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Abstract

We show the existence of weak solutions to the PDE which de-
scribes the motion by R-curvature in R%, by the continuum limit of
a class of infinite particle systems. We also show that weak solutions
of the PDE are viscosity solutions and give the uniqueness result on
both weak and viscosity solutions.

1 Introduction

In [8] Firey proposed a mathematical model of the wearing process of a convex
stone rolling on a beach. In his model a stone evolves according to the Gauss
curvature flow. (see, e. g., [1, 4, 5, 17] for the mathematical developments
regarding the Gauss curvature flow).

The crystalline approximation of a simple closed convex curve which
evolves according to the curvature flow was considered by Girao and Kohn
and is useful in the numerical analysis (see [10, 11]). We refer to [9] and the
references therein for the recent development of this topics.
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In [14] we proposed and studied a two-dimensional random version of [10].
We also generalized Firey’s argument to the case when the stone does not
necessarily have a convex shape and when the boundary of the stone is given
by the graph of an evolving function (see [15]).

In this paper we propose and study the stochastic approximations of
evolving functions which are generalizations of Gauss curvature flow consid-
ered in [15].

For u € C(R?: R) and z € RY, the following set is called the subdiffer-
ential of u at x:

ou(z) = {z € R 1 u(y) —u(z) >< z,y — x> for all y € R4}, (1.1)

where < -,- > denotes the inner product in R¢. For a set A C R? and a
function v : A — R, let epi(v) and ¥ denote, respectively, the epi-graph of v,
i.e., theset {(z,y):x € A, y > v(z)}, and the convex envelope of v, i.e., the
function whose epi-graph is the convex hull of epi(v), provided that it exists.

R-curvature which can be defined as follows plays a crucial role in this

paper.

Definition 1 (R-curvature) Let R € L*(R%: [0,00),dz). Foru e C(R%:
R), we define the R-curvature of u as the finite Borel measure w(R,u,dx)
on RY given by (see e.g. [2, section 9.6]):

w(R,u, A) = / R(y)dy  for all Borel A C R (1.2)

UweAau(I)

Remark 1 (i) w in (1.2) has another expression:

w(R,u,A) = / R(y)dy  for all Borel A C R* (1.3)

UzeA0U(z)
since the Lebesgque measure of the set Uycra{p € 0u(x) : p is singular} is zero
(p € du(z) is called singular if {(y,a(z)+ < p,y —x >) : y € R }Nepi(1)
contains at least two different points.) (see [2, section 9.4]). (1) w(1,u,dx)
15 also called the Monge-Ampére measure associated with u and is useful in
the study of the Monge-Ampére equation (see [2, 12]).

By the continuum limit of a class of infinite particle systems, we first
show the existence of the solution to the following equation (see Theorem 1
in Sect. 2).



Definition 2 (Motion by R-curvature) The graph of u € C([0,00) X
R? : R) is called the motion by R-curvature if the following holds: for any
0 €Cy(RY:R) and any t > 0,

/ p(z)u(t,z)d /Rdgo dx (1.4)

/ ds/Rd w(R,u(s,-),dx).

Roughly speaking, our infinite particle systems {(Zy(t, 2)).cz4/n o<t sat-
isfy that for any t > 0 and any z € Z¢/n,

P(Zy(t + At, 2) — Zy(t,2) > 0) o< E[w(R, Zy(t,-), {2})]At + o(At)

as At — 0 (n > 1), where Z,(t,-) denotes a convex envelope of the function
z > Zy(t, z) (see Sect. 2).

We also show the uniqueness result on and elementary properties of the
solutions to (1.4) (see Theorems 1 and 2 in Sect. 2).

Theorem 3 in Sect. 2 shows that a continuous solution to (1.4) is a vis-
cosity solution of the following PDE:

ou(t,z)/0t = x(u, Du(t, z),t,x)Det (D*u(t,z))R(Du(t, z)), (1.5)

where Du(t,z) = (GU(t,fﬂ)/axi)?:b DQu(t,x) (32 (t, x)/axzax])” b
(1 if p € Ou(t, ),
x(u, p,t,z) = { 0 otherwise,

Ou(t, z) denotes the subdifferential of the function = — u(t, z), and for a real
d x d-symmetric matrix X,

Det, X = DetX  if X is .nonnegative definite,
0 otherwise.
We give the definition of the viscosity solution to (1.5) for the reader’s
convenience.



Definition 3 (Viscosity solution) (see [15] and also [6]).

(i). We say that u € C((0,00) x R?: R) is a viscosity subsolution of (1.5)
if the following holds: whenever ¢ € C%((0,00) x R?: R) and u — ¢ attains
its mazimum at (t,,7,) € (0,00) x RY,

0p(to, x,) /Ot < X (1, D(to, To), to, To) Dety (D*p(to, 2,)) R(Dp(to, o))

(ii) We say that u € C((0,00) x R%: R) is a viscosity supersolution of (1.5)
if the following holds: whenever ¢ € C?((0,00) x R : R) and u — ¢ attains
its minimum at (t,,7,) € (0,00) x RY,

0p(to, x,) /0t > X~ (1, D@(to, To), to, To) Dety (D> @(to, 7o) ) R(Dp(to, o))

Here x (v,p,t,x) =1 if p € Ov(t,z) and is not singular and if there exists
e > 0 such that for all (s,y) € (0,00) x RY satisfying ly| > et and |s—t| < ¢,

v(s,y) ><p,y > +ely|,
and x (v,p,t,z) = 0, otherwise.
(iii) We say that a function u € C((0,00) x R? : R) is a viscosity solution
of (1.5) if it is both a viscosity subsolution and supersolution of (1.5).

