6 and arguing as in the previous proof that vk is
a subsolution of (2.1), with f replaced by Fk. In view of the uniform boundedness
of the sequences {uk} and {fk}, we see that vk(x) → u(x) and Fk(x) → f(x)
uniformly on Σ as k → ∞. By the stability of the viscosity property, we conclude
that u is a subsolution of (2.1). �

2.2. Propositions under the coercivity assumption. In this subsection, we
always assume that (A1)–(A3) hold, and reformulate Theorems 2.1 and 2.2.

Theorem 2.7. Let S ⊂ C(Σ) be a nonempty subset of subsolutions of (2.1). As-
sume that inf{v(x) : v ∈ S} > −∞ for some x ∈ Σ. Then the function

(2.18) u(x) := inf{v(x) : v ∈ S}
on Σ is a subsolution of (2.1).

A consequence of the above theorem is stated as follows. If S ⊂ C(Σ) is a
nonempty subset of solutions of (2.1) and formula (2.18) defines a real-valued func-
tion u, then u is a solution of (2.1). Indeed, as is well-known, the supersolultion
property is stable under taking infimums, and therefore u is a supersolution of (2.1)
as well.

Proof. Because of the local nature of our assertion, by replacing U by a smaller one,
we may assume that f is bounded on Σ. Then, by the coercivity assumption (A2),
we can choose a constant C > 0 so that for (x, p) ∈ Ω×Rn, if H(x, p) ≤ f(x), then
|p| ≤ C. This together with the boundedness and C1 regularity of Ω implies that
S is equi-Lipschitz continuous on Σ. Consequently, we have u ∈ Lip(Σ). Applying
Theorem 2.1, we find that u is a subsolution of (2.1). �
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We consider next the evolution equation with the Neumann type boundary con-
dition

(2.19)

{
ut +H(x,Du) = f(x, t) in ΩU × (0, T ),

Dγu = g(x) on ΓU × (0, T ),

where f ∈ C(Σ× (0, T )).

Theorem 2.8. Let S ⊂ C(Σ × (0, T )) be a nonempty subset of subsolutions of
(2.19). Assume that S is uniformly bounded on compact subsets of Σ × (0, T ).
Then the function

(2.20) u(x, t) := inf{v(x, t) : v ∈ S}
on Σ× (0, T ) is a subsolution of (2.19).

A remark parallel to the remark after Theorem 2.7 is valid here. Indeed, if
S ⊂ C(Σ × (0, T )) is a nonempty subset of solutions of (2.19) and it is uniformly
bounded on compact subsets of Σ × (0, T ), then the function u given by (2.20) is
a solution of (2.19).

Proof. Because the viscosity property is local, we may assume, by replacing U and
the interval (0, T ) by smaller ones and by translation in the t-direction if needed,
that S are uniformly bounded on Σ×(0, T ). We may aslo assume that f ∈ BUC(Σ).
Let C > 0 be a constant such that |v(x, t)| ≤ C for (x, t) ∈ Σ× (0, T ) and v ∈ S.

Let ε > 0 and introduce the sup-convolution of v ∈ S with respect to the t-
variable:

vε(x, t) = inf
0<s<T

(
v(x, s)− 1

2ε
(t− s)2

)
for (x, t) ∈ Σ× R.

Setting δ = 2
√
εC, we observe that for (x, t) ∈ Σ× (δ, T − δ),

vε(x, t) = max
|s−t|≤δ

(
u(x, s)− 1

2ε
(t− s)2

)
,

from which we deduce as usual in viscosity solutions theory that vε is a subsolution
of

(2.21)

{
vεt +H(x,Dvε) = f + ω(δ) in ΩU × (δ, T − δ),
Dγv

ε = g on ΓU × (δ, T − δ),
where ω is the modulus of continuity of f .

Now, the family of functions vε(x, ·), with x ∈ Σ and v ∈ S, is equi-Lipschitz
continuous on (δ, T − δ). From this and (2.21), we see that H(x,Dvε) ≤ Cε in
the viscosity sense in ΩU × (δ, T − δ) for all v ∈ S and for some constant Cε > 0.
Observe then that for (x, t) ∈ Σ× R,

uε(x, t) := inf
0<s<T

(
u(x, s)− 1

2ε
(t− s)2

)
= inf{vε(x, t) : v ∈ S}.

We apply Theorem 2.1, to see that uε is a subsolution of (2.21). Indeed, in order to
apply Theorem 2.1, we set Ω̃ = Ω×(0, T ), Ũ = U×(0, T ), H̃(x, t, p, q) = H(x, p)+q
and γ̃(x, t) = (γ(x), 0), and regard problem (2.19) as problem (2.1), with Ω̃, Ũ , H̃
and γ̃ in place of Ω, U , H and γ, respectively.

Next, we observe that for (x, t) ∈ Σ × (0, T ), the family {uε(x, t)} converges
monotonically to u(x, t) as ε → 0, which implies, together with the continuity of
uε, that u(x, t) is identical to the upper relaxed limit of uε(x, t) as ε→ 0. Because
of the stability of the subsolution property under such a limiting process, we see
that u is a subsolution of (2.19). �
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Theorem 2.9. For k ∈ N let fk ∈ C(Σ × (0, T )) and uk ∈ USC(Σ × (0, T ))
be a subsolution of (2.19), with fk in place of f . Let {λk}k∈N be a sequence of
nonnegative numbers such that

∑
k∈N λk = 1. Assume that the sequences {uk}k∈N

and {fk}k∈N are uniformly bounded on compact subsets of Σ× (0, T ). Set

u(x, t) =
∑

k∈N
λkuk(x, t) and f(x, t) =

∑

k∈N
λkfk(x, t) for x ∈ Σ× (0, T ).

Then u is a subsolution of (2.19).

Proof. Arguing as in the proof of Theorem 2.8, with use of Theorem 2.1 instead of
Theorem 2.2, we conclude that Theorem 2.9 is valid. �

3. Comparison results

The comparison results presented in this section are more or less well-known (see
for instance [Lio85, BL91, DI90]). A only new feature of our results may be in the
point that they are formulated in a localized fashion.

Theorem 3.1. Let f1, f2 ∈ C(Σ) and let u ∈ USC(Σ) (resp., v ∈ LSC(Σ)) be
a subsolution (resp., a supersolution) of (2.1), with f replaced by f1 (resp., f2).
Assume that f1(x) < f2(x) for x ∈ Σ. Then

sup
Σ

(u− v) ≤ sup
∂U∩Ω

(u− v).

We remark that if ∂U ∩ Ω = ∅ in the above theorem, then the right side of the
above inequality equals −∞ by definition. In particular, if Ω ⊂ U in the above
theorem, then the theorem asserts that supΩ(u− v) = −∞.

Corollary 3.2. If a < b and problem (1.1), (1.2) has a subsolution, then problem
(1.1), (1.2), with b in place of a, does not have a supersolution. In particular, if
problem (1.1), (1.2) has a solution for some a ∈ R, then problem (1.1), (1.2), with
a replaced by b 6= a, has no solution.

Proof. Let a < b, and assume that there are a subsolution u of (1.1), (1.2) and
a supersolution of (1.1), (1.2), with b in place of a. Note that, for any c ∈ R,
the function u + c is also a subsolution of (1.1), (1.2). By Theorem 3.1, we have
u∗ + c ≤ v∗ on Ω for c ∈ R, which is a contradiction. This proves our claim. �
Lemma 3.3. Assume that f is bounded on Σ. Then there is a constant C > 0,
depending only H, f and Ω, such that for any subsolution u ∈ USC(Σ) of (2.1)
and x, y ∈ Σ, |u(x)− u(y)| ≤ C|x− y|.
Proof. Let u ∈ USC(Σ) be a subsolution of (2.1). By the coercivity assumption
(A2) and the boundedness of f , there is a constant C0 > 0 such that for (x, p) ∈ ΩU ,
if |p| ≥ C0, then H(x, p) ≥ f(x) + 1. It follows from (2.1) that u is a subsolution
of |Du| ≤ C0 in ΩU , which implies together with the C1 regularity of Ω that u is
Lipschitz continuous on ΩU with a Lipschitz constant C > 0 depending only on C0

and Ω.
We next show that u ∈ C(Σ), which guarantees that u is Lipschitz continuous

on Σ with the same Lipschitz constant C. To this end, we need only to show that
for any fixed z ∈ ΓU , u is continuous at z. By translation, we may assume that
z = 0. By rotation and localization, we may furthermore assume that U , ΩU and
ΓU are given by (2.2). Since u ∈ USC(Σ) and u ∈ Lip(ΩU ), it is enough to show
that

(3.1) u(0) ≤ sup
Ωs

u for s ∈ (0, r).

Here and later we use the notation Ωs and Γs as defined in (2.5).
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We may assume by replacing r > 0 by a smaller one that γ0 := infx∈Γr γ(x) ·
en > 0. (Recall that en denotes the unit vector (0, ..., 0, 1) ∈ Rn.) We select
a closed convex cone K with vertex at the origin so that K \ {0} ⊂ −Rn+ and
−γ(x)+B(0, δ) ∈ K for all x ∈ Γr and for some δ > 0. We denote by NK the normal
cone to K at the origin. That is, we set NK = {ξ ∈ Rn : ξ · p ≤ 0 for p ∈ K}.
It follows that ξ · (−γ(x)) ≤ −δ|ξ| for all ξ ∈ NK and x ∈ Γr. Let dK denote the
distance function from the set K, i.e., dK(x) = dist (x,K). As is well-known, the
function dK is convex on Rn, dK ∈ C(Rn)∩C1(Rn \K), dK(x) ≥ 0 for x ∈ Rn and
DdK(x) ∈ NK ∩ ∂B(0, 1) for x ∈ Rn \K.

Fix any s ∈ (0, r) and set ρ = dist (K, ∂B(0, s)∩ {xn = 0}). Here and later we
use the notation: {xn = 0} := {(x′, xn) ∈ Rn : xn = 0} and similarly {xn < 0} :=
{(x′, xn) ∈ Rn : xn < 0}. Note that 0 < ρ ≤ s and fix any ε ∈ (0, ρ). We may
assume by replacing r > 0 by a smaller one that u is bounded above on Ωr. We
choose a constant C1 > 0 so that supΩr

u ≤ C1, supΩr |u| ≤ C1 and supΓr g ≤ C1.
We select a function ζε ∈ C1(R) so that ζ ′ε(r) ≥ 1 for r ∈ R, ζε(r) = r for r ≤ ε
and ζε(ρ) ≥ 2C1. We set A = max{1, C0, (C1 + 1)/δ}, and define the function
v ∈ C(Rn) by

v(x) := Aζε(dK(x+ εen)) + sup
Ωs

u = Aζε( dist (x, K − εen) + sup
Ωs

u.

Let V = Ωs \ (K − εen). We intend to show that u ≤ v on the set V . To do this,
we suppose by contradiction that maxV (u− v) > 0. Note that

V ⊂ Ωs =
(
Ωs ∩ {xn < 0}) ∪ (∂B(0, s) ∩ {xn = 0}) ∪ Γs.

V

K − εen

Since u ∈ C(Ωr), it is clear that u ≤ supΩs u ≤ v on Ωs ∩ {xn < 0}. For any
x ∈ ∂B(0, s) ∩ {xn = 0}, we have dist (x, K − εen) ≥ dist (x, K) ≥ ρ > s and
hence

v(x) ≥ ζε(dK(x+ εen))− C1 ≥ ζε(ρ)− C1 ≥ C1 ≥ u(x).

Consequently, we have u(x) ≤ v(x) for V ∩Γs and therefore there is a point y ∈ Γs
such that (u − v)(y) = maxV (u − v). Since u is a subsolution of (2.1), with V in
place of U , we have either H(y, Dv(y)) ≤ f(y) or Dγv(y) ≤ g(y). Since y ∈ Γs and
Γs ∩ (K − εen) = ∅, we have

Dv(y) = Aζ ′ε(dK(y + εen))DdK(y + εen).

Hence, we get |Dv(y)| ≥ A ≥ C0 and, by the choice of C0, H(y, Dv(y)) > f(y).
Also, we get

Dγv(y) = Aζ ′ε(dK(y + εen))γ(y) ·DdK(y + εen) ≥ Aδ ≥ C1 + 1 > g(y).

We are in a contradiction, and thus we conclude that (3.1) holds. �
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Proof of Theorem 3.1. We first deal with the case where Ω ∩ ∂U 6= ∅. We suppose
by contradiction that

(3.2) max
Σ

(u− v) > max
∂U∩Ω

(u− v).

