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ABSTRACT

We study the asymptotic behavior of solutions of the Cauchy problem for a
functional partial differential equation with a small parameter as the param-
eter tends to zero. We establish a convergence theorem in which the limit
problem is identified with the Cauchy problem for a nonlinear parabolic par-
tial differential equation. We also present comparison and existence results
for the Cauchy problem for the functional partial differential equation and
the limit problem.

1. INTRODUCTION

In this paper we study the asymptotic behavior of solutions of the Cauchy problem
for the functional partial differential equation

(

(B). (e 1.6)= 1HDu@t@5>

+—/£n ) =, €)) d P,
for (a: t,§) € R" x (0,00) x I,

L u(x,0,8) =g(x,&) for (z,£) e R" x I,

where ¢ is a positive parameter, I is a given finite interval of the real line, H is a Borel
function on R™ x I such that for each £ € I the function H(-,§) is continuous on R",

and k is a bounded, positive, Borel measurable function on I x I.
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The functional partial differential equation (E). may be regarded as an infinite
system of first order partial differential equations. Indeed, one of our motivations to
study (CP). is to extend an asymptotic result obtained in Evans [3] for a finite system of
partial differential equations to that for (CP).. Prior to [3] there are many contributions
to the asymptotic behavior of solutions of systems of differential equations related to
the problems treated in [3] and we refer for these to [6, 7, 3] and the references therein.

The functional partial differential equation (E). arises as a fundamental equation
for the optimal control of the system whose states are described by ordinary differential
equations, subject to random changes of states in I and to control which induce the
integral term in (E). and the nonlinearity of H, respectively.

Other than the extension to infinite systems, new features in this paper beyond
[3] are: (i) the treatment of the initial layer, i.e., the case when the initial data g(z, &)
depends on ¢ and (ii) the nonlinearity of the term H.

In our asymptotic analysis of (CP)., we use the perturbed test function method
developed in [3], which is based on the notion of viscosity solution and the stability
properties of viscosity solutions. The extension from finite systems to infinite systems
was not trivial and, as we will see in section 5, we need to take into account of terms
up to order €2 when we build the perturbed test function.

The problem of the initial layer in our analysis is resolved by constructing appro-
priate barrier functions, a result of which is stated in Lemma 5.1 below. On the other
hand, the extension to the nonlinear term H is rather straightforward.

In view of viscosity solutions theory, our treatment of functional partial differential
equation is new in that the function H(p, &) is not assumed to be continuous and it is
assumed to be continuous in p and Borel measurable in £ and in that the solution
u®(z,t, &) is not assumed to be continuous and is assumed to be continuous in (z,t) and
Borel measurable in £&. We modify the standard definition of viscosity solution to that
situation and then the problem is how to prove the existence of viscosity solution of
(CP).. This is done by employing an argument based on monotone classes of functions.

The paper is organized as follows: In section 2 we prepare our notation and then
state our main results. In section 3 we prove a comparison theorem for subsolutions

and supersolutions of

(E) ut(-’l«‘,t,f)=H(Du(9€7t,§),§)+/lk(§m) [u(z, t,m) —ulz,t,€)]dn
for (z,t,£) € R" x (0,00) x I, (CP)
u(z,0,8) = g(x,§) for (x,§) e R" x I,

which readily yields a comparison assertion for (CP).. In section 4, we establish ex-

istence and stability theorems for (CP). In section 5, we prove our main convergence
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result, which roughly says that, as ¢ — 0, the solutions u®(z, t, £) converge to the unique

viscosity solution u of

(E)o  wi(x,t) = tr[A(Du(z,t))D?*u(x,t)]
for (z,t) € R™ x (0, 00), (CP)g

u(z,0) =g(z) forxzeR",

where g = § € BUC(R™) and A € C(R",8"), and g and A will be specified later in
section 2 (see (2.15) and (2.16)). Here and henceforth, S™ denotes the space of real
symmetric matrices of order n and for any subset Q2 of R™, BUC({2) denotes the set of
all bounded, uniformly continuous functions on 2. Section 6 is devoted to the proof of

two basic lemmas which are used in the previous sections.

2. PRELIMINARIES AND MAIN RESULTS

We use the following notation: Q7 = R" x (0,T7), Rr =R" x [0,T) for0 < T <
oo, and for function f : S — R™ we write ||f|lcc = supg |f|. I denotes a fixed finite
interval, with length |I| > 0, and also the identity operator on a given space.

For any k € Z, := NU{0} and Q C R™, C*(Q)®B(I) denotes the set of functions
f on Q x I such that for each x € Q the function f(z,-) is Borel measurable in I and
for each ¢ € I the function f(-,€) is k times continuously differentiable on 2. We write
also C(Q2) @ B(I) for C°(Q) ® B(I). For any Borel subset O C R™, B(2) denotes the
space of all Borel functions on €, and B>°(£2) denotes the Banach space of bounded
Borel functions f on 2 with norm || f|| -

Throughout this paper we fix positive numbers kg, k1, with kg < k1, and consider
the class Dy of Borel functions k on I x I such that kg < k(&,n) < Ky for all & n e 1.

We call a continuous function w : [0, 00) — [0, 00) a modulus if w is non-decreasing
in [0, 00) and w(0) = 0.

Let G; and G5 denote the sets, respectively, of all pairs (w, L) of a modulus w and
a positive constant L and of all pairs of a collection {wgr}r>¢ of moduli and a collection
{LRr}Rr>0 of positive constants. We write G = G; x G.

For v1 = (w, L) € Gy let D1(7y1) denote the set of all functions g € C(R™) @ B(I)
such that

9(z,&) —9(y, )| Sw(lz—yl), l9(=,§)|<L forallz,yeR", {€l. (D1

For 79 = ({wr}r>0,{Lr}r>0) € G2 let Dy(y2) denote the set of all functions H €
C(R™) ® B(I) such that

[H(p,&) — H(q,&)| <wr(lp—dl), |H(p,)| < Lr
for all p,q € B(0,R), £ €I, R >0, (D2)
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where B(0, R) denotes the closed ball with radius R centered at the origin. For v =
(71,72) € G we write

D(v) = Do x D1(71) X Da(72),

and set

D; = U{Dz('y) |vyeG;} for i=1,2 and D= U{D(’y) | v € G}.

We often consider the subclass of functions k € Dy for which

/k(f,n)dn =1 forall{el. (K1)
I

For such a function k, we define the continuous linear operator K : B> (I) — B°°(I) by

K7 = [ benstnin for g e, (2.1)

Note that this formula extends the domain of definition of K to the space of (Lebesgue)
measurable functions f : I — R which are integrable. Associated with this operator,

we define the compact linear operator K : L?(I) — L?(I) by

K1) = / RE ) f(n)dn  for f € LA(D), (2.2)

As usual and in the above formula, we often identify elements of L?(I) with measurable
functions on I, the square of which are integrable. The precise meaning of (2.2) is the
following: for function f : I — R which is measurable and such that |f|? is integrable,
let

[f] :={g: I — R | g measurable, g(§) = f({) a.e. £ € I}.

With this notation, K is defined by

K[f] = [Kf].

By hypothesis (K1), the operator K has unity as its eigenvalue and the function
1 € L*(I) defined by 1(£) = 1 as a corresponding eigenfunction. By the Perron-
Frobenius theory, we see that the kernel Ker (I — K) is one-dimensional, i.e.,

Ker (I — K) = span {1}.

(See the proof of Lemma 5.2 in section 6.)