Theorem 4 in Sect. 2 shows that a continuous viscosity solution to (1.5)
in the space of continuous functions v : [0,00) x R? — R for which

sup{|v(t,z) — v(0,2)| : (t,2) € [0,T] x R} < oo for all T > 0 (1.6)

is also a solution to (1.4). Theorem 5 in Sect. 2 shows that a continuous
viscosity solution to (1.5) is also a solution to (1.4) under the stronger as-
sumption than that in Theorem 4.

In Sect. 2 we give our main result which will be proved in Sect. 4. In
Sect. 3 we state and prove technical lemmas. Sect. 5 is the appendix.

We give the following for the reader’s convenience. For any metric space
A and B, the topology of C'(A : B) is induced by the uniform convergence
on every compact subsets of A, and for f and g € C(R%: R), we put

dewery(f,9) = Y 27 min(sup |f(x) — g(x)], 1).

m>1 |z|<m



2 Main Result

We fix a sequence {&,},>1 of positive real numbers which converge to zero
as n — 00, and introduce assumptions.
(A.1). Re L*(R?:[0,00),dz), ||R||z = [ra R(y)dy > 0and h € C(R¢: R).
(A.2). The set Oh(R%) = U,craOh(x) has a positive Lebesgue measure, i.e.,
Oh(RY) has a non-empty interior.

Under (A.1)-(A.2), for any n > 1 and v : Z¢/n — R, put

pno(dB) = ne {3 w(R,0,{z})dy,.(dB) (2.1)

2€Z%/n

+(||R| ’Ll - w(Ra v, Rd))év(dﬂ)},

where
_Jv@) ten  ifz=z,
Un,z(7) = { o(z) if 3 € (24/n)\ {2}
(Notice that w(R, 9, R¥\(Z%/n)) = 0 (see Remark 1, (i)).).
Put also
Sp = {v:Z%n—=R| Y (v(z) = h(2)) < o, (2.2)
2€Z4/n

(v(z) — h(2))/en € NU{0} for all z € Z¢/n}.

Sy, is countable and complete by the metric ds, (u,v) = X ,cza/y, [u(z) — v(2)|
(u, v € Sp).
For a bounded function f: S, — R and v € 5, put

Auf(@) = [ (£(8) = F©)pinuldB). (23)

n

Then A,, generates jump-type Markov processes on S,, under (A.1)-(A.2) (see
e.g. |7, p. 162]).

Let {Z,(t,-)}o<: denote a Markov process on S,,, with a generator A, and
with an initial condition Z,(0,2) = h(z) (2 € Z%/n). For t > 0 and z € RY,
put



Xn(t, ) = max(Z,(t, z), h(z)). (2.4)
We introduce additional assumptions before we state our first result.
(A.3). The closure of the set {x € R%: h(z) < h(z)} does not contain any
line which is unbounded in two different directions.
(A.4). For any p € Oh(R%) and C € R,

/R max(< p,z > +C — h(x),0)dz = co. (2.5)
Then the following holds.

Theorem 1 Suppose that (A.1) and (A.3)-(A.4) hold. Then there ezists a
unique continuous solution u to (1.4) with u(0,-) = h. Suppose in addition
that (A.2) holds. Then the following holds: for any v >0 and T > 0,

lim P( sup demar)(Xalt,-),u(t,-)) >7v) =0. (2.6)

n—00 0<t<T

Remark 2 (i) (A.3) holds when d = 1. (ii) For any C € R, if p & Oh(RY),
then the set {x € R :< p,x > +C > h(x)} is unbounded. (i) If h is conver,
then (A.4) holds by (i). Indeed, the set {x € R? :< p,x > +C > h(z)} is
convez for all (p,C) € R¢ x R and is nondecreasing in C' for any p € RY,

The following theorem collects some of elementary properties of solutions
to (1.4) and hence those of the motion by R-curvature.

Theorem 2 Suppose that (A.1) holds. Let u € C([0,00) x R% : R) be a
solution of (1.4) with u(0,-) = h. Then:

(a) For each x € RY, the function t — u(t,z) is nondecreasing in [0, 00).

(b) If a(t,x) < u(t,z) for some (t,z) € (0,00) x R, then u(s,z) = h(x) for
all s € [0,t]. In particular, v = max(d, h) on [0,00) x R,

(c) For any (t,x) € [0,00) x RY,

u(t, z) — a(t,z) < h(z) — h(z). (2.7)

In particular, if h(z) = h(z) for some z € RY, then u(t,z) = a(t,z). Or
equivalently, if Oh(z) # 0 for some x € RY, then du(t,z) # 0.
Suppose in addition that (A.4) holds. Then:



(d) For any t > 0, du(t,R%) = 0h(RY). In particular,
/Rd (u(t,z) — h(z))dz = t - w(R, h, RY). (2.8)

(¢) Let w € C([0,00) x R% : R) be the solution of (1.4) with u(0,-) = h. If
u(s,:) — (s, ) # h— h for some s € (0,00), then u(t,-) — u(t,-) # 0 for all
t > s.

According to the above theorem, (a) any graph moves upward by R-
curvature, (b) those points on any graph moving by R-curvature do not move
as far as they stay in its cavities, (c¢) the height between any graph moving
by R-curvature and its convex envelope is nonincreasing as it evolves, (d)
any graph moving by R-curvature sweeps in time ¢ > 0 a region with volume
given by t - w(R, h,R?), and (e) for the motion of a graph by R-curvature,
taking its convex envelope at time ¢ > 0 and evolving up to time ¢ starting
with the convex envelope of the initial graph give different graphs in general,
if the initial graph is not convex.

We introduce
(A.5). Re C(R%:10,0¢)),
and give the relation between the motion by R-curvature and the viscosity
solution of (1.5).