By replacing U by a smaller one (for instance, the set {x ∈ U : dist (x, ∂U) > ε}
with sufficiently small ε > 0) if needed, we may assume that f1, f2 are continuous
on Σ and supΣ(f1−f2) < 0. We note by Lemma 3.3 that the function u is Lipschitz
continuous on Σ.

We now intend to replace H by a uniformly continuous Hamiltonian, which is
not coercive nor convex any more. For this, we define the function H̃ ∈ UC(Σ×Rn)
by

H̃(x, p) = min{H(x, p)− f1(x), 1}.
Set f̃1(x) = 0 and f̃2(x) = min{f2(x) − f1(x), 1} for x ∈ Σ. Now, the function u

(resp., v) is a subsolution (resp., a supersolution) of (2.1), with H̃ and f̃1 (resp., f̃2)
in place of H and f . Thus, replacing H, f1 and f2 by H̃, f̃1 and f̃2, respectively,
we may assume in what follows that H ∈ UC(Σ× Rn).

We select a function ψ ∈ C1(Ω) so that Dγψ(x) > 0 for all x ∈ Γ. Let δ > 0 and
set

uδ(x) = u(x)− δψ(x) and vδ(x) = v(x) + δψ(x) for x ∈ Σ.

In view of the uniform continuity of H, selecting δ > 0 small enough, replacing
f1, f2 by a new ones if necessary, we may assume that uδ (resp., vδ) is a subsolution
(resp., a supersolution) of (2.1), with g and f replaced respectively by g− ε (resp.,
g + ε), where ε is a positive constant and by f1 (resp., f2). We may also assume
that (3.2) holds with uδ and vδ in place of u and v, respectively. Henceforth we
replace u and v by uδ and vδ in our notation, respectively.

If supΓU (u− v) < maxΣ(u− v), then we have max∂Σ(u− v) < maxΣ(u− v) and
get a contradiction by arguing as in the standard proof (in the case of the Dirichlet
boundary condition) of comparison results where the Lipschitz continuity of u is
available.

Thus we assume henceforth that supΓU (u−v) = maxΣ(u−v). Then the function
u − v attains a maximum at a point z ∈ ΓU . By replacing U by an open ball
intB(z, r), with r > 0 sufficiently small, and by translation, we may assume that
z = 0, ΩU = Ωr and ΓU = Γr, where Ωr and Γr are the sets given by (2.5). We set
γ̃ = γ(0)/|γ(0)|2,

ũ(x) = u(x)− g(0)γ̃ · x− |x|2 and ṽ(x) = v(x)− g(0)γ̃ · x for Σ.

Note that ũ− ṽ attains a strict maximum at the origin and that w := ũ is a solution
of {

H(x,Dw(x) + g(0)γ̃ + 2x) ≤ f1(x) in Ωr,

DγDw(x) ≤ g(x)− g(0)γ(x) · γ̃ − 2γ(x) · x− ε on Γr,

and w := ṽ is a solution of{
H(x,Dw(x) + g(0)γ̃) ≥ f2(x) in Ωr,

DγDw(x) ≥ g(x)− g(0)γ(x) · γ̃ + ε on Γr,

Replacing r > 0 by a smaller positive number, we may assume that w := ũ is a
solution of 



H(x,Dw(x) + g(0)γ̃) ≤ f1(x) + ε in Ωr,

DγDw(x) ≤ −ε
2

on Γr,
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and w := ṽ is a solution of


H(x,Dw(x) + g(0)γ̃) ≥ f2(x) in Ωr,

DγDw(x) ≥ ε

2
on Γr,

Reselecting ε > 0 small enough if necessary, we may assume that maxΩr
(f1 + ε −

f2) < 0. In the argument which follows, we write u, v, f1 and H for the functions
ũ, ṽ, f1 + ε and H(x, p+ g(0)γ̃), respectively.

Let ζ ∈ C∞(Rn+×Rn) be the function from Lemma 2.3. Set φ(x, y) = ζ(γ(0), x−
y). For α > 1 we consider the function Φ(x, y) := u(x)− v(y)−αφ(x, y) on Σ×Σ.
Let (xα, yα) ∈ Σ

2
be a maximum point of Φ. Since u− v attains a strict maximum

at the origin, we deduce easily that xα, yα → 0 as α → ∞. Let C1 > 0 be the
Lipschitz constant of the function u. Then, since Φ(yα, yα) ≤ Φ(xα, yα), we find
that αφ(xα, uα) ≤ C1|xα − yα|, from which we get α|xα − yα| ≤ C2, where C2 > 0
is a constant independent of α. If xα, yα ∈ Ωr, then we have

H(xα, Dxφ(xα, yα)) ≤ f1(xα) and H(yα,−Dyφ(xα, yα)) ≥ f2(yα).

Here, noting that Dxφ(x, y) +Dyφ(x, y) = 0, we find that

(3.3) H(xα, Dxφ(xα, yα)) ≤ f1(xα) and H(yα, Dxφ(xα, yα)) ≥ f2(yα).

Assume instead that xα ∈ Γr. By the viscosity property of u, we have either

H(xα, Dxφ(xα, yα)) ≤ f1(xα) or γ(xα) ·Dxφ(xα, yα) ≤ −ε
2
.

Compute that

γ(xα) ·Dxφ(xα, yα) = γ(xα) ·Dzζ(γ(0), xα − yα) ≥ γn(0) · (−yαn)−C2C3ωγ(|xα|),
where C3 > 0 is a constant, independent of α, such that |Dzζ(γ(0), z)| ≤ C3|z|
for z ∈ Rn+ × Rn, ωγ is the modulus of continuity of γ on Γ and yαn := en · y.
Accordingly, if α is large enough, then we have

γ(xα) ·Dxφ(xα, yα) > −ε
2
.

Thus, we have H(xα, Dxφ(xα, yα)) ≤ f1(xα) if α is large enough. Similarly, in the
case where yα ∈ Γr, we have H(yα, Dxφ(xα, yα)) ≥ f2(yα) if α is large enough.
Now, assuming α is large enough, we always have (3.3), from which get a contra-
diction, f1(0) ≥ f2(0), by taking the limit as α→∞.

We next turn to the case where ∂U ∩ Ω = ∅. We have

Ω = (Ω ∩ U) ∪ (Ω ∩ U c) = (Ω ∩ U) ∪ (Ω ∩ int(U c)) .

Since Ω is connected and Ω ∩ U = Σ 6= ∅, we see that Ω ∩ int(U c) = ∅ and Ω ⊂ U .
We thus need to show that

sup
Ω

(u− v) = −∞.

Indeed, if maxΩ(u − v) ∈ R, then the argument in the previous case yields a
contradiction. The proof is now complete. �

Theorem 3.4. Let u ∈ USC(Σ× [0, T )) and v ∈ LSC(Σ× [0, T )) be respectively a
subsolution and a supersolution of (2.19). Assume that u ≤ v on Σ× {0} ∪ (∂U ∩
Ω)× (0, T ). Then u ≤ v in Σ× [0, T ).

Lemma 3.5. Assume that f ∈ C(Σ× (0, T )) is bounded on Σ× (0, T ). Then for
any R > 0 there is a constant CR > 0, depending only on R, H, f and Ω, for which
if u ∈ USC(Σ×(0, T )) is a subsolution of (2.19) and if the family {u(x, ·) : x ∈ Σ},
is equi-Lipschitz continuous on (0, T ) with Lipschitz constant R, then the function
u is Lipschitz continuous on Σ× (0, T ) with Lipschitz constant CR.
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Proof. Fix any R > 0. As in the proof of Lemma 3.3, there is a constant MR > 0,
depending only on R, H and f , such that for (x, p) ∈ Σ×Rn, if H(x, p) ≤ f(x)+R,
then |p| ≤MR. Let u ∈ USC(Σ×(0, T )) be a subsolution of (2.19), and assume that
the family {u(x, ·) : x ∈ Σ} is equi-Lipschitz continuous on (0, T ) with Lipschitz
constant R. Then, it is easily seen that for each t ∈ (0, T ), the function u(·, t) is
a subsolution of (2.1), with H(x, p) and f(x) replaced by |p| and C0, respectively.
By Lemma 3.3, there is a constant CR ≥ R, depending only on MR and Ω, such
that the family {u(·, t) : 0 < t < T} is equi-Lipschitz continuous on Σ, with
Lipschitz constant CR. Then we have |u(x, t)− u(y, s)| ≤ CR(|x− y|+ |t− s|) for
all (x, t), (y, s) ∈ Σ× (0, T ) and finish the proof. �

Proof of Theorem 3.4. We follow the line of the proof of Theorem 3.1. For S < T
we write

∂′p(Σ× (S, T )) = Σ× {S} ∪ (∂U ∩ Ω
)× (S, T ).

It is enough to show that

(3.4) sup
QT

(u− v) ≤ sup
∂′pQT

(u− v),

where QT = Σ× (0, T ).
To prove (3.4), we suppose, on the contrary, that

(3.5) sup
QT

(u− v) > sup
∂′pQT

(u− v).

Let δ > 0 and set

ũ(x, t) = u(x, t)− δ

T − t for (x, t) ∈ QT .

By replacing u by ũ, we may assume that u is a subsolution of (2.19) with f(x)
replaced by f(x)− ε, where ε > 0 is a constant, and that

lim
t→T−

sup
x∈Σ

(u− v)(x, t) = −∞.

By taking the sup-convolution of u in the t-variable, replacing U and the inter-
val (0, T ) by smaller (in the sense of inclusion) ones, and translating the smaller
interval, we may assume that f is uniformly continuous on QT and the family
{u(x, ·) : x ∈ Σ} is equi-Lipschitz continuous on (0, T ). According to Lemma 3.5,
the function u is Lipschitz continuous on QT . Next, we may replace H by a uni-
formly continuous function on Σ × Rn. By perturbing u (resp., v) as in the proof
of Theorem 3.1 and replacing ε > 0 by a smaller positive number, we may assume
that u (resp., v) is a subsolution (resp., a supersolution) of (2.19), with f(x, t) and
g(x) replaced by f(x, t)−ε and −ε (resp., f(x, t) and ε). Moreover, we may assume
that u− v attains a strict maximum at a point (z, τ) ∈ ΓU × (0, T ). Furthermore,
we may assume that z = 0, U = intB(0, r), ΩU = Ωr and ΓU = Γr, where r > 0
and Ωr, Γr are the sets given by (2.5).

Now we consider the function

Φ(x, t, y, s) = u(x, t)− v(y, s)− αφ(x, y)− α(t− s)2

on the set QT × QT , where α > 1 is a constant and φ is the function used in the
proof of Theorem 3.1. Let (xα, yα) ∈ QT ×QT be a maximum point of Φ. Arguing
as in the proof of Theorem 3.1, we see that if α is sufficiently large, then we always
have

(3.6)

{
2α(tα − sα) +H(xα, αDxφ(xα, yα)) ≤ f(xα)− ε,
2α(tα − sα) +H(yα, αDxφ(xα, yα)) ≥ f(yα).
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Also, using the Lipschitz continuity of u, we find that for some constant C > 0,
independent of α,

α|tα − sα|+ α|xα − yα| ≤ C.
Sending α→∞ in (3.6) yields a contradiction. �

4. Skorokhod problem

In this section we are concerned with the Skorokhod problem. We recall that
R+ = (0, ∞) and hence R+ = [0, ∞). We denote by L1

loc(R+, Rk) (resp., ACloc(R+, Rk))
the space of functions v : R+ → Rk which are integrable (resp., absolutely contin-
uous) on any bounded interval I ⊂ R+.

Given x ∈ Ω and v ∈ L1
loc(R+,Rn), the Skorokhod problem is to seek for a pair

of functions, (η, l) ∈ ACloc(R+,Rn)× L1
loc(R+, R), such that

(4.1)





η(0) = x, η(t) ∈ Ω for t ∈ R+,

η̇(t) + l(t)γ(η(t)) = v(t) for a.e. t ∈ R+,

l(t) ≥ 0, l(t) = 0 if η(t) ∈ Ω for a.e. t ∈ R+.

Regarding the solvability of the Skorokhod problem, our main result is the fol-
lowing.

Theorem 4.1. Let v ∈ L1
loc(R+, Rn) and x ∈ Ω. Then there exits a pair (η, l) ∈

ACloc(R+, Rn)× L1
loc(R+, R) such that (4.1) holds.

We are interested in “regular” solutions in the above theorem. See [LS84] and
references therein for more general viewpoints on the Skorokhod problem. The
advantage of the above result is in that it applies to domains with C1 boundary.

A natural question is the uniqueness of the solution (η, l) in the above theorem.
But we do now know if the uniqueness holds or not.

We first establish the following result.