By the Fredholm-Riesz-Schauder theory (see, e.g., [8]), the kernel Ker (I — K*),
where K* denotes the adjoint operator of K, is a one-dimensional subspace of L?(I).
Hence, there exists a unique vector » € L*(I) such that

/r(f)k(ﬁ,n)df =r(n) ae nel, (2.3)

1

/r(g)dg = 1. (2.4)

I

When we regard the vector r as a function, we may assume by replacing r by the
function defined by the left hand side of (2.3) if necessary that r € B>(I) and that

/ r(EVk(€,n)dE = () forall n € 1. (2.5)

1

Moreover, by the Perron-Frobenius theory, we see that r(£) > 0 for all £ € I. Then

form (2.5) we get
kolIl <r(€) < ky|I| for & e 1. (2.6)

By the Fredholm-Riesz-Schauder theory, there is a bounded linear operator S :
{r}+ — {1}+, where B! denotes the orthogonal complement of B in L?(I), such that

Sf—KSf=f for fe{r}t. (2.7)
For any integrable function h : I — R, we define
(b = {r e8| [ (e =0
Associated with S, we define a continuous linear operator S : {r}+° — {1} by

Sf=f+Kg, withge S[f].

Here note that Kg does not depend on the choice of g € S[f] and that for f € {r}+>
and g € S[f],

12
Ko@) < [ k& nlamlan < ( / |k-(s,n>|2dn) 1517111
I I
<l 11720801 F N < o TSI Tl

where || fll2 = (/; [£(€)[2de)""*.
Now, (2.7) reads

(I-K)Sf=f forfe{r}t=. (2.8)



Let H € C(R"™) ® B(I) satisty (D2) for some ({wgr},{Lr}) € G2 and

/I Hp, &)r(€)de =0  for p € R, (H1)
We define a € C(R") @ B(I) by

Observe that if, in addition, we assume that H € C"™(R"™) ® B(I) for some m € N
and that for each R > 0 there are a constant C'r > 0 and a modulus wg such that for
any multi-index o = (o, ..., @) € Z7} with a; + -+~ a;,, <,

|DyH(p,&)| < Cr for (p,§) € B(O,R) x I, £ €1, (2.10)
Dy H(p,§) — DyH(q,€)| <wr(lp—gq|) forp,qe B(O,R), {€I, R>0, (2.11)

and if we set f(p,&) = SH(p,-)(§) for (p,§) € R™ x I, then f € C"™(R"™) ® B(I) and
furthermore for each R > 0 there exist a constant Mz > 0 and a modulus g such that
for any multi-index o € Z"}, with oy +--- + o, < m,

Dy f(p,§)] < Mr  for (p,&) € B(O,R) x I, R >0, (2.12)
Dy f(p, &) — Dy f(4,6)| < pur(lp—gql) forp,qe B(O,R), €I, R>0. (2.13)

In addition to (D2) and (H1), we assume that H € C'(R") ® B(I) and that H
satisfies (2.10) and (2.11) with m = 1. We define A: R" x I — 8" and A : R" — S"
by

Ap.&) = 5 (DyH(p, ) @ Dya(p,€) + Dyalp, €) © DyHP,E),  (2.14)
A(p) = /Ir(ﬁ)A(p,E)dE- (2.15)

The components of the matrix-valued function A belong to C(R™)®B(I). Also, in view
of (2.13), we see that A is continuous on R™. We claim that A(p) is a non-negative
definite matrix for any p € R™. To see this, we first observe that

D,H(p,§) = Dpa(p,&) — /Ik(ﬁ,n)Dpa(p, n)dn for all (p,&) € R™ x I.
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Let y € R™ and compute that for p € R"”,

(Alp)y, )
— [ € (D H(p. &), y)(Dyalp, ). y)de
I
- /I H€)(Dyalp, €), y)dé — / /I . n)(Dyap. n), y)(Dyalp. €), y)dédn
> / HE)Dyalp, €),y)de

//le \Dya(p:).9) dﬁdn 1 2 //le Dpa(p,f),y>2d§dn>1/2

which was to be proven. Here and henceforth we write (p, q) for the Euclidean inner
product of p,q € R™.

Let 2 C Ry and (v, M) € Gy. We denote by U (v, M) =U(2 x I;v, M) the set of
functions v € C(2) ® B(I) such that

|u(m,t,§)—u(y,s,§)| < V(|w_y| + |t_5|) (Ul)
u(z,0,8)| < M (U2)

for all (z,t) € Q and £ € I. We denote
U=U xT) = JUN) | X e G}
We write
UDX L) =URQXLANNCEQXT), U(QUxT)=UQXxT)NC(Q xI).
We denote by U™ (2 x I) the set of those functions u on Q x I such that for each
(x,t) € Q the function u(z,t,-) is Borel measurable and integrable in I and for each

¢ € I the function u(-, £) is upper semicontinuous in . Weset U~ (Qx ) = —UT(Qx1I).

Next, we give the definition of viscosity solutions of (E).

Definition 2.1. Let Q C Q~ be an open subset and (k,H) € Dy x Dy. (i) We call
u € UT(Q x I) a viscosity subsolution of (E) in Q x I if whenever ¢ € C1(Q), € € I,
and u(-, &) — ¢ attains its local mazimum at (Z,t), then

ee(#.1) < H(Dp(i, 1), ) + / B(E, m)lu(, £, ) — u(@, £, €)]dn.
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(ii) Similarly we call w € U™ (2 x I) a viscosity supersolution of (E) in Q x I if
whenever ¢ € CH(Q), € € I, and u(-,€) — ¢ attains its local minimum at (&,1), then

oeld,1) > H(Dp(#,1),6) + / B(E ) u(@, £n) — u(@, 4, €)]dn.

(iii) Finally, we call uw € C(Q) @ B(I) a viscosity solution of (E) in Q x I if it is
both a viscosity sub- and supersolution of (E) in  x I.

For the definition of viscosity solutions of (E)q, we use the standard definition, for
which we refer to [1].

Now, we state our main results.

Theorem 2.2. Let (k,g,H) € D. Then there is a unique viscosity solution u €
U(Rx x I) of (CP).

Of course, u € U(R~ x I) is defined to be a viscosity solution of (CP) if it is a
viscosity solution of (E) in Q~ % I and it satisfies the initial condition: u(zx,0,§) = g(z, &)
for all (z,£) e R"™ x I.

Theorem 2.3. Let k € Dy, g € BUC(R"), and H € CY(R™")®B(I). Assume that (K1)
and (H1) hold and that (2.10) and (2.11), with m = 1, hold for some ({wgr}, {Cr}) € Ga2.
Then there is a unique viscosity solution u € BUC(R«) of (CP)y.

The assumptions on £ and H in the above theorem are made just to make sure
that the function A is continuous on R™.

Theorem 2.4. Let (k,g, H) € D. Assume that (K1) and (H1) hold and that H satisfies
(2.10) and (2.11), with m = 1, for some ({wgr}, {Cr}) € Ga. Set

3(z) = / r©)g(e, e forz € R, (2.16)

I

Let u® € U(Rx % I) be the viscosity solution of (CP).. Let u € BUC(Ry) be the
viscosity solution of (CP)q with g in place of g. Then, for each 6 € (0,1),

i sup{[u (2. 1,€) — u(r 1) | (2,1,€) € R* x [5, 67 x I} = 0
In addition, if g(x, &) is independent of &, then for each T > 0

lim sup{fu‘ (z,£,€) = u(e, )] | (2,t.€) € R x [0, 7] x I} = 0.

We remark here that in case when |I| =1 and k(§,n) = 1, we have
r(¢) =1, S=1:{1}1> = {1},
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and hence
Aw) = [ DH (&) © D, H(p. ).

In general, it is rather difficult to find an explicit formula for A.
Another remark we make here concerns the finite system

. 1 . 1 & . .
ui(az, t) = EHZ(Duz(aj, t)) + 5_2 Zcij (uj (aj, t) — uz(x, t))
j=1
for (z,t) € Qr, i =1,...,m. (2.17)

Here m € N, H; € C(R"), with ¢ € {1,...,m}, and ¢;;, with i,j € {1,...,m}, are
positive constants. This system can be regarded as a special case of (E).. To see this,
we set

I=10,1),

and

k(&) = ¢y for (§,m) € [(i = 1)/m,i/m) x [(j —1)/m,j/m), i,j € {1,...,m}.