Theorem 3 Suppose that (A.1) and (A.5) hold. Then a continuous solu-
tion u to (1.4) with u(0,-) = h is a viscosity solution to (1.5).

We introduce more assumptions to show that the viscosity solution to
1.5) in the flamework of [15] is the motion by R-curvature.
.6). R(z) > R(rz) for any r > 1 and = € R
7). infyzo h(z)/|z| > 0.
A.8). There exists a constant C' > 0 such that h(z+y)+h(z—y)—2h(z) < C
for all (z,y) € R x U;(0), where U;(0) = {y € R : |y| < 1}.

Theorem 4 Suppose that (A.1) and (A.3)-(A.8) hold. Then there ezists a
unique continuous viscosity solution u to (1.5) with u(0,-) = h in the space of
continuous functions v for which (1.6) holds. u is also a unique continuous
solution to (1.4) with u(0,-) = h.



We give the uniqueness result for the viscosity solution to (1.5) in a dif-
ferent flamework from that of [15], when the solution is a Gauss curvature
flow. As a corollary, we show that a continuous viscosity solution to (1.5) is
the motion by R-curvature. Put
(A.1). R(y) = (1+ |y|»)~“+Y/2 and h € C(R?: R).

For r > 0, define A" : R — R by

h'(z) = inf{y € R | U;((2,y)) C epi(h)} (z € RY), (2.9)

and we introduce

(A.2).

hnalﬁnf{hm inf[lim inf(h(6z) — A" (z))]} > 0,

T—=00 " |z|—o0
lim{ sup (h(z) — h(fx))} = 0.
L S L

Then we have

Theorem 5 Suppose that (A.1)-(A.2)’ hold. Then for any viscosity subso-
lution u and supersolution v, of (1.5) in the space C([0,00) x R : R), such
that u(0,-) < h <v(0,-), u < v.

Remark 3 (A.2)’ holds if there exists a convex function hy : R¢ — R such
that ho(z) — oo as |x| — oo and that

lim [h(z) — ho()] = 0. (2.10)

(see Sect. 5 for the proof).

We easily obtain the following, from Theorems 1, 3 and 5, which should
be compared with Theorem 4.

Corollary 1 Suppose that (A.1)-(A.2)" and (A.3)-(A.4) hold. Then there
ezrists a unique continuous viscosity solution u to (1.5) with u(0,-) = h. u is
also a unique continuous solution to (1.4) with u(0,-) = h.



3 Lemmas

In this section we state and prove technical lemmas.

Lemma 1 Suppose that f : Uyy,(o) — [0,00) is convex for some m > 1.
Then

sup f(z) < |Un(0)|! /|w|<zm fa)de. (3.1)

lz|<m

(Proof). For z and y € U,,(0), by the convexity of f,

2f(x) < fl@z+y) + flz —y).

Integrating the both sides on the set U,,(0) with respect to dy, the proof is
over since f is nonnegative.

Q. E. D.

Lemma 2 Suppose that (A.1)-(A.2) hold. Then for any r € (0,1/2), n >
d'?/r, m > 1 and s and t for which 0 < s < t, the following holds almost
surely:

sup (X,(t,z) — Xp(s, 7)) (3.2)
|z|<m
< 2d4r sup |Zy(ua)| + sup |h(x) = h(y)[}
|z|<m+2,u=s,t |z|,|ly| <m+1,|e—y|<2r

+ Y (Zalt,2) = Zu(s,2))n /U (0)] + e

2€Z4[n,|z|<m+1

(Proof). For z = (z;)%_, € RY, put [z] = ([x;])%_,, where [z;] denotes an
integer part of z;. Then for any t > 0 and z € RY,

0 < Z,(t,[nz]/n) — X, (¢, [nz]/n) < ep. (3.3)

This is true, since

€ [ZAn(t,A[nx]/n), Z(t, [nz]/n) + €,)
Zn(t, [nz]/n) if Zy(t,[nx]/n) > h([nz]/n),
= h([nz]/n) if Z,(t, [nz]/n) < h([nz]/n).

9



For z € Uy, (o),

0 < Xu(t,z) — X,(s,x) (3.4)
< |x§1;|P<T{|Xn (¢, z) — Xn(t, [ny]/n)| + [ Xn(s, [ny]/n) — Xn(s, 2)}

—l—/UT(w) (Xn(t, [ny]/n) — Xa(s, [ny]/n))dy/|U.(0)|.

Hence (3.2) holds by (3.3), the intermediate value theorem, and by the fol-
lowing: for a convex function f: R~ R and r > 0,

sup{|f(z) = fW)l/|z —yl: 2 #y,z,y € Ur(0)} <2 sup [f(2)] (3.5)

lz|<r+1

(see e.g. [2, p. 20, Lemma 3.1]).
Q. E. D.

Lemma 3 Suppose that (A.1)-(A.2) hold. Then for any T > 0, n > 2d'/?
and m > 1,

P( sup /|m|Sm{2n(t,x)+2 sup |h(y)|}dz (3.6)

0<t<T ly|<m-+2

> 24 m( sup {2/h()| + [h(2)|}Uni2(0)| + TIIRl|11))

2| <m-+2

< ean”'m7?( sup {20h(@)] + h(@) [} Uns2(0)] + T|RI] 1) "

2| <m-+2

(Proof). For t € [0, 77,

/|x|§m{2n(t, 2)+2 sup |h(y)|}dz (3.7)

ly|<m+2

20 Y {Zu(t.2) +2 sup |h(y)}n

2€Z%/n,|z|<m+1 ly|<m-+2

< 24 > (Zn(t,2) — Z,(0,2))n "¢

2€Z4 /n,|z|<m+1

IN

10



_/Ot ds > w(R, Zu(s, ), {z})}

2€Z%/n,|z|<m+1

+2( sup {2|h(@)| + |h(@)[HUm+2(0)| + T|IRl|11),

|z|<m+2

since w(R, Zn(s, ), Ums2(0)) < ||R||;1. Here we used the fact that a convex
function takes its maximum on the boundary of the set where it is defined
and that Z,(t,2) > —|h(2)|.

