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• Introduction.

• Problem: The asymptotic behavior, as t →∞, of solutions u = u(x, t) of the
Cauchy problem

(CP)

{
ut + H(x,Du) = 0 in Ω× (0,∞),

u|t=0 = u0,

where Ω ⊂ Rn, H : Ω × Rn → R, u : Ω × [0,∞) → R is the unknown,
ut = ∂u/∂t, Du = (∂u/∂x1, ..., ∂u/∂xn), and u0 : Ω → R.

• It is a basic question on evolution PDE. Such investigations concerning
Hamilton-Jacobi equations go back to S. N. Kruzkov (’67), P.-L. Lions (’83),
and G. Barles (’85).

• An interesting feature of the recent developments is the interaction with weak
KAM theory introduced by A. Fathi (’97).

3



• The large-time behavior of solution of (CP) is related to the “stationary”
equation:

H(x,Dv) = c in Ω, where c is a constant.

The structure of solutions of this “stationary” equation can be studied with
help of weak KAM theory.

• I call the function H = H(x, p) a Hamiltonian and use the notation

H[u] := H(x,Du(x)).

• Hamilton-Jacobi equations arise in calculus of variations (mechanics, geo-
metric optics, geometry), optimal control, differential games, etc. They are
called Bellman equations in optimal control and Isaacs equations in differential
games, where they appear as dynamic programming equations. Basic references
are books by W. Fleming-H. M. Soner (’91) and M. Bardi–I. Capuzzo Dolcetta
(’97).
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• Additive eigenvalue problem.

• From the formal expansion of the solution u of (CP)

u(x, t) = a0(x)t + a1(x) + a2(x)t−1 + · · · as t →∞,

one gets

a0(x) +
−a1(x)

t2
+ · · ·+ H(x, Da0(x)t + Da1(x) + Da2(x)t−1 + · · ·) = 0,

which suggests {
a0(x) ≡ a0 for a constant a0,

a0 + H(x,Da1(x)) = 0.

• We are led to the additive eigenvalue problem for H: to find (c, v) ∈ R×C(Ω)
such that

H[v] = c in Ω.

• c is called an (additive) eigenvalue for H, v an (additive) eigenfunction for
H.
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• If (c, v) is a solution of the additive eigenvalue problem for H, then

u(x, t) := −ct + v(x)

is a solution of ut + H[u] = 0. The function −ct + v(x) is called an asymptotic
solution for ut + H[u] = 0.

• The right notion of weak solution for Hamilton-Jacobi equations is that of
viscosity solution introduced by M. G. Crandall–P.-L. Lions (’81). It is based
on the maximum principle.
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¦ Additive eigenvalue problem arises in ergodic control problems, where one
seeks to minimize the long-time average of cost

lim
T→∞

1
T

∫ T

0

f(X(t), α(t)) dt,

{
α : [0,∞) → A (control), A (control region),

Ẋ(t) = g(X(t), α(t)) (state equation), X(0) = x.

• Such an ergodic control problem is closely related to the problem of finding
the limit

lim
t→∞

1
t
u(x, t)

for the solution of ut + H[u] = 0 in Ω× (0,∞), u|t=0 = 0, where

H(x, p) = sup
a∈A

(−g(x, a) · p− f(x, a)).
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¦ Homogenization for Hamilton-Jacobi equations
• Additive eigenvalue problems play an important role in homogenization for
Hamilton-Jacobi equations, where they are referred to as cell problems. In this
theory one is concerned with the macroscopic effects of small scale oscillating
phenomena.
• A standard problem is

λuε(x) + H(x, x/ε, Duε(x)) = 0 in Ω,

where
{

λ > 0 is a given constant,
ε > 0 is the small scale parameter to be sent to zero.
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The basic scheme in periodic homogenization:
(i) solve the additive eigenvalue problem for fixed (x, p),

H(x, y, p + Dyv(y)) = c for y ∈ Tn := Rn/Zn,

( G(y, q) := H(x, y, p + q) )

(ii) define the so-called effective Hamiltonian H̄ by H̄(x, p) = c,
(iii) the limit function ū(x) := limε→0+ uε(x) then satisfies

λū + H̄(x, Dū(x)) = 0 in Ω.

P.-L. Lions–G. Papanicolaou–S. R. S. Varadhan (’87),
L. C. Evans (’89) (the perturbed test functions method)

Almost periodic homogenization: HI (’00) and P.-L. Lions–P. E. Souganidis
(’04).