For given initial data g* € BUC(R™), with i € {1,...,m}, defining the function g on
R"™ x I by

g(z,6) =g'(x) forx € R", £€(i—1)/m,i/m), and i€ {1,...,m}

and solving (E). (see Theorem 2.2), because of the uniqueness of viscosity solutions
of (CP). (thanks to Theorem 2.2), we observe that the viscosity solution u®(z,t,&) of
(CP). is piecewise constant as a function of ¢ and indeed it is independent of £ for
€€ |(i—1)/m,im) and for all i € {1,...,m}. Furthermore, defining functions u!, ..., u™
by

u'(x,t) = uf(x,t, (i —1)/m) for (z,t) € Ry, i € {1,...,m},

we observe that {u’} is a viscosity solution of (2.17). Accordingly, Theorem 2.4 above
recovers the asymptotic result [3, Theorem 3.2] for systems of first-order PDE although
the generality here is slightly different from that in [3].

3. COMPARISON THEOREM

In this section we establish the following theorem.

Theorem 3.1. Let T € (0,00) and (k,H) € Dy X Dy. Let u € UT(Qr x I) and
v €U (Qr x I) be, respectively, a viscosity subsolution and a viscosity supersolution of
(E) in Qr x I. Assume that w and —v are bounded above on Qr x I and that

lim sup{u(z, t,£) —v(y, 5,) | (z,t,9,5) € Qr, lz—yl <,
t,se€ (0,r), £€I}<0. (3.1)



Then u < v in Qp X I.
Proof. By adding v and the function : (z,t,&) — /(T —t), with € > 0, we may assume

that
lign sup{o(a,t,€) | (2,€) € R" x I} = o0 (3.2)
and that v is a viscosity supersolution of
Ut(xa tv 5) — KR = H(D’U(QZ, tv 6)7 £)+/ k(gv 77)[”(% tv 77) - ’U(ZL‘, tv 5)]d77
I
for (x,t,6) € Qr x I (3.3)

for some constant pu > 0.
We suppose that 0y := sup{u(z,t,&) —v(z, t,€) | (z,t,§) € Qr x [} > 0 and will

show a contradiction.
For o > 0 and § > 0 we consider the function

q)(l', taya Sag; «, 5) = u(x, t: 5) - U(yv S, 6) - oz|x - y|2 - O[(t - 8)2 - 5|CE|2

on Q3 x I.
For ao > 0, 6 > 0 set

0(a,0) = sup{®(z,t,y,s,&a,0) | (x,t,y,s) € R%, cel}.

It is easy to see that the limit

0 := lim lim 0(«,?)
a—00 6\ 0

exists and 6 > 0y > 0.
We note that for (x,t,y,s,£) € Q% x I, if ®(z,t,y,s,&a,0) > 0, then

alr —y]2 +alt —8)? 4+ 6|z)* < sup u+ sup (—v), (3.4)
QrxI QrxI

Fix any 8 € (0,0/2). By the definition of 6, there is a constant oy > 0 and a
function dq : [, 00) — (0, 1) such that for any o > ag and § € (0, dp(cv)),

B(a, 8) > 0 — 25.
Fix such an o > ap and a § € (0,0p(«)). Then fix a £ € I so that
sup{®(z,t,y,s,&0,0) | (z,t,y,5) € QF} > 0(a,8) — .
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Noting that 6(a,0) — 8 > 6 — 23 > 0, using (3.2) and assumption (3.1), and replacing
ag by a larger number if necessary, we may assume that the function ®(x,t,y, s, §; «, d)
of (z,t,y,s) € Q% attains a maximum at some point (&, £, J, §).

Observe from (3.4) that §|2|? is bounded as 6§ N\, 0. Observe as well from (3.5)
that

u('%atAv 77) - U(@A/, §777) - 6 < U(Lf?,tA, 5) - U(Q, 375) for all ne I (36)

Now, since u is a viscosity subsolution of (E) in Qp x I and v is a viscosity
supersolution of (3.3), we obtain

2a(i =) - 2 H(2a(@ = ). + | KEm) 0 5.0) ~ o3 5.)dn
From the former of these together with (3.6), we get

20(t - 8) < H(2a(& — ) +202,8) + /1 k(&,m)(v(, 8,1) —v(9,5,§) + B)dn.

Hence we get
p < HQ2a(2 — g) +202,§) — H(2a(2 — §),§) + ﬂ/lk(ﬁa n)d.
In view of (3.4), reselecting ¢ if necessary, we may assume that
H(2a(% — §) + 202, §) — H(2a(2 — 9),§) < 5.

Then we obtain

p< 1+ [ ke
I
Since # € (0,0/2) is arbitrary, this yields a contradiction, which completes the proof.
[]
4. EXISTENCE AND STABILITY THEOREMS

In the following discussions it is convenient to introduce the Cauchy problem for
the PDE

(

(E) ut(w,t,ﬁ)=H(DU(w,t,§),€)+/Ik1(€,n) (uz,t,m) = ul(z,t,€)), dn
+/Ik2(£,n) (u(z,t,n) —u(z,t,€))_dn  for (2,t,€) € Qoo X I, (CP)

( w(,0,) = g(x,§) for (z,8) € R" x I,
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where r, and r_ denote the positive and negative parts of r € R, respectively, k1 € Dy,
and ky € =Dy = {—k | k € Dp}. We remark here that PDE (E) is the special case of
(E) having k, = k and ko = —k.

Definition 2.1 does not cover equation (E), but viscosity sub-, super-, and solutions
of (E) are defined in the same spirit as those of (E).

‘We use the notation:

~

7/)\0 = Do X (—Do), 2/5 = 7/)\0 X Dl X DQ, ﬁ(’)/) = 730 X Dl(')/l) X DQ(’)/Q),
De(7) =D(y) N (CUI x )2 x C(R" x I)?), D,=DnN(C(IxI)*xCR"xI)?),

where v = (711,72) € G.
Before going into the discussions about stability of solutions of (E), we state the
following theorem. We leave it to the reader to check that a straightforward adaptation

of the proof of Theorem 3.1 works in the present case.

Theorem 4.1. Let T € (0,00) and (ki, ks, H) € Dy x Da. Let u € UT(Qr x I) and
v €U (Qr x I) be, respectively, a viscosity subsolution and a viscosity supersolution of
(E) in Qr x I. Assume that w and —v are bounded above on Qr X I and that

lim sup{u(®,,§) — v(y, 5,£) [ (. £,y,5) € Q. lz—yl <,

t,se€ (0,r), £€1}<O.

Then u <wvin Qr x I.

Now, we are concerned with stability assertions for solutions of (E). We remark

A~

that if u is a viscosity subsolution of (E), then v := —u is a viscosity supersolution
of (E)a with k1(§)7 k2(€)a and H(pa 5) replaced by _k2(§)v _kl(f)a and _H(_p7 g)a
respectively. Any assertions for viscosity subsolutions can be rephrased as assertions for

viscosity supersolutions. In this view point, we state assertions only for subsolutions.

Theorem 4.2. Let (ki, ko, H) € Dy x Dy and let Q be an open subset of Q. Let S be
a collection of viscosity subsolutions of (E) in Qx 1. Set

u(, t,€) = sup{v(e,t,€) [v € S} for (a,1,6) € 2 x I.

Assume that for each compact subset V' of Q the function u is bounded above on V x I

and that the upper semicontinuous envelope u® with respect to (x,t), i.e.,
ul(z,t,€) = lim sup{u(y, 5,) | (y:5) €2, |y —al+|s —t| <r}  for (z,1,6) € Qx I,
T

belongs to U (2 x I). Then u® is a viscosity subsolution of (E) in Q x I.
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Proof. Let (x,t,£) € Q x I and ¢ € C*(Q). Assume that u(-,£) — ¢ attains a strict
maximum at (z,t).