Hence by Doob-Kolmogorov’s inequality (see [13, p. 34]), the following
completes the proof: by Itd’s formula (see [7, p. 162] or [13, p. 66]), for any
s and t for which 0 < s <t and any ¢ € Cy(R?: R),

Bl 3 a)(2lt2) = Lo (38)
[ 3, sl 2 oDt
= B 3 olerulR dafe) (e
Q. E. D.

Lemma 4 Suppose that (A.1)-(A.2) hold. Then for anyn and T > 0, there
exists 0 > 0 such that

lim P(_max | dogemy (Xa(i8, ), Xa (1= 10.) 2 1) = 0. (39)

(Proof). Take m for which 2=(™*1) < /2, and take also r € (0,1/2) such
that

r < (0/6D)|Uns2(0) {27 (m +2)( sup  {2/h(z)]

ja|<2(m-+2)+2

H (@) [HUam2)+2(0)| + (T + 1)[|Rl[L1)} 7,

2 sup |h(z) = h(y)| < n/8.

|m|,|y|§m—|—1,|zfy|<2r

11



Then for any 6 € (0, min(1,7n|U.(0)|/(8]|R||z1))) and any n > d*/%/r, by
Lemmas 1-2,

P(_max | domey (Xa(38,), Xo((G = 1)3,) 2 1) (3.10)
< P( sup / (Za(t,2)+2 sup  |h(y)[}dz > 272 (m + 2)
0<t<T+1 J|z|<2(m+2) ly|<2(m+3)

x( sup ){QIﬁ(w)l + [h(@) HUsma3) (0)| + (T + D[R] 1))

|e|<2(m+3
+ > P > (Zn(i6,2) — Zn((i — 1)6,2))n ¢
1<i<[T/é]+1 2€Z4 /n,|z|<m+1

70

- S w(B Zu(s,), {2h)ds| > Uy (0)|(n/8 — en)),

(i-1)o 2€Z% [n,|z|<m+1

since for ¢t > 0,

sup |Zu(t,z)| < sup {Z,(t,z)+2 sup |A(y)|}, (3.11)
| <m+-2 | <m+2 lyl<2(m+3)
and since
inf {Z,(t,x)+2 sup |h > (. 3.12
a 52(m+2)~{ (t,z) |y|§2(£+3)| (W)} (3.12)

(3.10) together with Lemma 3 and (3.8) completes the proof.
Q. E.D

Lemma 5 Suppose that (A.1)-(A.2) hold. Then for any n > 1, the follow-
ing holds almost surely: for any t > 0 and x € RY,

X, (t, 2) = max(X, (¢, z), h(z)). (3.13)

(Proof). By (2.4),

A

Zy(t,z) < X, (t,2) (3.14)

J
= inf{d NX,(t,z;):j>0,\>0,z; e RYi =0,---,7)
1=0

12



=0
J

(see [16, p. 53, Th. 2. 27]).
Q. E. D.

Lemma 6 Suppose that (A.1) and (A.3)-(A.4) hold. Then for any func-
tions f and f, € C(R?: R) (n > 1) such that f, = max(f,, k) (n > 1), and
that f, — f in C(R?: R) as n — oo, and that [ga(f(z) — h(x))dz is finite,
af(RY) = on(RY) and f, — f in C(R% : R) as n — oo. In particular,
f =max(f,h) and the following holds: for any ¢ € C,(R*: R),

lim [ @) w(R, f,dr) = /R @(@)w(R, f,dz). (3.15)

n—0 JRd

(Proof). We first show that 8 f(R%) = 0h(R?). Indeed, dh(R?) C df(R4)
since f > h, and 9f(R?) C dh(R?) by (A.4) since for any z, € R? for which
df(wo) # 0 and any p € 0f(x),

/Rd max(< p,x — xg > +f(xg) — h(x),0)dz < Rd(f(:v) — h(z))dz < cc.
Since f, > fn > h and {fa}n>1 is uniformly bounded on every compact
subset of RY, there exists a convergent subsequence {f,, }r>1 in C(R?:R)
(see [2, p. 21, Theorem 3.2]). We denote by g the limit of f,, as k — oo. Tt
is easy to see that f =max(g, h) and that f > f>g>h.
Suppose that f # g. Then there exist z; and 2z, € R¢ and p € 8f(x1)
0g(x5) such that

<px—1x1>+f(21) ><p,x— 39> +g(xs) foralzeR?  (3.16)

since f(R%) = dg(R?) from the above argument.