Theorem 4.2. Let v ∈ L∞(R+, Rn) and x ∈ Ω. Then there exits a pair (η, l) ∈
Lip(R+, Rn)× L∞(R+, R) such that (4.1) holds.

We borrow some ideas from [LS84] in the following proof.

Proof. We may assume that γ is defined on Rn. Let ψ ∈ C1(Rn) be such that
ψ(x) < 0 in Ω, |Dψ(x)| > 1 for x ∈ Γ, ψ(x) > 0 for x ∈ Rn\Ω and lim inf |x|→∞ ψ(x) >
0. We can select a constant δ > 0 so that for x ∈ Rn,

γ(x) ·Dψ(x) ≥ δ|Dψ(x)| if 0 ≤ ψ(x) ≤ δ.
We set q(x) = (ψ(x) ∨ 0) ∧ δ for x ∈ Rn. Note that q(x) = 0 for x ∈ Ω, q(x) > 0
for x ∈ Rn \ Ω, and γ(x) ·Dq(x) ≥ δ|Dq(x)| for a.e. x ∈ Rn.

Fix ε > 0 and x ∈ Ω. We consider the initial value problem for the ODE

(4.2) ξ̇(t) +
1
ε
q(ξ(t))γ(ξ(t)) = v(t) for a.e. t ∈ R+, ξ(0) = x.

Here ξ represents the unknown function. By the standard ODE theory, there is a
unique solution ξ ∈ C1(R+) of (4.2).

Let m ≥ 2. We multiply the ODE of (4.2) by mq(ξ(t))m−1Dq(ξ(t)), to get

d
dt
q(ξ(t))m +

m

ε
q(ξ(t))mDq(ξ(t)) · γ(ξ(t)) = mq(ξ(t))m−1Dq(ξ(t)) · v(t) a.e.
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Fix any T ∈ R+. Integrating over [0, T ], we get

q(ξ(T ))m − q(ξ(0))m +
m

ε

∫ T

0

q(ξ(s))mγ(ξ(s)) ·Dq(ξ(s)) ds

= m

∫ T

0

q(ξ(s))m−1Dq(ξ(s)) · v(s) ds.

Here we have∫ T

0

q(ξ(s))mγ(ξ(s)) ·Dq(ξ(s)) ds ≥ δ
∫ T

0

q(ξ(s))m|Dq(ξ(s))| ds,

and ∫ T

0

q(ξ(s))m−1Dq(ξ(s)) · v(s) ds

≤
(∫ T

0

q(ξ(s))m|Dq(ξ(s)| ds
)1− 1

m
(∫ T

0

|v(s)|m|Dq(ξ(s))|ds
) 1
m

.

Combining these, we get

q(ξ(T ))m +
mδ

ε

∫ T

0

q(ξ(s))m|Dq(ξ(s))| ds(4.3)

≤ m
(∫ T

0

q(ξ(s))m|Dq(ξ(s))| ds
)1− 1

m
(∫ T

0

|v(s)|m|Dq(ξ(s))| ds
) 1
m

.

From this we obtain

(4.4)
δ

ε

(∫ T

0

q(ξ(s))m|Dq(ξ(s))|ds
) 1
m

≤
(∫ T

0

|v(s)|m|Dq(ξ(s))| ds
) 1
m

and

q(ξ(T ))m ≤
(ε
δ

)m−1

m

∫ T

0

|v(s)|m|Dq(ξ(s))|ds.
Hence, setting C0 = ‖Dq‖L∞(Rn), we deduce that

(4.5) q(ξ(t))m ≤
( ε
a

)1− 1
m

mC0T‖v‖mL∞(0,T ) for t ∈ [0, T ].

Henceforth we write ξε for ξ, to indicate the dependence on ε of ξ. We see from
(4.5) that for any T > 0,

(4.6) lim
ε→0+

max
t∈[0, T ]

dist (ξε(t), Ω) = 0.

Also, (4.5) ensures that for each T > 0 there is an εT > 0 such that q(ξε(t)) < δ
for t ∈ [0, T ].

Now let T > 0 and 0 < ε < εT . we have q(ξε(s)) = ψ(ξε(s)) ∨ 0 for all t ∈ [0, T ]
and hence q(ξε(t))m|Dq(ξε(t))| = q(ξε(t))m for a.e. t ∈ (0, T ). Accordingly, (4.4)
yields

δ

ε

(∫ T

0

q(ξε(s))m ds

) 1
m

≤ C0T
1
m ‖v‖L∞(0,T ).

Sending m→∞, we find that (δ/ε)‖q ◦ ξε‖L∞(0, T ) ≤ C0‖v‖L∞(0, T ), and moreover

(4.7)
δ

ε
‖q ◦ ξε‖L∞(R+) ≤ C0‖v‖L∞(R+).

We set lε = (1/ε)q ◦ ξε. Due to (4.7), we may choose a sequence εj → 0+ so that
lεj → l weakly-star in L∞(R+) as j → ∞ for a function l ∈ L∞(R+). It is clear
that l(s) ≥ 0 for a.e. s ∈ R+.
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ODE (4.2) together with (4.7) guarantees that {ξ̇ε}ε>0 is bounded in L∞(R+).
Hence, we may assume as well that ξεj converges locally uniformly on R+ to a
function η ∈ Lip(R+) as j → ∞. It is then obvious that η(0) = x and the pair
(η, l) satisfies

η(t) +
∫ t

0

(
l(s)γ(ξ(s))− v(s)

)
ds = 0 for t > 0,

from which we get

η̇(t) + l(t)γ(η(t)) = v(t) for a.e. t ∈ R+.

It follows from (4.6) that η(t) ∈ Ω for t ≥ 0.
In order to show that the pair (η, l) is a solution of (4.1), we need only to prove

that for a.e. t ∈ R+, l(t) = 0 if η(t) ∈ Ω. Set A = {t ≥ 0 : η(t) ∈ Ω}. It is clear
that A is an open subset of [0, ∞). We can choose a sequence {Ik}k∈N of closed
intervals of A such that A =

⋃
k∈N Ik. Note that for each k ∈ N, the set η(Ik) is a

compact subset of Ω and the convergence of {ξεj} to η is uniform on Ik. Hence, for
any fixed k ∈ N, we may choose J ∈ N so that ξεj (t) ∈ Ω for all t ∈ Ik and j ≥ J .
From this, we have q(ξεj (t)) = 0 for t ∈ Ik and j ≥ J . Moreover, in view of the
weak-star convergence of {lεj}, we find that for any k ∈ N,

∫

Ik

l(t) dt = lim
j→∞

∫

Ik

1
εj
q(ξj(t))m dt = 0,

which yields l(t) = 0 for a.e. t ∈ Ik. Since A =
⋃
k∈N Ik, we see that l(t) = 0 a.e.

in A. The proof is complete. �

For x ∈ Ω, let SP(x) denote the set of all triples

(η, v, l) ∈ ACloc(R+,Rn)× L1
loc(R+,Rn)× L1

loc(R+)

which satisfies (4.1). We set SP =
⋃
x∈Ω SP(x).

We remark that for any x, y ∈ Ω and 0 < T <∞, there exists a triple (η, v, l) ∈
SP(x) such that η(T ) = y. Indeed, given x, y ∈ Ω and 0 < T < ∞, we choose
a curve η ∈ Lip([0, T ],Ω) so that η(0) = x and η(T ) = y. The existence of such
a curve is guaranteed since Ω is a domain and has the C1 regularity. We extend
the domain of definition of η to R+ by setting η(t) = y for t > T . Now, if we set
v(t) = η̇(t) and l(t) = 0 for t ≥ 0, we have (η, v, l) ∈ SP(x), which has the property,
η(T ) = y. Here and henceforth, for interval I, we denote by Lip(I,Ω) the set of
those η ∈ Lip(I,Rn) such that η(t) ∈ Ω for t ∈ I. We use such notation for other
spaces of functions having values in Ω ⊂ Rn as well.

We note also that problem (4.1) has the following semi-group property: for any
(x, t) ∈ Ω × R+ and (η1, v1, l1), (η2, v2, l2) ∈ SP, if η1(0) = x and η2(0) = η1(t)
hold and if (η, v, l) is defined on R+ by

(η(s), v(s), l(s)) =

{
(η1(s), v1(s), l1(s)) for s ∈ [0, t),

(η2(s− t), v2(s− t), l2(s− t)) for s ∈ [t, ∞),

then (η, v, l) ∈ SP(x).

Proposition 4.3. There is a constant C > 0, depending only on Ω and γ, such
that for (η, v, l) ∈ SP,

|η̇(s)| ∨ l(s) ≤ C|v(s)| for a.e. s ≥ 0.

An immediate consequence of the above proposition is that for (η, v, l) ∈ SP,
if v ∈ Lp(R+, Rn) (resp., v ∈ Lploc(R+, Rn)), with 1 ≤ p ≤ ∞, then (η, l) ∈
Lp(R+, R

n+1) (resp., (η, l) ∈ Lploc(R+, Rn+1)).
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Proof. Thanks to hypothesis (A3), there is a constant δ0 > 0 such that ν(x)·γ(x) ≥
δ0 for x ∈ Γ. Let (η, v, l) ∈ SP. According to the C1 regularity of Ω, there is a
function ψ ∈ C1(Rn) such that

Ω = {x ∈ Rn : ψ(x) < 0} and Dψ(x) 6= 0 for x ∈ Γ.

Noting that ψ(η(s)) ≤ 0 for all s ≥ 0, we find that for any s > 0, if η(s) ∈ Γ and η
is differentiable at s, then

0 =
d
ds
ψ(η(s)) = Dψ(η(s)) · η̇(s).

Hence, noting that Dψ(η(s)) is parallel to ν(η(s)), we see that ν(η(s)) · η̇(s) = 0.
Let s > 0 be such that η(s) ∈ Γ, η̇(s) exists, η̇(s) + l(s)γ(η(s)) = v(s), l(s) ≥ 0

and ν(η(s)) · η̇(s) = 0. We see immediately that l(s)γ(η(s)) ·ν(η(s)) = v(s) ·ν(η(s)).
Hence, we get

δ0 l(s) ≤ v(s) · ν(η(s)) ≤ |v(s)|
and l(s) ≤ δ−1

0 |v(s)| for a.e. s ≥ 0. We also have

|η̇(s)| ≤ |v(s)|+ ‖γ‖∞|l(s)| ≤
(

1 +
‖γ‖∞
δ0

)
|v(s)| for a.e. s ≥ 0. �

Let F be a subset of L1(I,Rm), where I ⊂ R is an interval. We recall that F is
said to be uniformly integrable if for any ε > 0 there is a δ > 0 such that for any
f ∈ F ,

∣∣∣
∫

B

f(s) ds
∣∣∣ < ε whenever B ⊂ I is measurable and |B| < δ.

Here |B| denotes the Lebesgue measure of B ⊂ R.

Proposition 4.4. Let {(ηk, vk, lk)}k∈N ⊂ SP. Assume that {|vk|} is uniformly
integrable on every intervals [0, T ], with 0 < T <∞. Then there exist a subsequence
{ηkj , vkj , lkj}j∈N of {ηk, vk, lk} and a (η, v, l) ∈ SP such that

ηkj (t)→ η(t) uniformly on [0, T ],

η̇kj dt→ η̇ dt weakly-star in C([0, T ], Rn)∗,

vkj dt→ v dt weakly-star in C([0, T ], Rn)∗,

lkj dt→ l dt weakly-star in C([0, T ])∗

for every T > 0.

In the above proposition, we denote by X∗ the dual space of the Banach space
X. Regarding notation in the above proposition, we remark that the weak-star con-
vergence in C([0, T ])∗ or C([0, T ], Rn)∗ is usually stated as the weak convergence
of measures.

Proof. By Proposition 4.3, there is a constant C0 > 0 such that for k ∈ N,

(4.8) |η̇k(s)| ∨ lk(s) ≤ C0|vk(s)| for a.e. s ≥ 0.

It follows from this that the sequences {|η̇k|} and {lk} are uniformly integrable on
the intervals [0, T ], 0 < T <∞. If we set

Vk(t) =
∫ t

0

vk(s) ds and Lk(t) =
∫ t

0

lk(s) ds for t ≥ 0,

then the sequences {ηk}, {Vk} and {Lk} are equi-continuous and uniformly bounded
on the intervals [0, T ], 0 < T <∞. We may therefore choose an increasing sequence
{kj} ⊂ N so that the sequences {ηkj}, {Vkj} and {Lkj} converge, as j → ∞, uni-
formly on every finite interval [0, T ], 0 < T <∞, to some functions η ∈ C(R+, Ω),
V ∈ C(R+, Rn) and L ∈ C(R+). The uniform integrability of the sequences {|η̇k|},
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{|vk|} and {lk} implies that the functions η, V and L are absolutely continuous on
every finite interval [0, T ], 0 < T <∞.