As in the proof of standard stability properties for viscosity solutions, we find
sequences {v;}jen C S and {(x;,%;)}jen C Q such that

(zj,t;) = (x,t) and wvj(z,,t;,&) — uu(a:,t,g) as j — oo,

and for each j € N, v;(-, &) — ¢ attains a local maximum at (x;,1;).

Then we have
ei(z;),t5) SH(Dw(wjatj)7§)+/Ik1(§ﬂ7) (vj(@;,t5,m) —vi(25,t5,€)), dn
+ [ Raleom) sy tm) = a5, €0)
<H(Dp(ejs ). + [ kal€on) (ot = vy(as,5,). do
+/Ik2(§,77) (W™ (x5, t5,m) — v (), t5,€)) _dn

for all j € N. Sending 7 — oo and using Fatou’s lemma, we get
¢i(,t) <H(Dp(x,t),€) + /Ikl(ﬁ, n) (uf (2, t,n) = u(z,1,€)), dn

+ / Fa(€,) (i (2, m) — ub (2, 1,€)) _ dn,

I
completing the proof. [l

The following theorem is a stability assertion similar to the above theorem formu-
lated in a flavor of standard viscosity solutions theory, which can be proved in a way
parallel to the above theorem with minor modifications.

Theorem 4.3. Let (k1,ko, H) € Dy x Dy and let Q be an open subset of Q. Let S
be a collection of viscosity subsolutions of (E) in Q x I. Assume that ky1,ks € C(I) and
H e CR" xI) and that S C USC(R™ x I), i.e., every v € S is upper semicontinuous
on R" x I. Set

u(z,t,&) = sup{v(x,t,§) |ve S}t for (z,t,&) € Qx 1.

Assume that for each compact subset V' of Q) the function u is bounded above on 'V X I,

and let u* be the upper semicontinuous envelope of u with respect to (z,t,§), i.e., for
(z,t,6) € @ x 1,
u(,t,€) = lim sup{u(y, s,0) | (y,5,0) € A x I, [y —a +]s —t[ +[n— €] <7}

13



Then u* is a viscosity subsolution of (E) in € x I.

Theorem 4.4. Let (ky,ko, H) € ﬁo x Do and let  be an open subset of Q. Let
{u;}jen be a sequence of wiscosity subsolutions of (E) in Q x I. Assume that the
sequence {u;} is non-increasing and convergent pointwise, i.e,

Uj(l',t,g) 2 Uj+1($,t,£) fOT‘ all (xvtaf) € x Ia ] € N:

and
u(z,t,&) = lim u;(x,t,8)  for (z,t,) € Ax I
j—o0

for some function u : Q — R. Assume that for each compact subset V of Q) the function
uy is bounded above on V x I and that for each (z,t) € § the function u(x,t,-) is
integrable in I. Then u is a viscosity subsolution of (E) in Q x I.

Proof. First of all, we remark that u € U+ (2 x I).

Let (z,t,£) € Q x I and ¢ € C'(Q). Assume that u(-,&) — ¢ attains a strict
maximum at (z,t).

Fix a compact neighborhood V' C 2 of (z,t), and for each j € N let (z;,t;) € V
be a maximum point of u;(-,§) — ¢ over V. By taking a subsequence if necessary, we
may assume that (z;,t;) — (y, s) for some (y,s) € V as j — oo.

Since

max(us(- €) — ¢) > max(u(~€) — ¢) forall jEN,

we have

max(u(, §) = ¢) < (25,15, €) = (25, 15) < um(2),t5,€) — (25, t;)  ifm <j. (4.1)

Sending j — oo, thanks to the upper semicontinuity of wu,, (-, §), we get

max(u(-, §) = ¢) < um(y, s,€) = ¢y, 5) forallm €N,

and furthermore,

m‘éx(u(-, §) — ) <uly,s, &) — oy, s).

From this we see that (y, s) is a maximum point of u(-,&) — ¢ and hence that (y, s) =

(z,t).

The monotonicity of {u;} and the semicontinuity of u,(:, &) ensure that

lim Sup(uj (mjv tjv 5) - (p(xjv tj)) < lim Sup(um(mjv tjv 5) - (p(xjv tj))

Jj—o0 Jj—oo

<t (z,t,€) — p(x,t) for m € N.

14



This yields immediately that

limsup(u;(z;,t;, &) — p(z),t5)) < ul(z,t,§) — p(z,t),

Jj—o0

and therefore, we get

lim Sup(uj(xja tjv 5) - @(mjv t])) < max(u(-, 5) - ()0) < lim inf(uj('rja tja 5) - @('rj: t]))

The latter inequality above is a direct consequence of (4.1). Thus we see that

111’11 Uj (xja tja 5) = u(a:, t, 5)

J—00

We may assume that every (z;,t;) are in the interior of V. Since u; is a viscosity

~

subsolution of (E), we have

ei(@;,t5) SH(DSO(ijj)vﬁ)Jr/Ikl(fﬂ?) (uj(@,t5,m) — uj(w;,t5,8)), dn
+/Ik2(§,77) (uj(@j,t5,m) — uj(a;,t5,€))  dn.

Hence, for j > m, we have

pe(@,t;) SH(DSD(wj,tj)aE)Jr/Ikl(Eﬂ?) (wm (s, t5,m) — uj(z;,t5,€)), dn
b [ haleom) (s tyo) = s asot5,€0)_
I

Sending j — o0, in view of Fatou’s lemma, we get

Qot(xvt) SH(DQO(I,t),f) + /I kl(fﬂ?) (um(xvtan) o U(Z‘,t,f))+ d77

+ / ko€, ) (um (£, ) — u(, £, €))_ dn.

Since u(z,t,-) is integrable in I, by the monotone convergence theorem, we obtain

oe(,t) < H(Dip(x, 1), €) + / B (€.m) (ula, £, ) — u(z, 1,€)), dn

+ / (€, ) (w1, ) — u, £, €))_ dn.

This completes the proof. [
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Theorem 4.5. Let v € G and (ky,ko,g9,H) € ﬁc(’y). Then there is a unique viscosity
solution u € U.(R~,) of (CP) satisfying the initial condition, u(xz,0,£) = g(x,&) for
(x,€) € R™ x I. Moreover there is a A\ € Gy depending only on ~y for which u € U.(N).

The uniqueness and existence assertion above seems to be somehow a standard
observation. See, for instance, [5, 1, 2] for related topics.

Proof. The uniqueness assertion follows from Theorem 4.1.

We may utilize the standard Perron method in viscosity solutions theory, in order
to show the existence of a viscosity solution of (CP).

To do this, first of all fix v = (w, L, {wr}, {Lr}) € G so that (g, H) € D(y).

Fix € € (0,1), and choose a function 1. € C*([0, 00)) so that

w(r)AN(2L) <4 (r)<2L forr>0, 0<4¢.(r)<B. forr>0,
P.(0)=0, and .(0)<e,

where B, is a constant depending on €. Then we have

g(z,6) < gy, &) +Ye(lx —y|) forz,yeR™, £c€1.

Let y € R™ and set
ht(zyy) = ve(|z —y|) for z € R™,

and note that
Dhl(z;y) € B(0,B.) for all z € R™.

We set,

fHa,t,&e,y) = gy, &) + ht (x5y) + Mot for (2,t,€) € Roo X 1,

~

where M. = Lg_+2Lk1|I|, and observe that f(-;e,y) is a viscosity supersolution of (E)
and that g(z,§) < f*(2,0,§;¢,y) and f(z,0,&¢6,2) < g(,§)+¢ forall (z,£) € R*x 1.
Define w™ : Ry X I — R by

wh(2,t,8) = inf{f"(z,t,§e,y) e € (0,1), y € R"}.

It is easy to see that w™ is upper semicontinuous in R, X I, that w™(x,0,&) = g(z, &) <
wt(z,t,€) for (z,t,€) € Ry x I, and, by Theorem 4.3, that the lower semicontinuous
envelope (wh), := —(—w™)* is a viscosity supersolution of (E).