13



For sufficiently large k > 1, one can take (\g;, zx)%, € ([0,1] x R%)4+!
such that Y% ) \ei = 1, S Mins = T, ME g tirs) > foo (O tit )
forall ¢; > 0 (i = 0,---,d) for which X% ;¢; = 1 and for which t; = 0 if
Aki = 0, and that

Z fnk(xQ) < 1/k

1=0

Indeed, since f(z) = h(zs) > f(z2) > g(x2) by (3.16), fa,(x2) = h(zs) >
[, (z2) for sufficiently large £ > 1, and henceforth

d
fag(@2) = IfD" Nifa, (i) : N > 0,9, € RY(i=0,---,d) (3.17)
;=0
d d
DY oN=1 Zx\zyZ =1z5} (see [16, p. 56, Prop. 2.31])

d

0
d d
,Z)‘zzlaz zyz—an thyz >fnk thyz

0
d
(t; >0, t; =0if \; =0(i = d),> t; =

1=0

Here we used the following argument. It is easy to see that, in the first
infimum of (3.17), one can assume that fo, (y;) = h(yi) > fo, (ys) if Ai > 0.
Suppose that there exist j € {1,---,d} and AN >0,y € R(i=0,--,7)
for which h(y;) > fu, (v:)(@ = 0,---,7), YL 0)\ =1 and Yo \iyi = a».
Suppose also that there exists ¢; > O(z =0,---,7) for which 37_,t; = 1,
§ = Yo tiyi(# 72) and Fou () = fur (). Put A = minj—g_..;(A\i/t;) (€ (0,1)).
Put also \; = (A\; — At;)/(1 — )\). Then the following holds

A+ (1=N) > Ai=1,

ZIO:"':iji/ti>A

AJ+(1=2) Y Ayi=a,
':0,---,j,/\¢/ti>x\

14



M@ +1=2 T Rhlm) < 3 k).

Fuo(§) and h(y;) > fao(y)(i = 0,---,j). Hence one can
take {\, (1 — AN, v, v : A\i/ti > \,i =0,--+,j} as a better set of points in
the infimum of (3.17) than {\;,y; : ¢ = 0,---,j}, which implies the second
equality in (3.17).

Since f(x3) > g(x2), {Zri : kg > 0,0 = 0,---,d}x>1 is not bounded.
Therefore, by (A.3), there exists a sequence {m(k)}r>1 C N such that
{xm(k),ia)\;ll(k)’i}kZI is bounded and that |Y ;. 0.4 Amk),jTmk)s] — ©©
as k — oo, for some i € {0,---,d}. Hence epi(g) contains a line which is
infinite in one direction, which intersects with epi( f) in another one, and
which contains (z2, g(x2)). This contradicts (3.16).

(3.15) can be proved by [2, p. 119, Th. 9.1].

since fr, (7) =

Q. E. D.

Lemma 7 Suppose that R € L*(R%: [0,00),dx). Then for any continuous
solutions uy and ug, to (1.4), for which uy(0,-) < uy(0,-) and for which
Ouy (t, RY) C Quy(t, RY) for all t >0, u; < uy.

(Proof). Suppose that u; < uy is not true. For € > 0, put

Ve={(t,z) € (0,e™") x R%:uy(t, z) + et < ui(t,z)}.

Then for sufficiently small & > 0, the set V. is open and [V.| > 0.

If (1,&) € V., and if p € Ju, (7, £), then p € Juy(7,n) for some 7 for which
(7,m) € V.. Indeed, uy(7,z) — I(z) attains the minimum over R? at a point
n for which p € duy(7,n), where

Hz) :==u(1,8)+ < p,x — &> for all z € R%.
We also have (7,7) € V; since

ug(1,2) > up(r,2) —eT > l(x) —eT (3.18)
if (7,x) € V., and since

uo(7, &) < ui(r, &) —er =1(€) —er. (3.19)
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An immediate consequence is that

/Emm()mm w(R, us(t, ), dz)dt. (3.20)

Ve

Take a nondecreasing sequence {1, },>1 of nondecreasing C'-functions
such that

1

na(r)=0 forallr <0, mn,(r)=1 forallr> o (3.21)
and for r € R, put
Cu(r) = /0 N (8)ds. (3.22)
Then for any z € R? and ¢ € (0,e7}),
0 < Gului(t,z) —ug(t,x) — et) (3.23)

= /Ot N (u1(s,x) — us(s, z) —es)(ui(ds, x) — us(ds, x) — eds).

(Notice that the function ¢ — wu;(t,x) is nondecreasing for 7 = 1, 2 and
r € R%) Hence by (1.4), for any r > 0

0 < /|$|<T/ n(U1(s,2) — us(s, ) —es) (3.24)
X (uq(ds, x) — us(ds, z) — eds)dx

= /05—1 /|z|<r N (U1 (8, ) — us(s, ) — es)
X(w(R, ui(s, "), dz) — w(R, us(s, "), dz) — edz)ds

%mk(Rm()MW—A w(R, us(t, ), da)dt — e| V|

>

as 7 — oo and then n — oo. This together with (3.20) implies that |V.| = 0,
which is a contradiction.

Q. E. D.

Lemma 8 Suppose that u € C((0,00) x R?: R) and v € C*((0,00) x R? :
R) satisfy the following: for some (s,y) € (0,00) x R,
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X (u, DY(s,y),s,y) =1, u(s,y) =v(s,y), D*Y(s,y) >0,

and there exists A > 0 such that for any € > 0,

U- ={(t,z) € (0,00) x RYy(t,z) +e > u(t,z)} C Uie/ayre((5,9)). (3.25)

Then for sufficiently small € > 0 and any (1,€) € U=, Dy(T,€) € Ou(T, 2)
for some z for which (1,2) € U .