Fix any 0 < T < ∞. The uniform integrability of the sequences {|η̇k|}, {|vk|}
and {lk} guarantees that the sequences {η̇k ds}, {vk ds} and {lk ds} of measures on
[0, T ] are bounded. That is, we have

sup
k∈N

∫ T

0

(|η̇k(s)|+ |vk(s)|+ lk(s)) ds <∞.

Hence we may assume without loss of generality that as j →∞,

η̇kj ds→ µ1 weakly-star in C([0, T ], Rn)∗,

vkj dt→ µ2 weakly-star in C([0, T ], Rn)∗,

lkj dt→ µ3 weakly-star in C([0, T ])∗

for some regular Borel measures µ1, µ2 and µ3 of bounded variations on [0, T ].
Then, for any φ ∈ C1([0, T ], Rn), using integration by parts twice, we get

∫ T

0

φ(s)µ1( ds) = lim
j→∞

∫ T

0

φ(s)η̇kj (s) ds

= lim
j→∞

([
φηkj

]T
0
−
∫ T

0

φ′(s)ηkj (s) ds
)

=
[
φη
]T

0
−
∫ T

0

φ′(s)η(s) ds =
∫ T

0

φ(s)η̇(s) ds.

By the density of C1([0, T ], Rn) in C([0, T ], Rn), we find that
∫ T

0

φ(s)µ1( ds) =
∫ T

0

φ(s)η̇(s) ds,

which shows that µ1 = η̇ ds on [0, T ]. Similarly we see that µ2 = V̇ ds and µ2 =
L̇ ds. Thus, setting v = V̇ and l = L̇, we have as j →∞

η̇kj ds→ η̇ ds weakly-star in C([0, T ], Rn)∗,

vkj dt→ v ds weakly-star in C([0, T ], Rn)∗,

lkj dt→ l ds weakly-star in C([0, T ])∗.

Note here that the above weak-star convergence is valid for every 0 < T <∞.
Since

η̇k(s) + lk(s)γ(ηk(s)) = vk(s) for a.e. s ≥ 0,
integrating this over [0, t], 0 < t <∞ and sending k = kj as j →∞, we get

η(t)− η(0) +
∫ t

0

l(s)γ(η(s)) ds =
∫ t

0

v(s) ds for t > 0,

which ensures that η̇(s) + l(s)γ(η(s)) = v(s) for a.e. s ≥ 0. It is obvious that
η(s) ∈ Ω for s ≥ 0. Finally, we argue as in the last part of the proof of Theorem
4.2, to find that for a.e. s ∈ R+, l(s) = 0 if η(s) ∈ Ω. The proof is complete. �

Proof of Theorem 4.1. Fix any x ∈ Ω and v ∈ L1
loc(R+, Rn). In view of the semi-

group property of problem (4.1), we may assume that v(s) = 0 for s ≥ 1, so that
v ∈ L1(R+, Rn). We define the sequence {vk}k∈N ⊂ L∞(R+, Rn) by

vk(s) =

{
v(s) if |v(s)| ≤ k,
0 otherwise.

Since |vk(s)| ≤ |v(s)| for s ≥ 0, we see that the sequence {|vk|} is uniformly
integrable on R+. According to Theorem 4.2, there is a sequence {(ηk, lk)} ⊂
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Lip(R+, Rn) × L∞(R+, R+) such that (ηk, vk, lk) ∈ SP(x) for all k ∈ N. Then
applying Proposition 4.4, we deduce that there is a (η, l) ∈ ACloc(R+, Rn) ×
L1

loc(R+, R+) such that (η, v, l) ∈ SP(x). �

5. Cauchy problem with the Neumann type boundary condition

In this section we introduce the value function of an optimal control problem
associated with the initial-boundary value problem (1.3)–(1.5), and show that it is
a (unique) solution of problem (1.3)–(1.5).

We define the function L ∈ LSC(Ω×Rn, R∪{∞}), called the Lagrangian of H,
by

L(x, ξ) = sup
p∈Rn

(
ξ · p−H(x, p)

)
.

The value function w of the optimal control with the dynamics given by (4.1), the
running cost (L, g) and the pay-off u0 is given by

w(x, t) = inf
{∫ t

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds

+ u0(η(t)) : (η, v, l) ∈ SP(x)
}

for (x, t) ∈ Ω× R+.

(5.1)

Under our hypotheses, the Lagrangian L may take the value ∞ and, on the other
hand, there is a constant C0 > 0 such that L(x, ξ) ≥ −C0 for (x, ξ) ∈ Ω × Rn.
Thus, it is reasonable to interpret

∫ t

0

L(η(s),−v(s)) ds =∞

if the function: s 7→ L(η(s),−v(s)) is not integrable, which we adopt here.
It is well-known that (and also easily seen) the value function w satisfies the

dynamic programming principle

w(x, s+ t) = inf
{∫ t

0

(
L(η(τ),−v(τ)) + g(η(τ))l(τ)

)
dτ + w(η(t), s) :

(η, v, l) ∈ SP(η(s))
}

for x ∈ Ω and t, s ∈ R+.

Theorem 5.1. The value function w is continuous on Ω×R+ and it is a solution
of (1.3)–(1.4), with a := 0. Moreover, w satisfies (1.5) in the sense that

lim
t→0+

w(x, t) = u0(x) uniformly for x ∈ Ω.

The above theorem clearly ensures the existence of a solution of (1.3)–(1.5),
with a := 0. This together with Theorem 3.4, with U := Rn, establishes the unique
existence of a solution of (1.3)–(1.5), with a := 0. For the solvability of stationary
and evolution problem for HJ-Jacobi equations, we refer to [Lio85, LT91, BL91,
DI90, Bar93, CIL92].

Another aspect of the theorem above is that it gives a variational formula for
the unique solution of (1.3)–(1.5), with a := 0. This is a classical observation on
the value functions in optimal control, and, in this regard, we refer for instance to
[Lio85, LT91].

The variational formula (5.1) is sometimes called the Lax-Oleinik formula. The
formula (5.1) still valid for the solution of (1.3)–(1.5) with general a ∈ R if one
replaces the Lagrangian L(x, ξ) by L(x, ξ) + a.

For the proof of Theorem 5.1, we need the following three lemmas. In what
follows we always assume that a = 0 in (1.3). We set Q = Ω× R+.

Lemma 5.2. Let ψ ∈ C1(Q) be a classical subsolution of (1.3)–(1.4). Assume that
ψ(x, 0) ≤ u0(x) for x ∈ Ω. Then w ≥ ψ on Q.
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Proof. Let (x, t) ∈ Q and (η, v, l) ∈ SP(x). We have

ψ(η(t), 0)− ψ(η(0), t) =
∫ t

0

d
ds
ψ(η(s), t− s) ds

=
∫ t

0

(
Dψ(η(s), t− s) · η̇(s)− ψt(η(s), t− s))ds

=
∫ t

0

(
Dψ(η(s), t− s) · (v(s)− l(s)γ(η(s)))− ψt(η(s), t− s))ds.

Now, using the subsolution property of ψ and the inequality ψ(·, 0) ≤ u0, we get

ψ(x, t)− u0(η(t))

≤
∫ t

0

(−Dψ(η(s), t− s) · v(s) + l(s)Dψ(η(s)) · γ(η(s)) + ψt(η(s), t− s))ds

≤
∫ t

0

(
H(η(s), Dψ(η(s), t− s)) + L(η(s),−v(s)) + l(s)Dψ(η(s)) · γ(η(s))

+ ψt(η(s), t− s)) ds

≤
∫ t

0

(
L(η(s),−v(s)) + l(s)g(η(s))

)
ds.

Thus we conclude that ψ(x, t) ≤ w(x, t). �

Lemma 5.3. For any ε > 0 there is a constant Cε > 0 such that w(x, t) ≥
u0(x)− ε− Cεt for (x, t) ∈ Q.

Proof. We fix any ε > 0 and choose a function uε0 ∈ C1(Ω) so that |u0(x)−uε0(x)| ≤
ε for x ∈ Ω. We choose a function ψ0 ∈ C1(Rn) so that Ω = {x ∈ Rn : ψ0(x) < 0}
and Dψ0(x) 6= 0 for x ∈ Γ. By multiplying ψ0 by a positive constant, we may find
a function ψε ∈ C1(Ω) so that

γ(x) ·D(uε0 + ψε)(x) ≥ g(x) for x ∈ Γ.

Next, approximating the function: r 7→ (−ε) ∨ (ε ∧ r) on R by a smooth function,
we build a function ζε ∈ C1(R) so that |ζε(r)| ≤ ε for r ∈ R and ζ ′ε(0) = 1. Note
that D(ζε ◦ ψε)(x) = Dψε(x) for x ∈ Γ and |u0(x) − uε0(x) − ζε ◦ ψε(x)| ≤ 2ε for
x ∈ Ω. We choose a constant Cε > 0 so that

H(x,D(uε0 + ζε ◦ ψε)(x)) ≤ Cε for x ∈ Ω.

Finally we define the function φε ∈ C1(Q) by

φε(x, t) = −2ε+ uε0(x) + ζε ◦ ψε(x)− Cεt,
and observe that φε is a classical subsolution of (1.3), (1.4) and that φε(x, 0) ≤ u0(x)
for x ∈ Ω. By Lemma 5.2, we get φε(x, t) ≤ w(x, t) for (x, t) ∈ Q. Hence, we obtain
w(x, t) ≥ u0(x)− 4ε− Cεt for all (x, t) ∈ Q. �

Lemma 5.4. There is a constant C > 0 such that w(x, t) ≤ u0(x) +Ct for (x, t) ∈
Q.

Proof. Let (x, t) ∈ Q. Set η(s) = x, v(s) = 0 and l(s) = 0 for s ≥ 0. Then
(η, v, l) ∈ SP(x). Hence, we have

w(x, t) ≤ u0(x) +
∫ t

0

L(x, 0) ds = u0(x) + tL(x, 0) ≤ u0(x)− t min
p∈Rn

H(x, p).

Setting C = −minΩ×Rn H, we get w(x, t) ≤ u0(x) + Ct. �
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Lemma 5.5. Let t > 0, x ∈ Ω, φ ∈ C1(Ω× [0, t]) and ε > 0. Then there is a triple
(η, v, l) ∈ SP(x) such that for a.e. s ∈ (0, t),

H(η(s), Dφ(η(s), t− s)) + L(η(s),−v(s)) ≤ ε− v(s) ·Dφ(η(s), t− s).
We postpone the proof of the above lemma and give now the proof of Theorem

5.1.

Proof of Theorem 5.1. By Lemmas 5.3 and 5.4, there is a constant C > 0 and for
each ε > 0 a constant Cε > 0 such that

−ε− Cεt ≤ w(x, t)− u0(x) ≤ Ct for all (x, t) ∈ Q.
This shows that w is a real-valued function on Q and that

(5.2) lim
t→0+

w(x, t) = u0(x) uniformly for x ∈ Ω.

We next prove that w is a subsolution of (1.3), (1.4). Let (x̂, t̂) ∈ Q and φ ∈
C1(Q). Assume that w∗ − φ attains a strict maximum at (x̂, t̂). We need to show
that if x̂ ∈ Ω, then

φt(x̂, t̂) +H(x̂,Dφ(x̂, t̂)) ≤ 0,

and if x̂ ∈ Γ, then either

(5.3) φt(x̂, t̂) +H(x̂,Dφ(x̂, t̂)) ≤ 0 or γ(x̂) ·Dφ(x̂, t̂) ≤ g(x̂).

We are here concerned only with the case where x̂ ∈ Γ. The other case can
be treated similarly. To prove (5.3), we argue by contradiction. Thus we suppose
that (5.3) were false. We may choose an ε ∈ (0, 1) so that t̂ − 2ε > 0 and for
(x, t) ∈ (Ω ∩B(x̂, 2ε)

)× [t̂− 2ε, t̂+ 2ε],

(5.4) φt(x, t) +H(x,Dφ(x, t)) ≥ 2ε and γ(x) ·Dφ(x, t)− g(x) ≥ 2ε,

where γ and g are assumed to be defined and continuous on Ω. We may assume
that (w∗ − φ)(x̂, t̂) = 0. Set

B =
(
∂B(x̂, 2ε)× [t̂− 2ε, t̂+ 2ε] ∪B(x̂, 2ε)× {t̂− 2ε}) ∩ Q,

and m = −maxB(w∗−φ). Note that m > 0 and w(x, t) ≤ φ(x, t)−m for (x, t) ∈ B.
We choose a point (x̄, t̄) ∈ Ω∩B(x̂, ε)× [t̂−ε, t̂+ε] so that (w−φ)(x̄, t̄) > −ε2∧m.
We apply Lemma 5.5, to find a triple (η, v, l) ∈ SP(x̄) such that for a.e. s ≥ 0,

(5.5) H(η(s), Dφ(η(s), t̄− s)) + L(η(s),−v(s)) ≤ ε− v(s) ·Dφ(η(s), t̄− s)
Note that σ := t̄− (t̂− 2ε) ≥ ε and dist (x̄, ∂B(x̂, 2ε)) ≥ ε. Set

S = {s ∈ [0, σ] : η(s) ∈ ∂B(x̂, 2ε)} and τ = inf S.