Similarly, we define w™ : R X I — R by

w_(x,t,f) - sup{f_(:v,t,f; Evy) | SRS (07 1)7 Yy e Rn}v

16



where
f (8,6 e,y) = g(y, &) — hd (x;y) — Met,

and observe that w™ is lower semicontinuous in R, X I, that w™(z,0,&) = g(z,&) >
w=(z,t,€) for all (z,t,&) € Roo x I, and that (w™)" is a viscosity subsolution of (E).
Now, set

~

u(zx,t,&) = sup{v(z,t,§&) |v a viscosity subsolution of (E),
(w_)* <oy < (w+)’k in Roo x I}
for (z,t,£) € Roo X 1.
Note that the map F': B>°(I) — B>(I) defined by

F)(€) = / (€, 1) () — $(€)) 4y + / k(€. 1) () — H(€))_dy

is quasi-monotone in the sense that for any 1,19 € B®(I) and & € I, if ¢; < 1pg in [
and 11 (§) = ¥2(€), then F(11)(§) < F(¢2)(€). Using this property, as in the standard
proof of the Perron method (see [1, 5]), we infer that u, is a viscosity supersolution

~ ~

of (E). We see as well by Theorem 4.3 that u* is a viscosity subsolution of (E). By
Theorem 4.1, we see that u* < u, in Ry, X I, which shows that u € C(R x I) and it

~

is a viscosity solution of (E).
Next, we want to show that v € U(v, M) for some modulus v and a constant
M > 0. It is clear that

u(z,0,8)] = lg(z,&)[ < L for (z,£) e R" x I.

Noting that for each y € R", the function w(z,t,&) = u(z + y,t,&) + w(|y|) of

~

(z,t,&) is a viscosity solution of (E) and that
w(z,0,8) = g(z,§) < g(z+y,8) +w(y]) < w(z,0,§) for (z,§) eR" x I,
we apply Theorem 4.1, to conclude that
u(z,t,8) —u(z +y,t,8) <w(lyl)  for (2,1,§) € Roo X I.
That is, we have
u(z,t,§) —u(y,t,§)| <w(|z —y[) forz,y e R", (£,£) €[0,00) x I.

In view of this uniform continuity of u, by using the same construction as w™ and
w™, we deduce that for each ¢ € (0, 1),

lu(z, t+ 5,&) —u(z,t,8)| <e+ M.s for (z,t,€) € Roo X I, s >0,

17



where the choice of M, is same as before.
Setting
p(r) =inf{e + M.r | e € (0,1)} for r >0,

we see that p is a modulus and
u(a,t,8) —u(y,s,&)| <w(lz—yl) +u(jt —s|)  for (z,y) € R", t,s €[0,00), £ € I.

Thus we conclude that u € U(w + p, L). [

The arguments in the last half of the above proof applied to viscosity solutions of

~

(E), yield the following theorem. We leave the details of its proof to the reader.

Theorem 4.6. For each v € G there is a A € G such that if (ky, ks, g, H) € ﬁ(’y) and
u € U s a viscosity solution of (E) which is bounded on Ry x I for each T' > 0, then
uelU(N).

In order to prove Theorem 2.2, we utilize an argument concerning monotone classes
of functions. Let €2 be a set and F be a collection of functions f : 2 — R%. We call F a

monotone class of functions if whenever {f;};en C F satisfying either f;(z) < f;11(x)
for all (z,j) € @ x N or f;j(z) > fj+1(z) for all (z,j) € @ x N, and

lim f;(z) = f(z) forallz e

for some f: Q — RY, then f € F. Here the inequalities f;(z) < fj+1(z) and f;(z) >
fj+1(z) should be understood in the component-wise sense. It is clear that if A is a
nonempty set and for each A € A, F) is a monotone class of functions on €2 with values
in R4, then so is NyeaFy. This observation allows us to define, for any nonempty
collection G of functions on 2 with values in R4, the smallest monotone class of functions

containing G. We denote by m(G) the smallest monotone class of functions containing
g.
Lemma 4.7. For any v € G, m(D.(y)) = D(7).

Assuming the validity of this lemma, whose proof will be given in section 6, we
now proceed to state and prove the following theorem, from which Theorem 2.2 follows
immediately.

Theorem 4.8. Let (ki,ko,9,H) € D. Then there is a unique viscosity solution u €
U(Rs x I) of (CP).
Proof. Fix v = (w, L, {wr}, {Lg}) € G. Define M as the subset of D(v) consisting of

those (k, g, H), where k = (kq, k3), for which ((/ﬁ’) has a viscosity solution u € U.
By Theorem 4.5, we see that

D.(y) € M. (4.2)
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We intend to show that M is a monotone class of functions. To this end, let
{(k7,g7, H)}jen C M satisfy either

K(En) <KTHEM), ¢/ (x,8) < g™ (x,6) and HI(p,&) < HIT'(p,&)  (4.3)

forall z,pe R™, {,nel,and j € N, or

K(&n) <K En), ¢(x,8) > ¢ (2,€) and  HI(p,&) > H ™ (p,&) (4.4)

forall z,pe R" ¢,nel, and j € N, and
k(&) = lim K (&,m), g(2,6) = lim ¢’(2,€), and H(p,€) = lim H/(p.€) (4.5)

forall z,p € R™ and &, n € I and for some functions k : 12 — R?and g, H : R"xI — R.

Noting that the pointwise limit of a sequence of Borel functions is also a Borel
function, we see easily that 73(7) is a monotone class of functions. In particular, the
triple (k, g, H), where k, g, and H are defined by (4.5), belongs to 23(')/)

Observe as well that for any A € Gy, the set U()) is a monotone class of functions.

To show that M is a monotone class of functions, we fix a sequence
{(k7,g7, H)} jen C M satisfying either (4.3) or (4.4), and for each j € N let v/ € U
be the unique viscosity solution of (C/Jf’), with k7, g7, and H’ in place of (ki1, ks), g, and
H, respectively.

We first consider the case when (4.3) is satisfied. Since u/ is a viscosity subsolution
of (E) with (kq, k2) and H replaced by k*! and H*!, respectively, by Theorem 4.1 we
have

ul(z,t,8) < u T (x,t,€)  forall (x,t,&) € Ry x I, j €N.

Theorem 4.6 guarantees that there is a A € G such that u? € U()) for all j € N.
Since U () is a monotone class of functions, we see that the pointwise limit

u(z,t,€) = lim v’ (x,t,€) for (z,t,€) € Ry x I

J—0

exists and this function u belongs to U(\).

By the stability results, Theorems 4.2 and 4.4, of viscosity solutions of (E), we see
that u € U is the unique viscosity solution of (61\3), with (k1, k2) = k, and conclude that
(k,g, H) € M. (We remark here that for each j € N u/ is a viscosity subsolution of (E),
with k7 and H’ in place of (ki,ks) and H, respectively, and that for each i,j € N, if
i < j, then v/ is a viscosity supersolution of (E) with (ki, ko, H) replaced by (k?, H*).)

Arguments parallel to the above guarantee that (k,g, H) € M, where k, g, and
H are defined by (4.5), also in case when {(k7, g7, H’)};en satisfies (4.4). Thus we see

that M is a monotone class of functions.
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By Lemma 4.7, we know that m(ﬁc(”y)) = 13(7) Furthermore, since M is a
monotone class of functions, in view of (4.2), we see that m(D.(y)) C M. Hence, we
have

D(y) € M C D(v).