(Proof). Take r € (0, s) such that

D*)(t,z) >0 forall (t,z) € [s — 1,5+ 7] x Up(y). (3.26)
Since x~ (u, DY (s,y), s,y) = 1, by the continuity of u, there exists a constant
§ € (0, 7] such that for all p € Us(Dv(s,y)), and (t,7) € [s—§,s+ 6] x (R
Ur(y)),
u(t,z) > YP(s,y) + 0+ <p,z—y > (3.27)
(see Definition 3). Take a constant v € (0, d] so that

U(s,y)+0 > Y(t,y)+~ forallte[s—ry,s+7], (3.28)
Dy(t,z) € Us(Dy(s,y)) forall (¢,z) € [s —,s+7] x Uy(y).(3.29)

Take € € (0, 7] sufficiently small so that U~ C [s—~, s+7] xU,(y). Then
for (1,€) € UZ, from (3.26), we see that

(1, x) > 1(x) == (r,6)+ < DY(1,8),z — >  for all z € Up(y). (3.30)

In particular, we have from (3.28),

U(s,y) +6 2 d(r,y) +e 2> 1(y) +e. (3.31)
Hence for all z € R\ U,(y), by (3.27) and (3.29),
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(z)+e=1(y) +e+ < DY(r,&),z —y > (3.32)
< u)(say) +0+ < D¢(Ta 5),55 -y >< U(Ta iL')

We also have, by (3.30), for all € U,(y) for which (1,z) ¢ U,

l(x)+e<Y(r,z)+e <u(r, ). (3.33)

Since

u(r,§) - U(g) <e,
the function & — u(7, z) —I(z) attains a minimum at z for which (r,2) € U~
which means that Dy (7€) € du(r, z).
Q. E. D.

The following two lemmas can be shown by the arguments in the proof
of [15, Theorem 1|, and we omit the proof.

Lemma 9 Suppose that (A.5)-(A.7) hold, and that v, and uy are continu-
ous viscosity solutions, to (1.5) with u1(0,-) = ux(0,-), for which

sup{|ui(t,r) —u;(0,2)| : i =1,2,(t,2) € [0,T] x R} < o0 for all T > 0.
(3.34)
Then u; = us.

Lemma 10 Suppose that v and u are viscosity supersolution and continuous
viscosity subsolution of (1.5), respectively, and that uw < v on the set ({0} x
Ur(0)) U ((0,T) x (RE\ Uy,(0))) for somer >0 and T > 0. Then u < v in
(0,T) x RA.

4 Proof of Main Result

In this section we prove theorems given in Sect. 2.

(Proof of Theorem 1). First of all, we point out that one can show, from
(A.4), that dv(t,R%) = Oh(R?) for all t > 0, for any continuous solution v
to (1.4) with v(0,-) = h(:), by the argument of the first part of the proof of
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Lemma 6. In particular, a continuous solution v to (1.4) with v(0,-) = A(-)
is unique by Lemma 7.

Suppose first that (A.2) does not hold. Then u(t,-) = h(-) for all ¢ > 0 is
a unique solution to (1.4) with u(0,-) = h(:).

Suppose next that (A.2) holds. Take mg > 0 such that

sup {2|h(x)| + |h(z)[} > 0.

|z|§2m0+2
For ¢t > 0, put
I, = {max(f,h)(z): f is convex from R? to R, and (4.1)
sup | f(2)] < 272 m|Up (0)| 7 sup {2|h(z)]
lz[<m || <2m+2

+|h(x)|}Uomi2(0)| + t||R]||11) for all m > mg}.

Then I'; is compact in C(R%: R) (see [2, section 3.3]).
By Lemmas 1, 3 and (3.11)-(3.12), the following holds: for any ¢ > 0,

lim P(X,(t,-) € Ty) = 1. (4.2)

n—00

This together with Lemma 4 implies the tightness of {X,(t,)}o<tn>1 in
D([0,00) : C(R® : R)), since for any § > 0 and any ¢ and s for which

/6] = [s/4],

dC(Rd:R) (Xn(tv ')a Xn(37 )) < dC(Rd:R) (Xn(([t/d] + 1)5’ ')a Xn([t/6]67 ))

(see [7, p. 129, Corollary 7.4]).

One can also show, by Lemma 4, that any weak limit point of { X, (¢, -) }o<t,
as n — 0o, belongs to the set C([0,00) : C(R?: R)), since for any ¢t > 0 and
0 >0,

dC(Rd:R) (Xn(ta '): Xn(t_a )) < 131'21[?/};]“ dC(Rd:R) (Xn(Z(Sa ')a Xn((z - 1)5, ))

(see [7, p. 148, Theorem 10.2, (a)]).
Let {X,, }x>1 be a weakly convergent subsequence of {X,,},>1, and X be
the weak limit of {X,, }x>1. Then by Skorohod’s theorem (see [7, p. 102,
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Theorem 1.8]), taking a new probability space, one can assume that for any
T >0, X, (t,-) converges, as k — 0o, to X(¢,-) in C(R? : R) uniformly in
t € [0,7] a.s.. By (3.8), we have

Bl[ (X(t,2) = h(a))da] < t] Rl (43)

since

X, (0, [nz]/n) = h([nz]/n) — X(0,2) = h(z) (as n — o0) (4.4)

for z € R4, and since for ¢ € C,(R%: R)

Z o(z nk (t,z) — an(O,Z))nEd (4.5)

2€24 /ny,
- /Rd (] /1) (X (¢, [nr] /) — X (0, [ngw]/ ) ) de|

< 2en, /R () /mildz — 0 (as k — 00) as.

by (3.3). Hence by (1.3), (4.3), Lemmas 5 and 6, for any ¢ € C,(R¢: R)
and any t > 0,

> @(2)w(R, Zn, (1, )a{z})ZAdw(x)w(R,Xnk(ta-)adx) (4.6)

2€Z4 [ny,
— /Rd (p(fE)’UJ(R,X(t,),dl‘)

as k — oo a.s.. (3.8) and (4.5)-(4.6) imply that X (¢, z) is a unique continuous
solution to (1.4) with X(0,z) = h(x). In particular, X is nonrandom and
henceforth (2.6) holds.
Q. E. D.
(Proof of Theorem 2). The proof of (a) is standard and is omitted.
(b) Suppose that @(t,z) < u(t,z). Then there exists a constant r > 0
such that

