The classical inequality holds at the boundary points for subsolutions of Hamilton-Jacobi equations with coercive Hamiltonians

We consider the BVP

$$\begin{cases} u_t + H(x, t, u, Du) = 0 & \text{in } Q := \Omega \times (a, b), \\ u = g(x, t) & \text{on } \partial_l Q := \partial \Omega \times (a, b). \end{cases}$$
(BVP)

Here $\Omega \subset \mathbf{R}^n$, and H and g are assumed to be continuous.

CLAIM. Let $u \in \text{USC}(\overline{\Omega} \times (a, b))$ be a subsolution of (BVP). Assume that H is coercive. Then $u(x,t) \leq g(x,t)$ for all $(x,t) \in \partial_l Q$.

Proof. Fix any $(\hat{x}, \hat{t}) \in \partial_l Q$. Choose a sequence $\{x_k\} \subset \overline{\Omega}^c := \mathbf{R}^n \setminus \overline{\Omega}$ so that $x_k \to \hat{x}$ as $k \to \infty$. Let r > 0 be such that $[\hat{t} - r, \hat{t} + r] \subset (a, b)$. We consider the function

$$\phi(x,t) := u(x,t) - \alpha |x - x_k| - \beta |t - \hat{t}|^2$$

on $K := B((\hat{x}, \hat{t}), r) \cap (\overline{\Omega} \times (a, b))$. Since $\phi \in \text{USC}(K)$, ϕ attains a maximum at a point (ξ, τ) , which depends on (α, β, k) . Since $\phi(\xi, \tau) \ge \phi(\hat{x}, \hat{t})$, we have

$$\alpha |\xi - \hat{x}| + \beta |\tau - \hat{t}|^2 \le u(\xi, \tau) - u(\hat{x}, \hat{t}) + \alpha |\hat{x} - x_k|.$$
⁽²⁾

If we choose a sequence of (α_k, β_k) so that $(\alpha_k, \beta_k) \to (\infty, \infty)$ and $\alpha_k |\hat{x} - x_k| \to 0$ as $k \to \infty$, then we see from (2) that $(\xi, \tau) \to (\hat{x}, \hat{t})$ as $k \to \infty$ and

$$u(\hat{x}, \hat{t}) \leq \liminf u(\xi, \tau) \leq \limsup u(\xi, \tau) \ (\leq u(\hat{x}, \hat{t}) \text{ by USC of } u).$$

This sequence of inequalities shows that $\lim u(\xi, \tau) = u(\hat{x}, \hat{t})$.

We may assume that $|\hat{x} - x_k| \leq 1/k^2$ for all k. We set $\alpha_k = k$, so that $\alpha_k |\hat{x} - x_k| \leq 1/k \to 0$ as $k \to \infty$. Set $p_k := \alpha_k (\xi - x_k)/|\xi - x_k|$ and $q_k = 2\beta_k (\tau - \hat{t})$, where β_k is to be fixed. Note that $\beta_k |\tau - \hat{t}|^2 \leq u(\xi, \tau) - u(\hat{x}, \hat{t}) + 1/k \leq C^2$ for some constant C independent of k. Hence, we have $2\beta_k |\tau - \hat{t}| \leq C\sqrt{2\beta_k}$. We select β_k so that

$$-C\sqrt{2\beta_k} + \min_{K \times I \times \partial B(0,\alpha_k)} H > 0,$$

where $I := [u(\hat{x}, \hat{t}) - 1, u(\hat{x}, \hat{t}) + C^2]$. Note that $u(\xi, \tau) \in I$.

Assume that $k \gg 1$, so that $(\xi, \tau) \in B((\hat{x}, \hat{t}), r/2)$. We have either

$$q_k + H(\xi, \tau, u(\xi, \tau), p_k) \le 0 \tag{3}$$

or $u(\xi,\tau) \leq g(\xi,\tau)$. Since $q_k \geq -C\sqrt{2\beta_k}$ and $|p_k| = \alpha_k$, we cannot have (3) and must have $u(\xi,\tau) \leq g(\xi,\tau)$. Sending $k \to \infty$, we find that $u(\hat{x},\hat{t}) \leq g(\hat{x},\hat{t})$ \Box