The last inclusion follows from the definition of M. Thus we conclude that M = 13(7)
and by the definition of M that for any (k,g, H) € D(v) there is a viscosity solution
u € U of (CP), with (k1, ko) = k, which was to be proven. [

5. PROOF OF THEOREMS 2.3 AND 2.4

Outline of proof of Theorem 2.3. Since the function A is continuous and for each p € R™
A(p) is non-negative definite, using the standard techniques to deal with second order
parabolic equations (see, for instance, [1]) and the arguments for proving Theorem 3.1,
we see that there is at most one viscosity solution of (CP)g. Indeed, we get a comparison
theorem similar to Theorem 3.1. By applying the standard Perron procedure, we see
that there exists a viscosity solution u € C'(R+) of (CP)y which is bounded on R.
The comparison principle for (CP)q together with translation invariance in the space
variable z yields the uniform continuity of u(x, t) in . More precisely, we find a modulus
w1 such that

lu(z,t) —u(y,t)] <wi(Jz —y|) forall z,y e R™, t>0.

Then, by constructing barrier functions and using the comparison principle, we see that

for some modulus ws,
|u(z,t) — u(z, s)| <ws(|t —s|) forall z e R, t,s€[0,00).

Thus we see that u € BUC(R ), completing the proof. [

Now we intend to prove Theorem 2.4.
Let (k,g,H) € D, g, {u®}cc(0,1), and u be as in Theorem 2.4.
Note that, by (K1), (E). reads

i (o, €) = ZH(D (0,4,€).)+ 5 ([ € mut s tmdn - o.1.6))
for (z,t,£) € R™ x (0,00) x 1.

We set h(z, &) = g(x, &) — g(z) for (x,£) € R™ x I, and note that

/T(ﬁ)h(m,ﬁ)dﬁ =0 forallze R"

I
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To prove Theorem 2.4, we use the so-called relaxed limits. We define
ut(z,t) = liir(l)sup{ua(y, s,m) | (y,8,m) € Roo X I, |y —z| +|s —t| <r}

u (1) = L int{u®(y,5,7) | (95.7) € Roo x Ly =l 4[5 — 1] < 1}

for (x,t) € Ry x I.

Lemma 5.1. There is a modulus p such that

g(x) - p,(t) < ui(x’t) < u+(l‘,t) < g(x) + M(t) for (mvt) € Q-

In addition, if h =0, then the above inequalities hold for all (x,t) € Ro.
Lemma 5.2. There are constants 6 > 0 and Cy > 0 such that for any h € {r}+>,

le!E=Dp|| < Coe % ||h||oe  for all t > 0.

We shall give a proof of this lemma in the next section and, assuming the validity
of Lemma 5.2 in this section, we continue the proof of Theorem 2.4.

Proof of Lemma 5.1.  Using the standard mollification, for each v € (0,1) we may
choose functions g, € C*(R™) and h., H, € C*(R") ® B(I) such that

9, @)V hy(2,8) < C, | Dgy (@) V ID?gy ()]l V [ Dhy(2,8)| < C,
|Hy(p, )| V [DH, (p,§)| < L,

for all (z,p, &) € R®" x B(0, R) x I and R > 0 and for some constants C' > 0, C;, > 0,and
Lr > 0. Here C does not depend on either v or R, Cy does not depend on R, but may
depend on v, etc. We may assume further that

[r@n@ai=0 forzerr, 5.1)

I

[r@mmei=0 wrperr, (52)

I

and

9(,6) < g,(@) + hy(2,€) and  gy(2) < g(2) +o(y) forall (z,6) €R" x I,

where o(v) — 0 as v\, 0,
Fix v € (0,1). In what follows we write g and h for g, and h., respectively. This

abuse of notation hopefully does not cause any confusion.
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Fix € € (0,1), and we define f. € CY(R""!) @ B(I) by
fe(z, t,-) = es%(K_I)h(x, ) for (z,t) e R" x R.

Of course, we have

0 1

el — “(K_—T i

o Je(,,6) = 5 (K ~ Do(a,t,)(6)
fe(2,0,8) =h(z,§)

for all (z,t,£) € R™ x R x I. By Lemma 5.2, since (5.1) holds, we have

S5t

1f-(@,t, )| < Coe™ | h(x, )||oo < CCoe™ <2,

St

||Df8(aj7 ta ')Hoo S \/5070067 €2
for all (z,t) € R™ x [0, 00), where § and Cj are positive constants from Lemma 5.2.
We set

pe(z,-) = SH:(Dg(z), )
in view of (5.2), and
’UJ(.’IZ‘, tv 5) = g(.’]ﬂ‘) + fe(mv t,f) + Blt + 5(906(337 g) + BQ) + €B3(1 - e_g_é) (53)

for (z,t,€) € Ry x I, where By, By, and Bj are positive constants to be fixed later.
Recall that
(I — K)pe(z,-) = H.(Dg(x),:) forxzeR",

and
Dy.(z,") = S (D*g9(x)D,H.(Dg(x),-)) for x € R™
The last identity guarantees that
| Do (z,€)| < Cy for (z,8) e R" x T
for some constant C'; > 0 independent of e. We may assume as well that
lpe(z, &) < Cy for (z,8) e R™ x I.

We calculate that

J = ’UJt(CE,t,f) o éH(Dw(x,t, 5)75) B ;%(

= 8%([{ —D)fe(z,t, ) (&) + B + 2336_

_ éH(Dg(w) + Dfo(z,t,€) + Do (2, €), €)

= K = D) () + (2, ) (€)

2
=B+ By~ — JH(Dg(a) + DI.,1,6) + 2D, 6),

[ e muta,tnn - wiz.1.6)

I

t

o |on
[V

+ LH(Dg(),€)
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Noting that as € — 0,

=g
o+

H(Dg(a) + Df-(x,t,€) + eDp.(x,),€) = H(Dg(x),€) + O + ¢

o
N
N—"

we see that

0B ¢ ) ¢
J> B+ —36_5_2 —M<1 + —6_5_2)
€ €

for some constant M > 0 which does not depend on «.
We fix By = B3 = M, so that w is a viscosity supersolution of (E).. Moreover,
we fix By = C4 so that

u(x,0,8) <w(z,0,§) for (z,§) e R" x I.
It is obvious that w € U. Thus, by Theorem 3.1, we see that
ut(x,t,§) <w(x,t,) for (z,t,€) € Roo X I.
Sending ¢ \, 0, we see that
ut(z,t) < gy(x) + Mt for (2,t) € Qoo-
Writing M () for M in view of its dependence on ~ and setting
pu(t) = inf{o(y) + M(y)t [y € (0,1)}  for ¢ >0,
we get a modulus g such that
u(z,t) < g(x) + p(t)  for (x,t) € Q-
Similar arguments ensure that for some modulus p,
u” (z,t) > g(x) — p(t) for (z,t) € Quo-

In case when h = 0, we use the same function w defined by (5.3) with f. =0 and
Bs = 0 and argue in the same way as above, to conclude that

g(z) — p(t) <u(z,t) <ut(z,t) < glx) + p(t) for (x,t) € R

for some modulus p. This completes the proof. [l

Lemma 5.3. The functions u and u™ are a viscosity subsolution and a viscosity

supersolution of (E)q in Q, respectively.

We need the following proposition in the proof of Lemma 5.3.
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Lemma 5.4. There are a collection {H.}.c0,y C C*R") ® B(I) and a
({wr}r>0,{CRr}R>0) € G2 such that for each ¢ € (0,1), H. satisfies (H1) and such
that for all (z,€) € B(0,R) x I, € € (0,1), and R > 0,

|He(pa g) - H(pa £)| < wR(g)g, |DpH€(pa 5) - DpHs(pa €)| < WR(g)v

|H=(p, &) V |DpHc(p,§)| < Ch, ||D12,H€(p, ol = WRe(g)'

Proof. By the standard mollification techniques, for each ¢ > 0 we find a function
H. € D, N C?*(R™) ® B(I) such that for all (z,£) € B(0,R) x I, ¢ € (0,1), and R > 0,

|H6(p7 5) - H(pa £)| < CR€7 |DPH€(p7£) - DPH(pa £)| < CUR((‘:),

Hep, &)V Dy He(p,€)| < Cr, |D2H(p,6)] < 2,

where wp is a modulus and Cr > 0 is a constant, which can be chosen independently
of e.
Fix R > 0 and fix such wgr and Cg. Set

wr(sr)

or(r) = inf{(Crs) V wgr(sr) V |0<s<1} forr>0.