Random homogenization: P. E. Souganidis (’99), P.-L. Lions–P. E. Sougani-
dis (’03), H. Kosygina–F. Rezakhanlou–S. R. S. Varadhan (’06), L. Caffarelli–
P. E. Souganidis–L.-H. Wang (’05).
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• A remark on Hamilton-Jacobi equations with convex Hamiltonian.

Always assume that H is convex. “solution” instead of “viscosity solution”.
• Notation:

S−H ≡S−H(Ω) := {u solution of H[u] ≤ 0 in Ω},
S+

H ≡S+
H(Ω) := {u solution of H[u] ≥ 0 in Ω},

SH ≡SH(Ω) := S−H ∩ S+
H .

¦ The theory of semicontinuous viscosity solutions due to E. N. Barron–
R. Jensen (’90) says: if H(x, p) is convex in p ∈ Rn, then

S ⊂ SH , u(x) := inf{v(x) | v ∈ S} ⇒ u ∈ SH .
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• A result in Tn.

A typical result, regarding the large-time asymptotic behavior of the solution
u of (CP), from those obtained by G. Namah and J.-M. Roquejoffre (’97–),
A. Fathi (’98), G. Barles–P. E. Souganidis (’00), A. Davini–A. Siconolfi (’06) is
stated as follows:
• Ω = Tn, u0 ∈ C(Tn), H ∈ C(Tn ×Rn).
• H is coercive:

lim
|p|→∞

H(x, p) = ∞ uniformly in x ∈ Tn.

• H is convex: p 7→ H(x, p) is convex ∀x ∈ Tn.
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Theorem 1. (i) The additive eigenvalue problem H[v] = c in Tn has a
solution (c, v) ∈ R× C(Tn). Moreover the constant c is uniquely determined.

(ii) The Cauchy problem ut + H[u] = 0 in Tn × (0,∞), u|t=0 = u0 has a
unique solution u ∈ C(Tn × [0, ∞)).

(iii) Assume that H = H(x, p) is strictly convex in p. Then there exists an
additive eigenfunction u∞ ∈ C(Tn) for H such that

lim
t→∞

max
x∈Tn

|u(x, t) + ct− u∞(x)| = 0.

(iv) The function u∞ ∈ C(Tn) is characterized by

u∞(x) = inf{φ(x) | φ ∈ SH−c, φ ≥ u−0 in Tn},
where

u−0 (x) := sup{ψ(x) | ψ ∈ S−H−c, ψ ≤ u0 in Tn}.
Assertion (i) is due to Lions-Papanicolaou-Varadhan (’87). Assertion (ii) is a

more classical result due to M. G. Crandall–P.-L. Lions (’83), M. G. Crandall–
L. C. Evans–P.-L. Lions, G. Barles, P. E. Souganidis, HI,...
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• A remark is the complex structure of eigenfunctions for H in Tn:
v an eigenfunction ⇒ v + a an eigenfunction for any a ∈ R.

The complexity is more than this.

Example. Consider |Du| = f(x) in R, where f is a periodic function and
min f = 0. (c = 0.)

Periodic solutions
f

u

u

u

period

Non-periodic solutions
f

u
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• A review of weak KAM theory and a formula for asymptotic so-

lutions.

¦ Why is the strict convexity of H needed in Theorem 1?
• It can be replaced by a weaker assumption (G. Barles and P. E. Souganidis
(’00)).

• The following example shows that some condition is needed more than the
coercivity and convexity of H.

Example (Barles–Souganidis (’00)). Consider the Cauchy problem

ut + |Du + 1| = 1 in R× (0,∞) and u(x, 0) = sin x.

Then u(x, t) := sin(x− t) is a classical solution and u(0, t) = − sin t. Hence as
t →∞,

u(x, t) 6→ u∞(x)− ct.
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¦ A short review of weak KAM theory:

• c = 0 will be assumed: otherwise, replace H by H − c.

• Let Ω = Tn. Let H be coercive and convex. Define

dH(x, y) := sup{w(x)− w(y) | w ∈ S−H(Ω)}.

• The function dH(·, y) is the maximum subsolution of H[u] = 0 in Ω among
those satisfying u(y) = 0.

• Basic properties:

dH(y, y) = 0,

dH(·, y) ∈ S−H(Ω),

dH(·, y) ∈ SH(Ω \ {y}),
dH(x, y) ≤ dH(x, z) + dH(z, y).




S−
H

(Ω)={w| H[w]≤0},

S+
H

(Ω)={w| H[w]≥0},

SH=S−
H

(Ω)∩S+
H

(Ω).