We consider first the case where τ = ∞, i.e., the case S = ∅. By the dynamic
programming principle, we have

φ(x̄, t̄) <w(x̄, t̄) + ε2

≤
∫ σ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ w(η(σ), t̄− σ) + ε2

≤
∫ σ

0

(
L(η(s),−v(s)) + g(η(s))l(s) + ε

)
ds+ φ(η(σ), t̄− σ).
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Hence, we obtain

0 <
∫ σ

0

(
L(η(s),−v(s)) + g(η(s))l(s) + ε+

d
ds
φ(η(s), t̄− s)) ds

≤
∫ σ

0

(
L(η(s),−v(s)) + g(η(s))l(s) + ε

+Dφ(η(s), t̄− s) · η̇(s)− φt(η(s), t̄− s))ds

≤
∫ σ

0

(
L(η(s),−v(s)) + g(η(s))l(s) + ε

+Dφ(η(s), t̄− s) · (v(s)− l(s)γ(η(s))− φt(η(s), t̄− s))ds.

Now, using (5.5) and (5.4), we get

0 <
∫ σ

0

(
2ε−H(η(s), Dφ(η(s), t̄− s)) + g(η(s))l(s)

− l(s)Dφ(η(s), t̄− s) · γ(η(s))− φt(η(s), t̄− s))ds

≤
∫ σ

0

l(s)
(
g(η(s))− γ(η(s)) ·Dφ(η(s), t̄− s)) ds ≤ 0,

which is a contradiction.
Next we consider the case where τ <∞. Observe that τ > 0 and

φ(x̄, t̄) <w(x̄, t̄) +m

≤
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ w(η(τ), t̄− τ) +m

≤
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ φ(η(τ), t̄− τ).

Using (5.5) and (5.4) as before, we compute that

0 <
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)− φt(η(s), t̄− s)

+Dφ(η(s), t̄− s) · v(s)− l(s)γ(η(s)) ·Dφ(η(s), t̄− s)) ds

≤
∫ τ

0

{
ε−H(η(s), Dφ(η(s), t̄− s))− φt(η(s), t̄− s)

+ l(s)[g(η(s))− γ(η(s)) ·Dφ(η(s), t̄− s)]} ds < 0,

which is again a contradiction. Thus, we conclude that w is a subsolution of (1.3),
(1.4).

Now, we turn to the proof of the supersolution property of w. Let φ ∈ C1(Q)
and (x̂, t̂) ∈ Ω × (0, ∞). Assume that w∗ − φ attains a strict minimum at (x̂, t̂).
We show that if x̂ ∈ Ω, then

φt(x̂, t̂) +H(x̂,Dφ(x̂, t̂)) ≥ 0,

and if x̂ ∈ Γ, then

(5.6) φt(x̂, t̂) +H(x̂,Dφ(x̂, t̂)) ≥ 0 or γ(x̂) ·Dφ(x̂, t̂) ≥ g(x̂).

We only consider the case where x̂ ∈ Γ, and leave it to the reader to check the
details in the other case. To show (5.6), we suppose by contradiction that (5.6)
were false. That is, we have

φt(x̂, t̂) +H(x̂,Dφ(x̂, t̂)) < 0 and γ(x̂) ·Dφ(x̂, t̂)− g(x̂) < 0.
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There is an ε > 0 such that

φt(x, t) +H(x,Dφ(x, t)) < 0 and γ(x) ·Dφ(x, t)− g(x) < 0 for (x, t) ∈ R ∩Q,
where R := B(x̂, 2ε) × [t̂ − 2ε, t̂ + 2ε]. Here we may assume that t̂ − 2ε > 0 and
(u∗ − φ)(x̂, t̂) = 0. Set

m := min
Q∩∂R

(u∗ − φ) (> 0).

We may choose a point (x̄, t̄) ∈ Q so that (u∗ − φ)(x̄, t̄) < m, |x̄ − x̂| < ε and
|t̄− t̂| < ε. We select a triple (η, v, l) ∈ SP(x̄) so that

u(x̄, t̄) +m >

∫ t̄

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ u0(η(t̄)).

We set
τ = min{s ≥ 0 : (η(s), t̄− s) ∈ ∂R}.

It is clear that τ > 0, η(s) ∈ R ∩ Q for s ∈ [0, τ ] and, if |η(τ) − x̂| < 2ε, then
τ = t̄− (t̂− 2ε) > ε. Accordingly, we have

φ(x̄, t̄) +m >

∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ u(η(τ), t̄− τ)

≥
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ φ(η(τ), t̄− τ) +m.

Hence, we get

0 >
∫ τ

0

(
L(η(s),−v(s)) + g(η(s)l(s) +Dφ(η(s), t̄− s) · η̇(s)− φt(η(s), t̄− s)) ds

≥
∫ τ

0

(− v(s) ·Dφ(η(s), t̄− s)−H(η(s), Dφ(s, t̄− s))− g(η(s))l(s)

+Dφ(η(s), t̄− s) · η̇(s)− φt(η(s), t̄− s))ds > 0,

which is a contradiction.
It remains to show that w is continuous on Q. According to (5.2), we have

w∗(·, 0) = w∗(·, 0) = u0 on Ω. Thus, applying the comparison theorem (Theorem
3.4 with U := Rn) , we see that w∗ ≤ w∗ on Q, which guarantees that w ∈ C(Q).
This completes the proof. �

For the proof of Lemma 5.5, we need the following basic lemma.

Lemma 5.6. Let R > 0. There is a constant C > 0, depending only on R and H,
such that for any (x, p, v) ∈ Ω×B(0, R)× Rn, if

H(x, p) + L(x,−v) ≤ 1− v · p,
we have |v| ≤ C.

Proof. We may choose a constant C1 > 0 so that

C1 ≥ max
Ω×B(0, 2R)

|H|.

Observe that

L(x,−v) ≥ max
p∈B(0, 2R)

(−v · p)− C1 = 2R|v| − C1 for (x, v) ∈ Ω× Rn.

Let (x, p, v) ∈ Ω×B(0, R)× Rn satisfy

H(x, p) + L(x,−v) ≤ 1− v · p.
Then we have

−C1 + 2R|v| − C1 ≤ 1 + |v||p| ≤ 1 +R|v|.
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Consequently, we get
R|v| ≤ 2C1 + 1. �

For i ∈ N we introduce the function Li ∈ C(Ω× Rn) by setting

Li(x, ξ) = max
p∈B(0,i)

(
ξ · p−H(x, p)

)
.

Observe that Li(x, ξ) ≤ L(x, ξ) and limi→∞ Li(x, ξ) = L(x, ξ) for (x, ξ) ∈ Ω × Rn
and that every Li is uniformly continuous on bounded subsets of Ω× Rn.

Proof of Lemma 5.5. Fix k ∈ N. Set δ = t/k and sj = (j − 1)δ for j = 1, 2, ..., k.
We define inductively a sequence {(xj , ηj , vj , lj)}kj=1 ⊂ Ω× SP. We set x1 = x and
choose a ξ1 ∈ Rn so that

H(x1, Dφ(x1, t)) + L(x1,−ξ1) ≤ ε− ξ1 ·Dφ(x1, t).

Set v1(s) = ξ1 for s ≥ 0 and choose a pair (η1, l1) ∈ Lip(R+, Ω)× L∞(R+, R+) so
that (η1, v1, l1) ∈ SP(x1). According to Theorem 4.2, such a pair always exists.

Suppose now that we are given (xi, ηi, vi, li) for all i = 1, 2, ..., j−1 and for some
j ≤ k. Then set xj = ηj−1(δ), choose a ξj ∈ Rn so that

(5.7) H(xj , Dφ(xj , t− sj)) + L(xj ,−ξj) ≤ ε− ξj ·Dφ(xj , t− sj),
set vj(s) = ξj for s ≥ 0, and select a pair (ηj , lj) ∈ Lip(R+,Ω) × L∞(R+,Rn)
so that (ηj , vj , lj) ∈ SP(xj). Thus, by induction, we have chosen a sequence
{(xj , ηj , vj , lj)}kj=1 ⊂ Ω × SP such that x1 = η1(0), xj = ηj−1(δ) = ηj(0) for
j = 2, ..., k and for each j = 1, 2, ..., k, (5.7) holds with ξj = vj(s) for all s ≥ 0.
Notice that the choice of xj , ηj , vj , lj , with j = 1, ..., k, depends on k, which is not
explicit in our notation.

Next, we define a triple (η̄k, v̄k, l̄k) ∈ SP(x) by setting
(
η̄k(s), v̄k(s), l̄k(s)

)
=
(
ηj(s− sj), vj(s− sj), lj(s− sj)

)

for sj ≤ s < sj+1 and j = 1, 2, ..., k − 1 and
(
η̄k(s), v̄k(s), l̄k(s)

)
=
(
ηk(s− sk), vk(s− sk), lk(s− sk)

)

for s ≥ sk. We may assume that ε < 1 and, by Lemma 5.6, we find a con-
stant C1 > 0, independent of k, such that maxs≥0 |v̄k(s)| = max1≤j≤k |ξj | ≤ C1.
By Proposition 4.3, we find a constant C2 > 0, independent of k, such that
‖η̇k‖L∞(R+) ∨ ‖l̄k‖L∞(R+) ≤ C2. Now, we define the step function χk on R+ by
setting χk(s) = sj for sj ≤ s < sj+1 and j = 1, 2, ..., k and χk(s) = sk for s ≥ sk,
and observe that (5.7), 1 ≤ j ≤ k, can be rewritten as

H(η̄k(χk(s)), Dφ(η̄k(χk(s)), t− χk(s))) + L(η̄k(χk(s)),−v̄k(s))

≤ ε− v̄k(s) ·Dφ(η̄k(χk(s)), t− χk(s)) for 0 ≤ s ≤ t.(5.8)

We may invoke Proposition 4.4, to find a triple (η, v, l) ∈ SP(x) and a subse-
quence of {(η̄k, v̄k, l̄k)}k∈N, which will be denoted again by the same symbol, so
that for every 0 < T < ∞, as k → ∞, η̄k → η uniformly on [0, T ], v̄k ds → v ds
weakly-star in C([0, T ], Rn)∗ and l̄k ds → l ds weakly-star in C([0, T ])∗. We may
moreover assume that v̄k → v weakly-star in L∞(R+, Rn) and l̄k → l weakly-star
in L∞(R+) as k →∞.

Since v̄k → v weakly in L2(0, t), we may choose a sequence {λk}k∈N of finite
sequences λk = (λk,1, λk,2, ..., λk,Nk) of nonnegative numbers such that

Nk∑

j=1

λk,j = 1 and v̂k :=
Nk∑

j=1

λk,jvj converge to v in L2(0, t).
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Here we may moreover assume by selecting a subsequence of {η̄k, v̄k, l̄k)} that as
k →∞, v̂k(s)→ v(s) for a.e. s ∈ (0, t).

Fix any i ∈ N and θ > 1. In view of the uniform continuity of the functions H
and Li on bounded subsets of Ω×Rn and the uniform convergence of {η̄k} to η on
[0, t], from (5.8), we get

H(η(s), Dφ(η(s), t− s)) + Li(η(s),−v̄k(s))

≤ θε− v̄k(s) ·Dφ(η(s), t− s) for s ∈ (0, t)

for sufficiently large k, say, for k ≥ kθ, and hence, by taking the convex combination,

H(η(s), Dφ(η(s), t− s)) + Li(η(s),−v̂k(s))

≤ θε− v̂k(s) ·Dφ(η(s), t− s) for s ∈ (0, t)

for k ≥ kθ. Sending k →∞, we get

H(η(s), Dφ(η(s), t−s))+Li(η(s),−v(s)) ≤ θε−v(s)·Dφ(η(s), t−s) for a.e. s ∈ (0, t),

and, because of the arbitrariness of i and θ > 1, we obtain

H(η(s), Dφ(η(s), t−s))+L(η(s),−v(s)) ≤ ε−v(s)·Dφ(η(s), t−s) for a.e. s ∈ (0, t).
�

6. Aubry-Mather sets and formulas for solutions of (1.1), (1.2)

In this section we define the Aubry-Mather set associated with (1.1), (1.2). Our
argument here is very close to that of [FS04, FS05].