Then it is clear that oy is a non-decreasing, upper semicontinuous, real-valued function
on [0,00) and that og(0) = 0.
By definition, for each £ > 0 there is an s = s(¢) € (0, 1) such that

wR(Se)‘

or(e) +& > (Crs) Vwg(se)V .

Then the function H,(p,§) := Heo(p, €) and 65(r) = or(r) + r satisfy

|He(p,€) = H(p,€)| < Crse < e6r(),  [DpHe(p,€) — DyH(p, )| < wr(se) < Gr(e),

Bp, &)V 1Dy, 8) < O, D3 (p,8)] < 20 < 71O

for all (z,&) € B(0,R) x I and ¢ > 0. In the above inequalities one may replace 6 by a
modulus. Thus the collection {I;T e }ee(0,1) together with appropriate choice of collections
of moduli and of positive constants has the required properties. L[]

Proof of Lemma 5.3. We begin by showing that u™ is a viscosity subsolution of (E)g.
Let ¢ € C?(Qs), and assume that ut — ¢ attains a strict maximum at some point

(2,1) € Qoo
Let {H.}.c(0,1) be a collection of functions from Lemma 5.4. For € € (0,1), we
define the function ®(-, &) on Q x I by

(I)(I',t,g,é') - ’U,E(CL',t,f) - QO(CE,t) - €¢i(ajvt7£) - 52903(37775;5)7
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where

Soi(x’t’ ) :SHs(x’t’ )7

be(x’ t, ) = <DPH6(D90(33’ t), ')a D@i(xv t )>7
b (z,t) = Ir(f)be(x,t,f)df,

o5(x,t,) =8 (be(w, t,-) — b°(x, t))

for (z,t) € Q.
Note that

¢1, b°, 95 € CH Q) ® B(I),

and
Dy (x,t,-) =S [D*¢(x,t) DpHo(Dp(z, 1), -)]

%@i(% t,-) =S [(Dyi(x,t), DpH(Dp(z,t),-))]
for (z,t) € Q.

Fix a compact neighborhood V' C Qo of (Z,1). Using Lemma 5.4, we deduce that

a £
sup sup (|¢5|+ 1D + | S| + 6] + 5] ) < oo,
0<e<1V I
05 wy (&
VxI ot €

where wy is a modulus.

By the definition of u™, there is a sequence ; “\, 0 such that
Hj = sup{(I)(a:,t,§,€j) | (.’B,t) S ‘/7 5 € I} - (u+ - 90)(i'7£) as .7 — 0Q.

Then we choose a sequence of points (z;,t;,£;) € V x I such that for each j € N, the
function ®(x,t,&;,¢;) attains a maximum over V' at (x;,t;) € V and

@(xj,tj,ﬁj,gj) Z 9j — 83 (54)

j-

It is easily seen that

(xj,t;) — (2,t) asj — oo.
Since u® is a viscosity subsolution of (E). in Q~ X I, we have

1 . |
pi(zj,t5) < ;H(D%?(ﬂ?j, t;) +e; Doy (x,t5, &) + €2 D5 (x5, t5,€5), &)
J

1
+t (/ k(&5 mu (;,t5,m)dn — u® (5, 1, 5j)>

j I
+O(e;) as j— oo. (5.5)
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Note that as 7 — oo,
H(Dy(xj,t5) + ;D (x5, t5,&5) + €7 D95 (25,5, ), &)
= H.,(Do(z;,t;),&) + €5 (DpHe, (Do(x,t5),&5), Doy (z4,65,&5)) + o(e5)
= H.,(Dp(zj,t5),&5) + ;0% (25,15, &) + o(g;). (5.6)
From (5.4), we have
u (xj,t5,8) — u (z4,t5,&5)
< 5?’ + €j [ﬁﬂi] (xjvtjvg) - Qoi] (xjvtjvgj)] + 5? [@;j (xjvtjvg) - 9033 (xjvtjvgj)]

for all £ € I, 5 € N. Hence, in view of the definition of the operator S, we have

/Ik(ijﬂ?) (my, EM, n)dn — u® (wﬂ’tﬂ’gﬂ)
:€3+€j(K_I)<P1 (25, Ja')(fj)+5 (K — I)<P2 (3717 tj,) (&)
53 e He, (D(xj,t5),&5) — €5 [be (2,85, &) — (xj’tj)}

Combining this with (5.5) and (5.6), we get

(), t5) < b%(xj,t;) +0o(l) asj— oo. (5.7)
Since

b (xj,t5) = /IT(€)<DpH(D<P($jatj)7£)aDQ@(%tj)Dpa(D¢($jatj)7§)>d§+0(1)
= tr [A(Dg(zj,t;))D*o(z;,t;)] + o(1)

as j — oo, we conclude from (5.7) that

oi(2,1) < tr[A(Dp(2,1))D*p(

A

7t)]7

which shows that u™ is a viscosity subsolution of (E)o.
Arguments similar to the above prove that v~ is a viscosity supersolution of (E)j.

]

Proof of Theorem 2.4. In view of Lemma 5.1, we see that

hi%sup{u (LE,t) - u_(y, 8) | (QJ,t), (yv 5) € Qrv |'/1j - y| + |t o 5| < T’} = 0.

By Lemma 5.3, we know that u' and = are a viscosity subsolution and a viscosity
supersolution of (E)g. Thus, by using Theorem 3.1, we see that u™ < u < v~ in Q,
from which we deduce easily that as ¢ \, 0,

u(z,t,&) — u(x,t) locally uniformly in Qo X 1.

26



Since (E). and (E)q are translation invariant in z, we conclude from the above
that for any collection {y.}.c(0,1) C R", as e \, 0,

u (x4 ye, t,&) —u(z + yey, t) — 0 locally uniformly in Q. X I.
Now a simple argument by contradiction shows that, for any § € (0,1), as € \, 0,
uf(z,t,€) — u(z,t) uniformly in R™ x [6, § '] x I. (5.8)

Finally, if g(x, &) is independent of £, then (5.8) and the last assertion of Lemma
5.1 yield the uniform convergence of u®(x,t,&) to u(x,t) in Ry x I for any T' € (0, 00)
ase \,0. [

6. PROOF OF LEMMAS 4.7 AND 5.2

This section is devoted to the proof of Lemmas 4.7 and 5.2.
Proof of Lemma 4.7. Fix v € G. Since D(v) is a monotone class of functions and
D.(v) C D(v), we see that

~

m(De(7)) C D(v).

Fix @ € D(v) and will show that @ € m(D.(7)).
We write M = m(D,(7)). Given u € D(v), since

D(v) C B(I)> x B(R" x I) x B(R" x I),
we may regard u as a function : R” x R™ x I — R* and write

U(:E,p,ﬁ) = (ul(é),u2(§),u3(af,§),u4(p, 5)) for T,pc an 5 el

We first show that if {u*}ren € M and for each z € Q := R?® x I, u*(2) — u(2)
as k — oo, where u : Q — R*, then v € M, i.e., M is closed under the pointwise
convergence.

To see this, fix u € D.(y) and define

Mi={veM]|uVvve M}

Here u V v is defined by u Vv = (u; V v1,...,uq V vy), where u = (uq,...,usq) and
v = (v1,...,v4). It is easily seen that M; is a monotone class of functions and that
D.(7) C My. Hence we see that M C M and conclude that if u € D.(v) and v € M,
then u Vv e M.

We now fix v € M and define

Mo={ueM|uvve M}
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Again, it is easy to see that My is a monotone class of functions. Since ﬁc(’y) C My,
we have M C Mo, and conclude that if u,v € M, then u Vv € M.