(s, y) < u(s,y) for all (s,y) € [t — r,t] x Up(x), (4.7)
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since the function s — 4(s,y) is non-decreasing in [0, 00) for each y € RY,
and 4(s,-) € C(R? : R) for each s € [0,00), and u € C([0,00) x R : R).
Therefore, we have

/ dsw(R, u(s, ), dy) = 0. (4.8)
[t—r,t|xUr(z)

This together with (1.4) implies the following:

u(s,y) = u(t,y) for all (s,y) € [t —7,t] x Uy(z). (4.9)

Since the function s — u(s,y) is nondecreasing in [0, 00) for each y € R4,
this implies that u(t,-) = u(0, ) in the set U,(z). R

(c) If u(t,x) = a(t, z), then u(t,z) — u(t,x) < h(x) — h(zx) since h(z) >
h(z). Suppose that @(¢,z) < u(t,z). Then u(t,z) = h(z) by (b), from which
we conclude that u(t,z) — a(t,z) < h(z) — h(z) since a(t, z) > h(z).

(d) Ou(t,R?) = Oh(R?) by the first argument of the proof of Theorem 1.
Plugging functions ¢, € C,(R%: R) (n > 1) into (1.4), where the sequence
{¢n}n>1 is nondecreasing and approximates the constant function ¢p(z) =1,
and sending n — oo, we get

/Rd(u(t,x)—h(:r))d:z:/Otds/Rdw(R,u(s,-),d:r) = t-w(R, h,RY). (4.10)

(e) We argue by contradiction. Suppose that u(t,-) = u(t,-) for some
t > s. Then we have

/R (u(t, x) — h(z))dz < /R (at,x) — h(x))dz (4.11)

u(t’ ) - ﬂ(t, ) < u(s’ ) - ﬂ(s, ) #h— il,
in view of (c). Hence
/R (u(t,z) — h(z))dz < /R (a(t, z) — h(z))dz, (4.12)

which is a contradiction in view of (d), since (A.4) with h replaced by A holds
(see Remark 2, (iii)).
Q. E. D.
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(Proof of Theorem 3). By (a) in Theorem 2, (1.4) is equivalent to
/ o(t, 2)[u(dt, ©)dz — dtw(R, u(t,-),dz)] = 0 (4.13)
[0,00) x R4

for all ¢ € C,([0,00) x R4 : R).

(Step I). We first show that u is a viscosity subsolution of (1.5).

Let 1 € C?((0,00) x R% : R) and assume that u — v attains a maximum
at (s,y) € (0,00) x R%. We may assume that u(s,y) = ¥(s,y), so that
u(t,z) < ¥(t,z) for all (t,z) € (0,00) x R4\ {(s,y)} (see [6]).

(). Consider first the case when 4(s,y) = u(s,y).

By adding to 1 the function (¢,z) — A{|t — s|*> + |z — y|*}, with a suitable
A > 0, if necessary, we may assume that D?¢(s,y) > 0 and that the following
set

U ={(t,z) € (0,00) x RYa)(t,z) —e <u(t,z)} (¢>0) (4.14)

3

is contained in the set U a)1/2((s,v))-
In the same way as in (3.18)-(3.20), considering (u,,—¢) instead of
(u1,us,€t), by the compactness of the closure of the set UF, one can show

that if (1,£) € UX and p € 0u(r, ), then p € 9vY(T, z) = {D(1, 2)} for some
z for which (7,2) € UX and that

/U w(R,ult, ), dz)dt < /U w(R, (1, ), do)dt. (4.15)

€

We argue by contradiction. Assume that the following holds:

d(s,y) /0t > R(Di(s,y)) det, D%(s, ), (4.16)

since by the definition of y, we have

x(u, DY(s,y),s,y) = 1.

By reselecting ¢ > 0 if necessary, we may assume that

OW(t,z)/0t > ¢ + R(DY(t,z)) det, D*)(t, ), detyD*p(t,z) >0 (4.17)

for all (t,z) € U./a((s,y)). Hence in the same way as in (3.21)-(3.24), con-
sidering u — 1 + ¢ instead of u; — us — €t, we have
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e|Ut| < /+ w(R,ult, "), dz)dt — /+ R(DY(t, z)) det, D2p(t, z)dzdt < 0,
U; U,

€

(4.18)
by (4.15), which is a contradiction.
(ii). Consider next the case when u(s,y) < u(s,y).
We have
x(u, Dy(s,y),s,y) =0,
from which we only have to show that
0Y(s,y)/ot <O0. (4.19)

(4.19) is true, since from (b) in Theorem 2, we have

u(t,y) =u(s,y) forall t e (0,s),

from which we have

W(s,y) < (t,y) forallte (0,s).

(Step II). Next, we show that u is a viscosity supersolution of (1.5).
Let ¢ € C?((0,00) x R? : R%) and assume that u — ¢ attains a minimum at
(5,9) € (0,00) x R% We may assume as well that u(s,y) = ¥(s,y), so that
u(t,z) > Y(t,x) for all (t,z) € (0,00) x RE\ {(s,9)} (see [6]).

By (a) in Theorem 2, we see that

oY(s,y)/ot > 0.

Hence we only have to consider the case when the following holds:

X (u, DY(s,y),s,y) =1, det.D*y(s,y) > 0.

By subtracting from 1 the function (¢,z) — A{|t — s|*> + |z — y|?}, with
a sufficiently small A > 0, if necessary, we may assume that D?i(s,y) is
positive definite and that (3.25) holds. By Lemma 8, if ¢ > 0 is sufficiently
small, then for any (¢,x) € U, Dy(t,z) € Ou(t, z) for some z for which
(t,z) € U-.