By the C1 regularity of Ω and assumption (A3), there is a function ψ ∈ C1(Ω)
such that Dγψ(x) > 0 for x ∈ Γ. By multiplying ψ by a positive constant, we may
assume that Dγψ(x) ≥ |g(x)| for x ∈ Γ. Selecting a constant C− ∈ R small enough,
we may have H(x,Dψ(x)) ≥ C− for x ∈ Ω. It is easy to check that the function
ψ is a supersolution of (1.1), (1.2), with C− in place of a. Similarly, if we choose
a constant C+ ∈ R large enough, then the function −ψ is a subsolution of (1.1),
(1.2), with C+ in place of a.

We define the critical value (or additive eigenvalue) c by

c = inf{a ∈ R : there is a subsolution of (1.1), (1.2)}.
Obviously we have c ≤ C+. By Corollary 3.2, we see as well that c ≥ C−. In
particular, we have c ∈ R. For any decreasing sequence {ak} converging to c, there
is a sequence {uk} ⊂ USC(Ω) such that for every k ∈ N, uk is a subsolution of
(1.1), (1.2), with ak in place of a. By Lemma 3.3, with U = Rn, we find that {uk}
is equi-Lipschitz continuous on Ω. By adding a constant to uk, we may assume
that {uk} is uniformly bounded on Ω. By choosing a subsequence, we may thus
assume that the sequence {uk} converges to a function u ∈ Lip(Ω) as k → ∞. By
the stability of the viscosity property under uniform convergence, we see that u is
a subsolution of (1.1), (1.2), with c in place of a.

Henceforth in this section, we normalize c = 0 by replacing H by H − c, and we
are concerned only with problem (1.1), (1.2), with a = 0, that is, the problem

(6.1)

{
H(x, Du(x)) = 0 in Ω,

Dγu(x) = g(x) on Γ.

We introduce the function d on Ω× Ω by

(6.2) d(x, y) = sup{v(x)− v(y) : v is a subsolution of (6.1)}.
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According to Lemma 3.3, the family of functions d(·, y), with y ∈ Ω, is equi-
Lipschitz continuous on Ω. By the stability of the viscosity property, we see that
for any y ∈ Ω, the function d(·, y) is a subsolution of (6.1). It is easily seen that

d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ Ω.

Also, in view of the Perron method, we find that for every y ∈ Ω, the function
d(·, y) is a solution of

(6.3)

{
H(x, Du(x)) = 0 in Ω \ {y},
Dγu(x) = g(x) on Γ \ {y},

which is just problem (2.1), with f := 0 and U := Rn \ {y}.
We define the Aubry-Mather set A associated with (6.1) (or (1.1), (1.2) with

generic a) by
A = {y ∈ Ω : d(·, y) is a solution of (6.1)}.

Theorem 6.1. The Aubry-Mather set A is a nonempty and compact.

Remark 6.1. If we define the function da on Ω× Ω by

da(x, y) = sup{v(x)− v(y) : v is a subsolution of (1.1), (1.2)},
then da(x, y) = sup ∅ = −∞ for a < 0. Moreover, if we define the Aubry-Mather
set Aa for a > 0 by

Aa = {y ∈ Ω : da(·, y) is a solution of (1.1), (1.2)},
then Aa = ∅.

The non-emptiness of A will be proved based on the following observation.

Lemma 6.2. Let y ∈ Ω \ A. Then there are functions v ∈ Lip(Ω) and f ∈ C(Ω)
such that f(y) < 0, f(x) ≤ 0 for x ∈ Ω and v is a subsolution of (2.1), with U = Rn.

Proof. Fix any y ∈ Ω \ A and set u(x) = d(x, y) for x ∈ Ω. For definiteness, we
consider the case where y ∈ Γ. We leave it to the reader to check the other case.
Since u is not a supersolution of (6.1) while it is a solution of (6.3), we find a C1

function φ on Ω such that u− φ attains a strict minimum at y,

H(y, Dφ(y)) < 0 and Dγφ(y) < g(y).

By continuity, there is an open neighborhood V of y such that

(6.4) H(x, Dφ(x)) < 0 for x ∈ ΩV and Dγφ(x) < g(x) for x ∈ ΓV .

We may assume by adding a constant to φ that u(y) = φ(y). Note that minΩ\V (u−
φ) > 0, and select a constant ε > 0 small enough so that (u − φ)(x) > ε for
x ∈ Ω\V . We may choose an open neighborhood W of V c such that (u−φ)(x) > ε
for x ∈ Ω ∩W . We set v(x) = u(x) ∨ (φ(x) + ε) for x ∈ Ω.

Observe that v(x) = u(x) for x ∈ W ∩ Ω, which ensures that v is a subsolution
of (2.1), with f(x) := 0 and U := W . On the other hand, there is an open
neighborhood Y ⊂ V of y such that φ(x) + ε > u(x) for x ∈ Y ∩ Ω. It is clear
that Ω ∩ Y ∩W = ∅. In view of (6.4), we may choose a function f ∈ C(Ω) so that
f(y) < 0, f(x) ≤ 0 for x ∈ Y , f(x) = 0 for x ∈ Ω \ Y and

H(x, Dφ(x)) ≤ f(x) for x ∈ ΩV and Dγφ(x) ≤ g(x) for x ∈ ΓV .

It is easily seen that v is a subsolution of (2.1), with U := V . Finally, we note that
v is a subsolution of (2.1), with U := Rn, and finish the proof. �



28 HITOSHI ISHII

Proof of Theorem 6.1. The compactness of A follows directly from the stability of
the viscosity property under uniform convergence.

To see that A 6= ∅, we suppose by contradiction that A = ∅. By Lemma 6.2, for
each y ∈ Ω there are functions vy ∈ Lip(Ω) and fy ∈ C(Ω) such that fy(y) < 0,
fy(x) ≤ 0 for x ∈ Ω and vy is a subsolution of (2.1), with f := fy and U := Rn.
By the compactness of Ω, we may choose a finite sequence {yj}Jj=1 ⊂ Ω so that∑J
j=1 fyj (x) < 0 for x ∈ Ω. Theorem 2.2, with U := Rn, guarantees that the

function

v(x) =
1
J

J∑

j=1

vyj (x)

on Ω is a subsolution of (2.1), with U := Rn and

f(x) :=
1
J

J∑

j=1

fyj (x).

We choose a constant a < 0 so that f(x) ≤ a for x ∈ Ω and observe that v is a
subsolution of (2.1), with f := a and U := Rn. This contradicts the fact that c = 0.
The proof is complete. �

Proposition 6.3. The function d can be represented as

d(x, y) = inf
{∫ t

0

(
L(η(s), −v(s))+ g(γ(s))l(s)

)
ds : t > 0,

(η, v, l) ∈ SP(x), η(t) = y
}
.

(6.5)

Proof. Fix any y ∈ Ω. We denote by w(x) the right side of (6.5). According to
Theorem 5.1, the function

u(x, t) := inf
{∫ t

0

L(η(s), −v(s)) + g(η(s))l(s) ds

+ d(η(t), y) : (η, v, l) ∈ SP(x)
}

is a solution of (1.3)–(1.5), with u0 := d(·, y). Noting that the function d(x, y),
as a function of (x, t) ∈ Ω × R+, is a subsolution of (1.3)–(1.5) with u0 := d(·, y),
by applying the comparison theorem (Theorem 3.4, with U = Rn), we see that
d(x, y) ≤ u(x, t) for (x, t) ∈ Ω×R+. Since d(y, y) = 0, we have inft>0 u(x, t) ≤ w(x)
for x ∈ Ω. Consequently, we have d(x, y) ≤ w(x) for x ∈ Ω.

By the C1 regularity of Ω, for each x ∈ Ω we may choose a Lipschitz continuous
curve η on [0, t] connecting x to y in Ω, with a Lipschitz constant independent
of x. Here t > 0 is an appropriate constant, and moreover we may assume that
t ≤ C1|x − y| for some constant C1 > 0 independent of x. As is well-known and
easily shown, L(x, ξ) is bounded on Ω×B(0, δ), if δ > 0 is chosen sufficiently small.
Fix such a constant δ > 0 and choose a constant C2 > 0 so that L(x, ξ) ≤ C2 for
(x, ξ) ∈ Ω × B(0, δ). By scaling, we may assume that |η̇(s)| ≤ δ for a.e. s ∈ [0, t].
Noting that (η, η̇, 0) ∈ SP(x), we get

w(x) ≤
∫ t

0

L(η(s),−η̇(s)) ds ≤ C2t ≤ C1C2|x− y|.

In particular, we may conclude that w is continuous at y and w(y) = 0.
To complete the proof, it is enough to show that w is a subsolution of (6.1).

Indeed, once this is done, by the definition of d, we get

w(x) = w(x)− w(y) ≤ d(x, y) for x ∈ Ω,
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which guarantees that d(x, y) = w(x) for x ∈ Ω.
To prove the subsolution property of w, we just need to follow the argument of

the proof of Theorem 5.1. Let x̂ ∈ Ω and φ ∈ C1(Ω). Assume that w∗ − φ attains
a strict maximum at x̂. We need to show that if x̂ ∈ Ω, then H(x̂, Dφ(x̂)) ≤ 0, and
if x̂ ∈ Γ, then either

(6.6) H(x̂,Dφ(x̂)) ≤ 0 or γ(x̂) ·Dφ(x̂) ≤ g(x̂).

We are here concerned only with the case where x̂ ∈ Γ, and leave the proof in the
other case to the reader. To show (6.6), we suppose by contradiction that (6.6)
were false. Then we may choose an ε ∈ (0, 1) so that for x ∈ Ω ∩B(x̂, 2ε),

(6.7) H(x,Dφ(x)) ≥ 2ε and γ(x) ·Dφ(x)− g(x) ≥ 2ε,

where γ and g are, as usual, assumed to be defined and continuous on Ω. We may
also assume that (w∗ − φ)(x̂) = 0. Set

B = ∂B(x̂, 2ε) ∩ Ω,

and m = −maxB(w∗ − φ). Obviously, we have m > 0 and w(x) ≤ φ(x) −m for
x ∈ B. We choose a point x̄ ∈ Ω∩B(x̂, ε) so that (w−φ)(x̄) > −ε2 ∧m. We apply
Lemma 5.5, to obtain a triple (η, v, l) ∈ SP(x̄) such that for a.e. s ≥ 0,

(6.8) H(η(s), Dφ(η(s))) + L(η(s),−v(s)) ≤ ε− v(s) ·Dφ(η(s))

Note that dist (x̄, ∂B(x̂, 2ε)) ≥ ε, and set

τ = inf{s > 0 : η(s) ∈ ∂B(x̂, 2ε)}.
Consider first the case where τ = ∞, which means that η(s) ∈ intB(x̂, 2ε) for all
s ≥ 0. By the dynamic programming principle, we have

φ(x̄) < w(x̄) + ε2 ≤
∫ ε

0

(
L(η(s),−v(s)) + g(η(s))l(s) + ε

)
ds+ φ(η(σ)).

Hence, we obtain

0 <
∫ ε

0

(
L(η(s),−v(s)) + g(η(s))l(s) + ε+Dφ(η(s)) · η̇(s)

)
ds

≤
∫ ε

0

{
L(η(s),−v(s)) + g(η(s))l(s) + ε+Dφ(η(s)) · (v(s)− l(s)γ(η(s))

)}
ds.

Now, using (6.8) and (6.7), we get

0 <
∫ ε

0

{
2ε−H(η(s), Dφ(η(s))) + g(η(s))l(s)−Dφ(η(s)) · γ(η(s))l(s)

}
ds

≤ 0,

which is a contradiction.
Consider next the case where τ <∞. Note that

φ(x̄) <w(x̄) +m ≤
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ w(η(τ)) +m

≤
∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ φ(η(τ)).

Using (6.8) and (6.7) as before, we obtain

0 <
∫ τ

0

{
ε−H(η(s), Dφ(η(s))) + l(s)[g(η(s))− γ(η(s)) ·Dφ(η(s))]

}
ds < 0.

This is again a contradiction, and we conclude that w is a subsolution of (6.1). �

We give another characterization of the Aubry-Mather set associated with (6.1).
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Theorem 6.4. Let τ > 0 and y ∈ Ω. Then we have y ∈ A if and only if

inf
{∫ t

0

(
L(η(s), −v(s))+ g(η(s))l(s)

)
ds : t > τ,

(η, v, l) ∈ SP, η(0) = η(t) = y
}

= 0.
(6.9)

Lemma 6.5. Let u0 ∈ C(Ω) and let u ∈ C(Ω×R+) be the solution of (1.3)–(1.5),
with a := 0. Set

u−(x) = lim inf
t→∞

u(x, t) for x ∈ Ω.