Similarly we see that if u,v € M, then u A v € M, where u A v is defined by
UAV = (UL AV, .oy Ug A Vg).

Let {uf}ren € M and u: Q — R*. Assume that for each z € ,

For each k,l € N, we have
uFti=uF vauFtvcovdf Tt e M.

For each z € Q the sequence {u*!(2)};en is bounded and non-decreasing. Therefore,
the limit
vF(2) := lim uP!(2)

l—00

exists for any z € () and £ € N. Since M is a monotone class of functions, we have
vk € M for all k € N. Noting that for each z € Q the sequence {v*(2)} is non-increasing
and converges to u(z), we see that u € M. Thus we conclude that M is closed under
the pointwise convergence.

It is enough to show that 4 can be approximated, in the pointwise sense, by a
sequence of functions in M.

Set X = R? x C(R™) x C(R™). Define the distance d on the space X by

d(f,g9) =fi — g1l V [fo — g2| V sup (maX_ | f3(2) — g3(z)| V max | fa(p) — g4(p)|> At
€N Mz|<i |p| <3

where f = (f1,..., f1) and g = (91, ...,94). Let v = (w, L,{wr},{Lr}) and define D as
the set of those f = (fi, ..., f1) € X which satisfy

f1 € [ko, k1],  f2 € [—K1, —FKol,
[fs(@)| <L, |fs(z) = f3(y)] S w(lz —yl),
|fa(p)] < LR, [fa(p) — fa(q)] < wr(lp — al)

for all z,y € R", p,q € B(0,R), and R > 0.

Note that for u € B(R?*" x I, R*), we have u € D(v) if and only if u(-,&) € D for
all £ € .

It is standard to see that D is a compact subset of the metric space (X, d).

Fix € > 0. We choose a finite sequence {f*}I | C D so that

N

D C U By,
k=1
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where
Be={feX|d(f f*) <e}.
We define ¢ : I — {1,..., N} by

p()=j ifandonlyif a(-,&) € B; and (&) € B; for all i < j,

and claim that ¢ € B(I).

To see this, we need to show that the sets Cy := {{ € I | 4(-,&) € By} are all
Borel subsets of I. Fix any k € {1, ..., N} and a dense subset {y;};en of R". Observe
that for £ € I, u(-,£) € By if and only if

for all i, j € N satisfying ic < 1 and |y,;| < ¢. Since for each j € N the functions 1,
U2, u3(y;, -), and U4 (y;, -) are Borel measurable, we see that the sets of £ € I defined by
each of inequalities above are Borel subsets of I and hence that Cj, is a Borel subset of
I.

Now, we define the function F € C(R?" x R, R?) by

(k+1—8)fF2)+ (s—k)ff(2) ifselk,k+1]and 1<k <N,
F(z,5) =< fl(2) if s <1,
N (z) if s > N.

Noting that F(-,¢(£)) = F(-,k) = f* for all £ € C \ Uj<xC; and k € {1,..., N}, we
deduce that
A(F (-, p(€)),0(,€)) < e forall €€ 1.

Since F'(-,s) € D for all s € R by the definition, we infer that the function F o ¢
defined by F o ¢(z,&) = F(z,9(§)) is an element of M. Indeed, if we set

B={h:I —-R|Fohe M},

then C(I) C B and B is a monotone class of functions. Therefore, any Borel measurable
function on I is an element of B and, consequently, F' o ¢ € M. Here the monotonicity
of B is a consequence of the fact that M is closed under the pointwise convergence.

Thus, we see that there is a sequence {u*}ren C M which converges to 4 in the
metric d, i.e., in the topology of locally uniform convergence on R?" x I. Since M is
closed under the pointwise convergence, we conclude that 4 € M, which completes the
proof. [
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Proof of Lemma 5.2. 1In this proof we regard L?(I), B> (I), etc. as the vector spaces
with complex scalar field.
We first prove that

if 4 € C is an eigenvalue of K and |u| > 1, then p = 1. (6.1)

To show this, we fix u € C and ¢ € L?(I) so that |u| > 1, ¢ # 0, and K¢ = pu¢.
Identifying ¢ with the function h defined by

(&) =u‘1/1k(§,n)g(n)dn,

where g is a function in the equivalence class ¢, we may regard ¢ as a function in B*(I)

and assume that

no(€) = K() forall € € 1.

Set M = sup; |¢|. We claim that |p(§)| = M a.e. £ € I. In order to check this,
we fix e > 0 and 7 > &, and choose £ € I so that |¢(§)] > M — e. Observing that
19(&)| < K|o|(€) and setting B, = {£ € I | |p(€)] < M — ~}, we calculate that

0< / B(E ) (6(m)] — M +e)dy

< [ meme—an+ [Kemedn <~ = ol By +
5

Sending ¢ — 0, we see that |B,| = 0 for all v > 0, which shows that |¢(§)| = M a.e.
el

By multiplying ¢ by M ! if necessary, we may assume that M = 1. We fix é el
so that |p(€)] = 1. We may assume by multiplying ¢ by ¢(€), the complex conjugate of
d(€), that ¢(€) = 1. Define a € B(I) by a(£) = Rep(€). It follows that a(f) = 1 and
la(€)] < 1 for all £ € I. Setting B. ={{ € I]|a(f) <1—¢} for e > 0, we argue as
before, to get

0< —a/ k(€,m)dn < —ero| Bel,
B

£

which guarantees that ¢(§) =1 a.e. £ € I. Thus we have

po(§) = Ko(§) =1 for {1,

and conclude that p =1 and ¢(§) =1 for all £ € .
Next, we observe that for ¢ € {r}+,

/I Ko(€)r(€)de = /1 (&) K r(€)de = /I () (€)de = 0. (6.2)
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This allows us to define the continuous linear operator L : {r}* — {r}+ by Lo = K¢.

Since K is a compact operator on L? (I), we see that L is a compact operator on
{r}+. By the Fredholm-Riesz-Schauder theory, we know that for each ¢ > 0, o(L)N{z €
C | |z| > ¢} is a finite set and consists of eigenvalues of L. Here and henceforth, for
any operator L, o(L) denotes the spectrum of L. Since 1 ¢ {r}*, we see from (6.1)

that o(L) C {z € C | |z| < 1}. Since o(L) is a closed subset of C, we find a constant
6 € (0,1) such that
o(L)Cc{ze€C||z| <6} (6.3)

In view of (6.2), we may define the continuous operator L : {r}+> — {r}+> by
L¢p = K¢. We claim that
o(L)c{zeC||z| <0} (6.4)

To show this, fix p € {z € C| |z| > 0}. For ¢ € {r}+>° choose any
Y € (ul — L)~ g,

and set

F©) = p= (Kp(&) = ¢())  forgel.
It is easily seen that f € {r}1> and that
pf(&) = Lf(§) = ¢(§) forall & €.

Hence, ul — L is surjective. Next we fix ¢ € {r}+>°. Let f, g € {r}+> satisfy

(W —L)f(€) = 6(6) and (uI - L)g(€) = ¢(¢) for € € I.

Then we see that [f — g] € Ker (u — L), which yields in view of (6.3) that f(¢) = g(¢)
a.e. £ € I. Accordingly we have

p(f —9)&) =L(f—9)(&) =0 forfel.

Thus pul — L is injective. Invoking the open mapping theorem, we conclude that u is in
the resolvent set of L, proving (6.4).
Recall the definition of the spectral radius p of the operator L, i.e.,

p= lim [[L¥|V/E,

(See [8].) We know that p < 6. Fix any A € (0, 1). Then there is a constant C' > 1 such
that
|L¥|| < CAF for all k € N.
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This yields that for ¢ > 0,

tF|| L*
et < 3 FE < e
k€Z+ :

Thus, for h € {r}+° and ¢t > 0 we have
DR 0 = [|e"E DRl < Ce™ VA oo,
This completes the proof. [
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