As in (Step I), we argue by contradiction. Suppose that

23



O (s,y)/0t < R(Dy(s,y)) det D*(s,y). (4.20)
Reselecting € > 0 sufficiently small, we may assume that

OY(t,z)/0t + e < R(DY(t,z))det, D*)(t,z), det,D*p(t,z) >0 (4.21)

for all (¢,2) € U ay1/2((s,9)). Then in the same way as in (Step I), we get

e|lU- |</ R(DY(t,z)) det D*0(t, z)dadt—w(R, u(t, ), dz)dt] < 0, (4.22)

which is a contradiction.

Q. E. D.
(Proof of Theorem 4). By Lemma 9 and Theorems 1 and 3, we only have
to show the following: for a solution w to (1.4) with u(0,-) = h(-) and any
T >0,

sup{|u(t,z) — h(z)| : (t,z) € [0,T] x R%} < oc. (4.23)

This is true, since

u(t,z) — h(z) (4.24)
< Ui /|y|gl(u(t’ z+y) - h(z +y) +ult,z —y) — h(z —y))dy/2
(

- /| (h(z +y) + h(z — y) — 2h(z))dy/2
(

+|U1 0)| !
< eIt [ R

y|<1
y)dy + C/2 < oo,

by (A.1) and (A.8). Here we used the following. If u(t,z) — h(z) > 0, then
by (c) in Theorem 2, for any y € R,

u(t,z) = a(t,z) < (a(t,z+y)+a(t,zr —vy))/2 < (u(t,z+y) +ult,z —1y))/2.

Q. E. D.
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Proof of Theorem 5). In R4, the moving ball with a fixed center and with
( : g
radius given by

r(t) = (ro — (d+ D))Vt e [0,r0/(d+ 1)), (4.25)

with 7o > 0, is a Gauss curvature flow. In particular, for fixed a € R?¢ and
b€ R, put

b— ((ro — (d+ 1))@ — |z — qf?)/?
w(t,z;a,b,rg) := if |z —a| < (rg — (d+ 1))@+, (4.26)
+o00 otherwise.

Then w(-;a,b,ry) is a viscosity supersolution of (1.5) with R(p) = (1 +
[p|?)~@+D/2 Applying Lemma 10 to v and w(-;a,b,r), where r > 0 and
a € R? are chosen arbitrarily, and b = h"(a), we find that

u(t,z) < w(t,z;a,b,r) forall (t,z) €[0,7/(d+ 1)) x R% (4.27)

In particular,

u(t,a) < w(t,a;a,b,r) < h™(a) for all (t,a) € [0,7/(d+1)) x R%. (4.28)

Fix any 8 > 1 and put

e := sup (h(z) — h(0z))(> h(o) — h(fo) = 0), (4.29)

zcR4

and define z : [0,00) x R? — R by

2(t,x) = ¢ + v(6?%, ). (4.30)

Then z is a viscosity supersolution of (1.5) with R(p) = (1 + [p|?)~¢*1)/2 and
satisfies

2(0,z) > h(z) for all z € R%. (4.31)

By (A.2)” and (4.29), for any 6 for which 8 — 1(> 0) is sufficiently small, and
for r > 0 which is sufficiently large, depending on 6, there exists a constant
L > 0 such that
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z(0,2) > h(fz) > h"(z) if |z| > L. (4.32)
Hence by (4.28) and (4.32),if 0 <t <r/(d+1) and |z| > L, then

u(t,z) < h'(z) < 2(t, ), (4.33)

since for each z € R¢ the function ¢ — v(t, x) is non-decreasing in [0, 00).
Again by Lemma 10, we have from (4.31) and (4.33),

u(t,z) < z(t,x) = ¢ +v(6%%, 62) in (0,7/(d+ 1)) x R*. (4.34)

Let 7 — oo and 6 | 1. Then we have, by (A.2)’,

u(t,z) < ov(t,z) in (0,00) x R% (4.35)
Q. E. D.

5 Appendix
In this section we prove Remark 3.

Proposition 1 Let h € C(R? : R). Suppose that there ezists a conver
function hy : R — R such that ho(x) — oo as |z| — oo and that (2.10)
holds. Then

Il|i£)n [h(0x) — h"(z)] =00 for all® > 1,7 >0, (5.1)
lgﬁl{ seupli)d[h(x) — h(6z)]} =0. (5.2)

(Proof). Without loss of generality, we may assume that hg > 0.
For any # > 1 and r > 0, we have

ho(fx) —max ho(z +y) — oo as |z]| — oo, (5.3)

[yl<r

since by the convexity of hg, for any r and y € R%, with |y| < r,
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ho(z +y) = ho(67 10z + (1 — 071)8(6 — 1) y) (5.4)
< 0 Y ho(0z) + (1 — 0 ho(6(0 — 1) 1y) < 6 *he(0z) + C(r,6),

where C(r,0) is a constant. We also have

h'(z) < sup h(z + 2) + 7 for all z € R? (5.5)
|2]<r
since U ((z,y)) C epi(h) for all y > supy, <, h(z + z) + 7. (2.10), (5.3) and
(5.5) implies (5.1).
We also have, by (5.4) with y = o, for any 6 > 1,

ho(z) — ho(6z) < Bho(z) — ho(8z) < (6 — 1)ho(0). (5.6)

This together with (2.10) and (4.29) implies (5.2).

Q. E. D.
Acknowledgement: We would like to thank Prof. K. Ishii for informing us
that Theorem 5 is similar to [3, Theorem 4.1] where they considered the
mean curvature flow with a convex coercive initial function by a different
approach from ours.
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