Then u− ∈ Lip(Ω) and it is a solution of (6.1).

Proof. Thanks to Theorem 6.1, there is a solution φ ∈ Lip(Ω) of (6.1). By adding
a constant to φ if needed, we may assume that φ(x) ≤ u0(x) for x ∈ Ω. Let C > 0
be a constant such that u0(x) ≤ φ(x) + C for x ∈ Ω. By comparison, we get
φ(x) ≤ u(x, t) ≤ φ(x) + C for x ∈ Ω.

Setting v(x, t) = infs>t u(x, s) for (x, t) ∈ Ω× R+, we note that

u−(x) = sup
t>0

v(x, t) for x ∈ Ω.

Applying Theorem 2.8 (and the remark after it) to the family {u(·, · + s)}s>0 of
solutions of (1.3), (1.4), with a := 0, we see that v is a solution of (1.3), (1.4),
with a := 0. Observe also that v ∈ USC(Ω × R+) and the functions v(x, ·), with
x ∈ Ω, are nondecreasing on R+. This monotonicity of v guarantees that the
functions v(·, t), with t > 0, are subsolution of (6.1), which implies that the family
{v(·, t)}t>0 is equi-Lipschitz continuous on Ω. Accordingly, we have u− ∈ Lip(Ω).
By the Dini lemma, we see that

u−(x) = lim
t→∞

v(x, t) uniformly for x ∈ Ω.

By the stability of viscosity property under uniform convergence, we conclude that
u− is a solution of (6.1). �

Proof of Theorem 6.4. Fix any τ > 0 and y ∈ Ω. By Proposition 6.3, we have

inf
{∫ t

0

(
L(η(s),−v(s))+ g(η(s))l(s)

)
ds : (η, v, l) ∈ SP,(6.10)

η(0) = η(t) = y
}
≥ d(y, y) = 0 for t > 0.

We assume that y ∈ A and show that (6.9) holds. Note that the function
u(x, t) = d(x, y) on Ω × R is the unique solution of the initial-boundary value
problem (1.3)–(1.5), with u0 := d(·, y). By Theorem 5.1, we get

0 = d(y, y)

= inf
{∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ d(η(τ), y) : (η, v, l) ∈ SP(y)

}
.

Fix any ε > 0 and choose a triple (η, v, l) ∈ SP(y) so that

ε >
{∫ τ

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ d(η(τ), y).

In view of Proposition 6.3, by modifying (η, v, l) on the set (τ, ∞) if necessary, we
may assume that for some t > τ ,

d(η(τ), y) + ε >

∫ t

τ

(
L(η(s), −v(s)) + g(η(s))l(s)

)
ds and η(t) = y.
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Thus, we obtain

2ε >
∫ t

0

(
L(η(s), −v(s)) + g(η(s))l(s)

)
ds and η(0) = η(t) = y,

which ensures together with (6.10) that (6.9) holds.
Next we assume that (6.9) holds and show that y ∈ A. Let u be the unique

solution of problem (1.3)–(1.5), with initial data d(·, y). Since d(·, y), regarded as
a function on Ω × R+, is a subsolution of (1.3), (1.4), by comparison, we see that
d(x, y) ≤ u(x, t) for (x, t) ∈ Ω× [0, ∞). As in Lemma 6.5, we set

u−(x) = lim inf
t→∞

u(x, t) for x ∈ Ω,

to find that u− ∈ Lip(Ω) and u− is a solution of (6.1). It follows that d(x, y) ≤
u−(x) for x ∈ Ω. It is easily seen from (6.9) that for each k ∈ N,

inf
{∫ t

0

(
L(η(s), v(s))+ g(η(s))l(s)

)
ds : t > kτ,

(η, v, l) ∈ SP, η(0) = η(t) = y
}

= 0.

On the other hand, we have

inf
t>kτ

u(y, t) ≤ inf
{∫ t

0

(
L(η(s), v(s))+ g(η(s))l(s)

)
ds : t > kτ,

(η, v, l) ∈ SP, η(0) = η(t) = y
}
.

These together ensure that u−(y) ≤ 0 and hence d(x, y) ≥ u−(x) for x ∈ Ω. Thus
we find that d(x, y) = u−(x) and conclude that y ∈ A. �

Theorem 6.6. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be respectively a subsolution and
a supersolution of (6.1). Assume that u(x) ≤ v(x) for x ∈ A. Then u(x) ≤ v(x)
for x ∈ Ω.

Lemma 6.7. There exist functions ψ ∈ Lip(Ω) and f ∈ C(Ω) such that f(x) ≤ 0
for x ∈ Ω, f(x) < 0 for x ∈ Ω \ A and ψ is a subsolution of (2.1), with U := Rn.

Proof. By Lemma 6.2, for each y ∈ Ω \ A there are functions fy ∈ C(Ω) and
ψy ∈ C(Ω) such that fy(y) < 0, fy(x) ≤ 0 for x ∈ Ω and ψy is a subsolution of
(2.1), with U := Rn and f := fy. Since {ψy}y∈Ω\A is equi-Lipschitz continuous on
Ω, we may assume by adding to ψy an appropriate constant Cy ∈ R if necessary
that {ψy}y∈Ω\A is uniformly bounded on Ω. Also, we may assume without any
loss of generality that {fy}y∈Ω\A is uniformly bounded on Ω. We may choose a
sequence {yj}j∈N ⊂ Ω \ A so that

inf
j∈N

fyj (x) < 0 for x ∈ Ω \ A.

Now we set
ψ(x) =

∑

j∈N
2−jψyj (x) for x ∈ Ω,

and observe in view of Theorem 2.2 that ψ is a subsolution of (2.1), with U := Rn
and f given by

f(x) =
∑

j∈N
2−jfyj (x) for x ∈ Ω.

Finally, we note that f(x) ≤ 0 for x ∈ Ω, f(x) < 0 for x ∈ Ω \ A and ψ ∈ Lip(Ω).
The proof is complete. �
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Proof of Theorem 6.6. Due to Lemma 6.7, there are functions f ∈ C(Ω) and ψ ∈
Lip(Ω) such that f(x) ≤ 0 for x ∈ Ω, f(x) < 0 for x ∈ Ω \A and ψ is a subsolution
of (2.1), with U := Rn. Fix any 0 < ε < 1 and set

uε(x) = (1− ε)u(x) + εψ(x) for x ∈ Ω.

Then the function uε is a subsolution of (2.1), with U := Rn and f replaced by εf .
We apply Theorem 3.1, with U := Rn \ A, to obtain uε ≤ v on Ω, which implies
that u ≤ v on Ω. �

Theorem 6.8. Let u ∈ C(Ω) be a solution of (6.1). Then

(6.11) u(x) = min{u(y) + d(x, y) : y ∈ A} for x ∈ Ω.

Proof. We denote by w(x) the right hand side of (6.11). We note first by the remark
after Theorem 2.7 that w is a solution of (6.1). Next, by the definition of d, we
have u(x)−u(y) ≤ d(x, y) for x, y ∈ Ω. Hence we get u(x) ≤ w(x) for x ∈ Ω. Also,
by the definition of w, we have w(x) ≤ u(x) for x ∈ A. Thus we have u(x) = w(x)
for x ∈ A. By Theorem 6.6, we conclude that u = w on Ω. �

Corollary 6.9. If u ∈ C(Ω) is a solution of (6.1), then

u(x) = inf
{∫ t

0

(
L(η(s),−v(s))+ g(η(s))l(s)

)
ds+ u(η(t)) : t > 0,

(η, v, l) ∈ SP(x), η(t) ∈ A
}

for x ∈ Ω.

Theorem 6.8 and Proposition 6.3 yield the above assertion.

7. Calibrated extremals

As in the previous section, we assume throughout this section that the critical
value c is equal to zero.

Lemma 7.1. Let 0 < T <∞ and {(ηk, vk, lk)}k∈N ⊂ SP. Assume that there is a
constant C > 0, independent of k ∈ N, such that

∫ T

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds ≤ C for k ∈ N.

Then there exists a triple (η, v, l) ∈ SP such that
∫ T

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds

≤ lim inf
k→∞

∫ T

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds

Moreover, for the triple (η, v, l), there is a subsequence {(ηkj , vkj , lkj )} of {(ηk, vk, lk)}
such that as j →∞,

ηkj (0)→ η(0),(7.1)

η̇kj (t) dt→ η̇(t) dt weakly-star in C([0, T ], Rn)∗,(7.2)

vkj (t) dt→ v(t) dt weakly-star in C([0, T ], Rn)∗,(7.3)

lkj (t) dt → l(t) dt weakly-star in C([0, T ])∗.(7.4)

Of course, under the hypotheses of the above theorem, the functions

ηkj (t) = ηkj (0) +
∫ t

0

η̇kj (s) ds

converge to η(t) uniformly on [0, T ] as j →∞.
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Proof. We may assume without loss of generality that ηk(t) = ηk(T ), vk(t) = 0 and
lk(t) = 0 for t ≥ T and k ∈ N.

According to Proposition 4.3, there is a constant C0 > 0 such that for (η, v, l) ∈
SP,

|η̇(t)| ∨ |l(t)| ≤ C0|v(t)| for a.e. t ≥ 0.

Note that for each A > 0 there is a constant CA > 0 such that

L(x, ξ) ≥ A|ξ| − CA for (x, ξ) ∈ Ω× Rn.
From this lower bound of L, it is obvious that for (x, ξ, r) ∈ Ω × Rn × R+, if
r ≤ C0|ξ|, then

(7.5) L(x, ξ) + g(x)r ≥ A|ξ| − CA − C0‖g‖∞|ξ|,
which ensures that there is a constant C1 > 0 such that for (η, v, l) ∈ SP,

(7.6) L(η(s),−v(s)) + g(η(s))l(s) + C1 ≥ 0 for a.e. s ≥ 0.

Using (7.6), we obtain for any measurable B ⊂ [0, T ],
∫

B

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s) + C1

)
ds

≤
∫ T

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s) + C1

)
ds ≤ C + C1T.

This together with (7.5), yields

(7.7) (A− C0‖g‖∞)
∫

B

|vk(s)| ds ≤ CA|B|+ C + C1T for A > 0.

This shows that the sequence {|vk|} is uniformly integrable on R+.
We choose an increasing sequence {kj} ⊂ N so that

lim inf
k→∞

∫ T

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds

= lim
j→∞

∫ T

0

(
L(ηkj (s),−vkj (s)) + g(ηkj (s))lkj (s)

)
ds.

Thanks to estimate (7.7), in view of Proposition 4.4, we may assume by replacing
{kj} by a subsequence if needed that there is a triple (η, v, l) ∈ SP such that
the convergences (7.1)–(7.4) hold. Here we may assume that (η(t), v(t), l(t)) =
(η(T ), 0, 0) for t ≥ T .

In what follows, we write (ηj , vj , lj) for (ηkj , vkj , lkj ) for notational simplicity.
It remains to show that

∫ T

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds

≤ lim
j→∞

∫ T

0

(
L(ηj(s),−vj(s)) + g(ηj(s))lj(s)

)
ds.

In view of the monotone convergence theorem, we need to show that for each m ∈ N,
∫ T

0

(
Lm(η(s),−v(s)) + g(η(s))l(s)

)
ds

≤ lim
j→∞

∫ T

0

(
L(ηj(s),−vj(s)) + g(ηj(s))lj(s)

)
ds,

where
Lm(x, ξ) := max

p∈B(0,m)

(
ξ · p−H(x, p)

)
for (x, ξ) ∈ Ω× Rn.
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Note that Lm(x, ξ) ≤ Lm+1(x, ξ) for (x, ξ) ∈ Ω×Rn andm ∈ N, limm→∞ Lm(x, ξ) =
L(x, ξ) for (x, ξ) ∈ Ω × Rn and the functions Lm are uniformly continuous on
bounded subsets of Ω× Rn.