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Definition: (Projected) Aubry set AH ⊂ Ω is defined by

AH := {y ∈ Ω | dH(·, y) ∈ SH(Ω)}.

(for general y ∈ Ω, dH(·, y) ∈ SH(Ω \ {y}).)

• Aubry sets play an important role in weak KAM theory.
The above definition is from A. Fathi and A. Siconolfi (’04).

• In the PDE viewpoint, one of main observations regarding Aubry sets is:

Theorem 2 (representation). If u is a solution of H[u] = 0 in Tn, then

u(x) = inf{u(y) + dH(x, y) | y ∈ AH} ∀x ∈ Tn.
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The above representation formula and (iv) of Theorem 1 yield the formula:

• u∞(x) = inf{dH(x, y) + dH(y, z) + u0(z) | y ∈ AH , z ∈ Tn}.

This formula, together with another formulation of Aubry sets and variational
formulas for dH and the solution u, gives a nice insight how the solution u of
(CP) converges to the asymptotic solution u∞ and why the strict convexity of
H is useful for the convergence, but let me skip this point.
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• Asymptotic solutions in Rn.

Tn compact · · · · · · Rn not compact.
Example 1 (Lions–Souganidis (’03)). Let n = 1 and f(x) = 2 + sin x +
sin
√

2x. Set H(x, p) = |p|2 − f(x)2.
• f is quasi-periodic,
• inf f = 0 and f(x) > 0 for all x ∈ R.

O

y

x

y = f(x)

Consider the Cauchy problem

ut + H[u] = 0 in R× [0,∞) and u|t=0 = 0.

∃! solution u ∈ BUC(R× [0, T ]) ∀T > 0,•
u ≥ 0 in R× [0,∞).•
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If u converges to an asymptotic solution −ct + v(x) in C(R) as t →∞, then
c = 0 and v ∈ SH . Also, v ≥ 0.

On the other hand, equation H[v] = 0 does not have any solution which is
bounded below. Therefore, u does not converge to any asymptotic solution.

H quasi-periodic + u0 periodic 6⇒ convergence to an asymptotic solution
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Example 2 (Barles-Souganidis (’00)). Let n = 1. Consider the Cauchy
problem

ut −Du +
1
2
|Du|2 = 0 in R× (0,∞), u|t=0 = u0.

Lax-Oleinik formula for u:

u(x, t) = inf
y∈R

(
u0(y) +

|x + t− y|2
2t

) (
u(0, t) = inf

y∈R

(
u0(y) +

|t− y|2
2t

))
.

Assume that 0 ≤ u0(x) ≤ 1 for all x ∈ R. Then we have 0 ≤ u(0, t) ≤ 1 for
all t ≥ 0.

If u0(t) = 0, then
u(0, t) = 0.

If u0(x) = 1 for x ∈ [t−√2t, t +
√

2t], then

u(0, t) = 1.
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Define the increasing non-negative sequences {sk} and {tk} by

s1 = 0, s1 + 1 = t1 −
√

2t1,

t1 +
√

2t1 + 1 = s2, s2 + 1 = t2 −
√

2t2,

t2 +
√

2t2 + 1 = s3, s3 + 1 = t3 −
√

2t3,
...

Then set ak = tk−
√

2tk and bk = tk +
√

2tk for k ∈ N, and define the piecewise
linear function u0 by

u0(x) =





1 for ak ≤ x ≤ bk,
0 for x = sk,
0 for x ≤ s1.

1
√

2tk
√

2tk 1

sk ak tk bk sk+1

0

1
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It is clear that

sk < ak < tk < bk < sk+1 for all k ∈ N,

lim
k→∞

sk = ∞,

u(0, sk) = 0 and u(0, tk) = 1 ∀k ∈ N.

The conclusion is:

Slowly oscillating initial data 6⇒ convergence to an asymptotic solution
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In view of the above examples the following theorem is interesting.

H periodic + u0 almost periodic ⇒ convergence to an asymptotic solution

Let Ω = Rn.
• H is coercive,
• H is strictly convex,
• H(x, p) is Zn-periodic in x for all p.

• H satisfies all the assumptions of Theorem 1.
• Define c := the additive eigenvalue given by Theorem 1. That is, c is the
unique constant such that

∃v ∈ C(Rn) such that H[v] = c in Rn, v is Zn-periodic.

• u0 is almost periodic in Rn.
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Theorem 3. (i) There exists a unique solution u of the Cauchy problem

ut + H[u] = 0 in Rn × (0,∞) and u|t=0 = u0.

(u ∈ BUC(Rn × [0, T ]) ∀T > 0)

(ii) There exists an almost periodic solution u∞ of H[u∞] = c in Ω for which

u(·, t)− u∞ + ct → 0 in C(Ω) as t →∞.

N. Ichihara–HI.
• Generalizations in terms of “semi-periodic”.
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¦ A result with compactness of Aubry sets.

• u0 ∈ C(Rn), H ∈ C(Rn ×Rn).
• H is coercive in the sense that

lim
|p|→∞

H(x, p) = ∞ uniformly for x in each compact subsets of Rn.

• H(x, p) is strictly convex in p.
• There exist functions φi ∈ C(Rn) and σi ∈ C(Rn), with i = 0, 1, such that

H[φi] ≤ −σi in Rn,

lim
|x|→∞

σi(x) = ∞,

lim
|x|→∞

(φ0 − φ1)(x) = ∞.

¦ The function spaces Φ0, Ψ0 are convenient:

Φ0 = {f ∈ C(Rn) | inf
Rn

(f − φ0) > −∞},
Ψ0 = {g ∈ C(Rn × [0,∞)) | inf

Rn×[0,T ]
(g − φ0) > −∞ for all T > 0}.
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Theorem 4. (i) The additive eigenvalue problem

H[v] = c in Rn

has a solution (c, v) ∈ R× Φ0. The additive eigenvalue c is unique.
(ii) There exists a unique solution u ∈ Ψ0 of the Cauchy problem

ut + H[u] = 0 in Rn × (0,∞) and u|t=0 = u0.

(iii) There exists a solution u∞ ∈ Φ0 of H = c in Rn for which

u(·, t) + ct− u∞ → 0 in C(Rn) as t →∞.

Moreover

u∞(x) = inf{dH−c(x, y) + dH−c(y, z) + u0(z) | z ∈ Rn, y ∈ AH−c} ∀x ∈ Rn.

HI, Y. Fujita–HI–P. Loreti (’06): ut + αx · Du + H(Du) = f(x), where
α > 0 and H has the superlinear growth, lim|p|→∞H(p)/|p| = ∞.
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• A simple example: ut + |Du|2 = |x|. Then H(x, p) = |p|2 − |x| and a choice
of (φi, σi) is:

φ1(x) = −|x|, σ1(x) = |x| − 1, φ0(x) = −1
2
|x|, σ0(x) = |x| − 1

4
.

• Existence of the pairs (φi, σi), i = 0, 1 ⇒ the compactness of the Aubry set
AH−c.

¦ In unbounded domains the uniqueness of additive eigenvalue does not hold:
for unbounded Ω, if

cH = inf{a ∈ R | ∃v ∈ S−H−a},

then for any b ≥ cH there exists a solution v of H[v] = b in Ω.

• Restriction of the eigenfunctions to Φ0 ⇒ uniqueness of the additive eigen-
value. (Theorem 4)
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• A related remark is that, under standard assumptions on H (e.g., the periodic
case), one can show that if H[v] = a in Rn, H[w] = b in Rn, and

lim
|x|→∞

|v(x)|+ |w(x)|
|x| = 0,

then a = b. (Uniqueness of additive eigenvalue under sublinear growth!)
On the other hand, if H(x,Dv) = a in Rn, p 6= 0, H(x, p + Dw) = b in Rn,

and
lim

|x|→∞
|v(x)|+ |w(x)|

|x| = 0,

then a 6= b in general, but z(x) := p · x + w(x) is a solution of H(x,Dz(x)) = b

in Rn. (Non-uniqueness of additive eigenvalue under linear growth condition!)
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• It is important to understand well the structure of additive eigenfunctions.
In this regard, representation formulas of solutions of the stationary problem
H[u] = 0 like Theorem 2 are useful.

Theorem 2 is due to A. Fathi. There are generalizations to general domains
due to HI–H. Mitake, C. Walsh.

Non-uniqueness of additive eigenvalues is created by “ideal boundary points”
sitting at infinity. Φ0 in Theorem 4 kills any contributions from ideal boundary
points at infinity.

¦ The final remarks are: (i) Boundary value problems: the state constraint
problem by H. Mitake; (ii) Viscous Hamilton-Jacobi equations. (iii) Time-
periodic or almost periodic solutions for HJ equations, (iv) Rate of convergence:
G. Barles, Y. Fujita,... And my conclusion is that there are a lot to be done
even in the case when Ω = Rn.
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Thank you!
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