We fix any m ∈ N. In view of the selection thorem of Kuratowski and Ryll-
Nardzewski, we may choose a Borel function Pm : Ω× Rn → B(0, m), so that

(7.8) Lm(x, ξ) = ξ · Pm(x, ξ)−H(x, Pm(x, ξ)) for (x, ξ) ∈ Ω× Rn.
Indeed, if we define the multifunction: Ω× Rn → 2R

n

by

F (x, ξ) = {p ∈ B(0, m) : Lm(x, ξ) = ξ · p−H(x, p)},
then (i) F (x, ξ) is a nonempty closed set for every (x, ξ) ∈ Ω×Rn and (ii) F−1(K) is
a closed set wheneverK ⊂ Rn is closed. From (ii), we see easily that F−1(U) is a Fσ-
set (and hence a Borel set) whenever U ⊂ Rn is open. Hence, as claimed above, by
the thorem of Kuratowski and Ryll-Nardzewski (see, for instance, [JR02, Theorem
1.5]), there exists a function: Pm : Ω× Rn → Rn such that Pm(x, ξ) ∈ F (x, ξ) for
all (x, ξ) ∈ Ω× Rn.

Set
p(t) = Pm(η(t), −v(t)) for t ≥ 0.

Let ρε, with ε > 0, be a mollification kernel on R whose support is contained in
[−ε, 0] and set pε(t) = ρε ∗ p(t) for t ≥ 0.

We fix any ε > 0, and observe by the definition of L that

I :=
∫ T

0

(
L(ηj(s),−vj(s)) + g(ηj(s))lj(s)

)
ds

≥
∫ T

0

(− vj(s) · pε(s)−H(ηj(s), pε(s)) + g(ηj(s))lj(s)
)

ds.

From this, in view of (7.1)–(7.4), we find that

(7.9) I ≥
∫ T

0

(− v(s) · pε(s)−H(η(s), pε(s)) + g(η(s))l(s)
)

ds.

Note here that |pε(s)| ≤ m for s ≥ 0 and pε → p in L1(0, T ) as ε→ 0. In particular,
for some sequence εk → +0, we have pεk(t) → p(t) for a.e. t ∈ [0, T ] as k → ∞.
Sending ε→ 0 along the sequence ε = εk and using (7.8), from (7.9) we obtain

I ≥
∫ T

0

(− v(s) · p(s)−H(η(s) + g(η(s))l(s)
)

ds

≥
∫ T

0

(
Lm(η(s), −v(s)) + g(η(s))l(s)

)
ds,

which completes the proof. �

Theorem 7.2. Let u0 ∈ C(Ω) and let u ∈ C(Ω × R+) be the unique solution of
(1.3)–(1.5), with a := 0. Let (x, t) ∈ Ω× R+. Then there exists a triple (η, v, l) ∈
SP(x) such that

u(x, t) =
∫ t

0

(
L(η(s), −v(s)) + g(η(s))l(s)

)
ds+ u0(η(t)).

If, in addition, u ∈ Lip(Ω× (α, β)), with 0 ≤ α < β ≤ ∞, then the triple (η, v, l),
restricted to (α, β), belongs to Lip(α, β)× L∞(α, β)× L∞(α, β).

Here we should note that the infimum on the right hand side of formula (5.1) is
always attained, which is a consequence of the above theorem and Theorem 5.1.
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Proof. Fix (x, t) ∈ Ω. By Theorem 5.1, we can choose a sequence {(ηk, vk, lk)} ⊂
SP(x) such that

u(x, t) = lim
k→∞

{∫ t

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds+ u0(ηk(t))

}
.

By virtue of Lemma 7.1, there are an increasing sequence {kj} ⊂ N and a (η, v, l) ∈
SP such that ηkj (s)→ η(s) uniformly on [0, t] and

∫ t

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds

≤ lim inf
k→∞

∫ t

0

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds.

Now it is easy to see that

u(x, t) ≥
∫ t

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds+ u0(η(t)),

but we have already the opposite inequality by Theorem 5.1.
Now, assume in addition that u ∈ Lip(Ω × (α, β)), where 0 ≤ α < β ≤ ∞. Let

C > 0 be a Lipschitz constant of the fucntion u on the set Ω× [α, gb]. Let C0 > 0
be the constant from Propostion 4.3, so that |η̇(s)| ∨ l(s) ≤ C0|v(s)| for a.e. s ≥ 0.
As in the proof of Proposition 4.4, for each A > 0 we choose a constant CA > 0 so
that L(y, ξ) ≥ A|ξ| −CA for (y, ξ) ∈ Ω×Rn. Fix any finite interval [a, b] ⊂ (α, β).
Then, with help of the dynamic programming principle, we get

∫ b

a

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds = u(η(b), b)− u(η(a), a)

≤ C(|η(b)− η(a)|+ |b− a|) + C1(b− a) ≤
∫ b

a

(
C|η̇(s)|+ C + C1

)
ds

≤
∫ b

a

(
CC0|v(s)|+ C + C1

)
ds.

On the other hand, for any A > 0, we have
∫ b

a

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds ≥

∫ b

a

(
(A− C0‖g‖∞)|v(s)| − CA

)
ds.

Combining these, we obtain
∫ b

a

(
(A− C0‖g‖∞ − CC0)|v(s)| − CA − C − C1

)
ds ≤ 0.

We fix A > 0 so that A ≥ C0‖g‖∞ + CC0 + 1 and get
∫ b

a

(|v(s)| − CA − C − C1

)
ds ≤ 0.

Since a, b are arbitrary as far as α < a < b < β, we conclude from the above
that |v(s)| ≤ CA + C + C1 for a.e. s ∈ (α, β). By Proposition 4.3, we see that
(η, v, l) ∈ Lip(α, β)× L∞(α, β)× L∞(α, β). �

Theorem 7.3. Let φ ∈ Lip(Ω) be a solution of (1.1), (1.2), with a := 0. Let x ∈ Ω.
Then there is a triple (η, v, l) ∈ SP(x) such that for any t > 0,

(7.10) φ(x)− φ(η(t)) =
∫ t

0

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds.

Moreover, (η, v, l) ∈ Lip(R+)× L∞(R+)× L∞(R+).
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Let φ and (η, v, l) ∈ SP. Following [Fat08], we call a triple (η, v, l) ∈ SP
calibrated extremal associated with φ if (7.10) holds for all t > 0.

Proof. Note that the function u(x, t) = φ(x) is a solution of (1.3), (1.4), with
a := 0. Using Theorem 7.2, we define inductively the sequence {(ηk, vk, lk)} ⊂ SP
as follows. We choose first a (η1, v1, l1) ∈ SP(x) so that

φ(η(0))− φ(η(1)) =
∫ 1

0

(
L(η1(s)) + g(η1(s))l1(s)

)
ds.

We next assume that {(ηk, vk, lk)}k≤j−1, with j ≥ 2, and choose a (ηj , vj , lj) ∈
SP(ηj−1(1)) so that

φ(ηj(1))− φ(ηj(0)) =
∫ 1

0

(
L(ηj(s),−vj(s)) + g(ηj(s))lj(s)

)
ds.

Once the sequence {(ηk, vk, lk)}k∈N ⊂ SP is given, we define the (η, v, l) ∈ SP(x)
by setting (η(s+ k), vk(s+ k), l(s+ k)) = (ηk(s), vk(s), lk(s)) for k ∈ N∪ {0} and
s ∈ [0, 1). It is clear that the triple (η, v, l) satisfies (7.10). Thanks to Theorem
7.2, we have (ηk, vk, lk) ∈ Lip([0, 1])× L∞(0, 1)× L∞(0, 1) for k ∈ N. Reviewing
the proof of Theorem 7.2, we see easily that supk∈N ‖vk‖L∞(0, 1) < ∞, from which
we conclude that (η, v, l) ∈ Lip(R+)× L∞(R+)× L∞(R+). �

Theorem 7.4. Let φ ∈ Lip(Ω) be a solution of (1.1), (1.2), with a := 0 and
(η, v, l) ∈ SP a calibrated extremal associated with φ. Then

lim
t→∞

dist (η(t), A) = 0.

Proof. According to Lemma 6.7, there are functions ψ ∈ Lip(Ω) and f ∈ C(Ω) such
that f(x) < 0 for x ∈ Ω \ A, f(x) ≤ 0 for x ∈ Ω and ψ is a subsolution of (2.1),
with U = Rn. Then u(x, t) := ψ(x) is a subsolution of (1.3), (1.4), with H replaced
by H − f and a := 0. By comparison, if w ∈ C(Ω×R+) is a solution of (1.3)–(1.5),
with H replaced by H − f , a := 0 and u0 := ψ, then we get u ≤ w on Ω × R+.
Hence, using Theorem 5.1, with H replaced by H − f , we find that for any t > 0,

ψ(η(0)) ≤
∫ t

0

(
L(η(s),−v(s)) + f(η(s)) + g(η(s))l(s)

)
ds+ ψ(η(t))(7.11)

=φ(η(0))− φ(η(t)) + ψ(η(t)) +
∫ t

0

f(η(s)) ds.

From this we find that

inf
t>0

∫ t

0

f(η(s)) ds > −∞ or equivalently
∫ ∞

0

|f(η(s))| ds <∞,

which yields

(7.12) lim
t→∞

∫ t+1

t

|f(η(s))|ds = 0.

Reviewing the proof of Lemma 7.1 up to (7.3), since
∫ t+1

t

(
L(η(s),−v(s)) + g(η(s)l(s)

)
ds = φ(η(t))− φ(η(t+ 1))

≤ 2‖φ‖∞ for t ≥ 0,

we deduce that for any A > 0 and t ≥ 0,

(
A− C0‖g‖∞

) ∫ t+ε

t

|v(s)|ds ≤ CAε+ 2‖φ‖∞ + C1,
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where the constants C0, C1, CA are selected as in the proof of Lemma 7.1. This
estimate together with Proposition 4.4 guarantees that η is uniformly continuous on
R+. Now, (7.12) ensures that limt→∞ f(η(t)) = 0 and hence limt→∞ dist (η(t),A) =
0. �

Let SP−∞ denote the set of all triples (η, v, l) : R → Ω × Rn × R+ such that
for every T ≥ 0, the triple (ηT , vT , lT ) defined on R+ by (ηT (t), vT (t), lT (t)) =
(η(t− T ), v(t− T ), l(t− T )) belongs to SP.

Theorem 7.5. For any y ∈ A there exists a triple (η, v, l) ∈ SP−∞ such that
η(0) = y, η(t) ∈ A for t ∈ R and for any −∞ < σ < τ <∞,

∫ τ

σ

(
L(η(s),−v(s)) + g(η(s))l(s)

)
ds = d(η(σ), η(τ)),

where d is the function on Ω× Ω given by (6.2).

Proof. Fix y ∈ A. By Theorem 6.4, for any k ∈ N there is a triple (η̄k, v̄k, l̄k) ∈ SP
such that η̄k(0) = η̄k(τk) = y for some τk > k and

(7.13)
1
k
>

∫ τk

0

(
L(η̄k(s),−v̄k(s)) + g(η̄k(s))l̄k(s)

)
ds.

For k ∈ N we set

(ηk(t), vk(t), lk(t)) =

{
(η̄k(t), v̄k(t), l̄k(t)) for t ∈ [0, τk],

(η̄k(t+ τk), v̄k(t+ τk), l̄k(t+ τk)) for t ∈ [−τk, 0].

In view of Proposition 6.3, using (7.13), we see that if −τk ≤ σ ≤ τ ≤ τk, then

d(y, ηk(σ)) ≤
∫ σ

−τk

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds,

d(ηk(σ), ηk(τ)) ≤
∫ τ

σ

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds,

d(ηk(τ), y) ≤
∫ τk

τ

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds,

(∫ σ

−τk
+
∫ τ

σ

+
∫ τk

τ

)(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds

<
2
k

=
2
k

+ d(y, y)

≤ 2
k

+ d(y, ηk(σ)) + d(ηk(σ), ηk(τ)) + d(ηk(σ), y).

Consequently we get for −τk < σ < τ < τk

d(ηk(σ), ηk(τ)) ≤
∫ τ

σ

(
L(ηk(s),−vk(s)) + g(ηk(s))lk(s)

)
ds

< d(ηk(σ), ηk(τ)) +
2
k
,

0 ≤ d(y, ηk(τ)) + d(ηk(τ), y) <
2
k
.

Hence, applying Lemma 7.1, we find a triple (η, v, l) ∈ SP−∞ such that η(0) = y
and for any −∞ < σ < τ <∞,

d(y, η(τ)) + d(η(τ), y) = 0,(7.14)
∫ τ

σ

(
L(η(s), −v(s)) + g(η(s)l(s)

)
ds ≤ d(η(σ), η(τ)).
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The last inequality yields for any −∞ < σ < τ <∞,

d(η(σ), η(τ)) =
∫ τ

σ

(
L(η(s), −v(s)) + g(η(s))l(s)

)
ds.

Theorem 6.4 and (7.14) together guarantee that η(t) ∈ A for all t ∈ R. The proof
is complete. �
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