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Abstract We investigate, via the dynamic programming approach, op-
timal control problems of infinite horizon with state constraint, where
the state X; is given as a solution of a controlled stochastic differential
equation and the state constraint is described either by the condition that
X, € G for all t > 0 or by the condition that X, € G for allt > 0, where G
be a given open subset of R . Under the assumption that for each z € G
there exists a continuous map a, : R — A, where A denotes the control
set, such that the diffusion matrix o(z,a), with a = a,(z), vanishes for
x € 0G in a neighborhood of z and the drift vector b(z, a), with a = a,(2),
directs inside of GG at z together with some other mild assumptions, we es-
tablish the unique existence of a continuous viscosity solution of the state
constraint problem for the associated Hamilton-Jacobi-Bellman equation,
prove that the value functions V associated with the constraint G, Vy of
the problem associated with the constraint G, where only a finite number
of selection is allowed for the controller, V, of the relaxed problem asso-
ciated with the constraint G, and Vj, associated with the constraint G,
satisfy in the viscosity sense the state constraint problem, and establish
Lipschitz or Holder regularity results for the viscosity solution of the state
constraint problem.
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We investigate optimal control problems of infinite horizon with state constraint via
the dynamic programming approach.

To explain our control problems, we first introduce the controlled systems o at
z € R" as the collections

a= Q% F P* {F b0, AW beso, {uf b0, { X Fe>0),

where (Q%, F*, P, {F{}+>0) is afiltered probability space satisfying the usual condition
(see e.g. [YZ]), {W}i>o0 is a standard [-dimensional Brownian motion on this filtered
probability space, {uf }+>0 is an F*—progressively measurable stochastic process taking
values in a given control set A, and {X/};>0 is a strong solution of the stochastic
differential equation (SDE for short)

(1) dX; = b(X¢,ud)dt + o (X, uf ) dWS, Xo =z,

where b : RN x A — RY and o : RN x A — R"*! are given functions. The set of
controlled systems at x will be denoted by C(z). Having regard to the dependence of
C(x) on A, b and o, we call @ € C(x) a controlled system at x associated with A, b and
o as well.
Let G C RY be a given open set. For each z € G, A(z) denotes the set of those
a € C(z) for which
Xred Vt >0 P%-as.

Now let A > 0 be a given constant. The cost functional and value function are
defined, respectively, as

@ Ty = E° [ e (X ug e
0

for all z € RN and a € C(x), where E® denotes the mathematical expectation with
respect to P, and

(3) Viz) = aEi./I}\f(‘a:) J(z, a)

for any x € G.

In the dynamic programming approach, one of most important aspects is the identi-
fication of the value function as a solution u of the associated Hamilton-Jacobi-Bellman
(HJB for short) equation, i.e., the equation

\u(z) + H(z, Du(z), D*u(z)) = 0,
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where

H(z,p,X) := (Szlelg{—% trool (z,a)X — b(z,a) -p— f(z,a)}.
As is well-known, the value function V' is not so smooth in general that the HJB equation
above makes the classical sense. It is nowadays well recognized that the best way to
interpret the HJB equation above is to adapt the notion of viscosity solution. In this
paper we mostly study our control problems in this line.

The study of optimal control with state constraint in this framework goes back to
P.-L. Lions [LB], where the case of all possible states being confined in a given bounded
set was studied for deterministic control problems, i.e. the case when ¢ = 0. Later,
H. M. Soner [S] developed the theory of optimal control with state constraint in the
deterministic case, especially introducing a sufficient condition for the continuity of the
value function, introducing an appropriate boundary problem for the corresponding
HJB equation and identifying the value function as the unique continuous viscosity
solution of this boundary value problem. Many other authors contributed to develop
further in this direction. Here we refer in particular to the formulation in H. Ishii and S.
Koike [IK], which is a modification of the value boundary problem introduced by Soner,
which has the advantage to have uniqueness of viscosity solutions among bounded (and
possibly discontinuous) functions, and which we rely on in this paper.

In the stochastic case, the first contribution was due to J.-M. Lasry and P.-L. Lions
[LL] and in their paper they dealt with the case of nondegenerate diffusion (i.e., the
case where o = the identity matrix) and unbounded drift b so that the value function
behaves singularly near the boundary 0G. M. Katsoulakis [KA] initiated to study the
case where diffusion depends on the control and degenerates on the boundary. G. Barles
and J. Burdeau [BB] studied the Dirichlet problem for degenerate elliptic equations,
obtaining a continuity result for the value functions under the assumption that the
diffusion coefficient depends only on the state variable but not on the control (i.e.,
o = o(x)). The study of the Dirichlet problem was further developed by G. Barles and
E. Rouy [BR].

The main results of this paper concern: (i) the identification of different kinds of
value functions for the control problem described above as the viscosity solution of

@ { \u(z) + H(z, Du(z), D*u(z)) >0 in G,

\u(x) + Hip (z, Du(x), D*u(z)) <0 in G,

where

1
Hin(xapa X) = sup {__ tI‘O'O'T(:E,a)X - b(xaa) o f(xaa)}a
a€A(z)



with A(zx) the subset of A consisting of those a such that o(x,a) = 0 and b(x, a) directs
inside of G at x (see the next section for the precise definition of A(x)), and (ii) the
Lipschitz or Holder regularity of the value functions.

Regarding the identification, our results are close to those obtained by [BB] and
the new feature beyond [BB] in our result is dependence of o in a. Related results
can be found in [BR] in the framework of the Dirichlet problem. On the other hand
our degeneracy assumption on ¢ on the boundary is stronger than those in [BB] and
[KA]. [KA] studies a different case from ours, at least, for the continuity result of value
functions. In our results we consider four kinds of value functions, the identification of
which is new in the setting of stochastic control. For the deterministic case, we refer to
[L]. Again the Lipschitz or Holder continuity results are new in the setting of stochastic
control. To our knowledge, in the literature just the continuity of value functions is
studied. For the deterministic case, we refer to [CDL], [LT], and [IK]. Many results
of this paper can be extended to the case of differential games problems, we will not
pursue this here in order to make the paper concise.

2. Statements of the problems and main results
Let A be a compact metric space with metric d4 and let

o:RN x A — RV b:RY x A - RV, fRYxA-5R

be given continuous functions which satisfy:
(A1) There is a constant M > 0 such that for ¢ = 0,0, f,

sup ||¢(+, a) |lw1,o myy < M.
a€A

(A2) There exists a continuous function m : [0, +00) — [0, +00), with m(0) = 0, such
that for ¢ = a,b, f,

|p(z,a) — ¢(x,a’)| < m(da(a,a’)) VYa,a' € A,Vx € RV.

We introduce the notation: for z,b € RY and r > 0 let TC(z,b,r) denote the

truncated cone
TC(z,b,r) = U B(x +tb,r).
0<t<r

Note that T'C(z,b,r) has the shape of a truncated cone if |b| > r and it is a ball if
o] < 7.

Other assumptions we use are:
(A3) G is an open, bounded subset of RY.
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(A4) For any z € 0G, there exist a constant r > 0 and a continuous map a : B(z,r) N
G — A such that
(i) o(z,a(x))=0 Vo € B(z,r)NOG,
(i) TC(z,b(z,a(x)),r) CG  Vx € B(z,r)NG.

(A5) For each z € OG there are a constant r > 0 and a continuous map a : B(z,7) - A

such that
(i)  the maps z — o(z,a(z)) and = — b(z, a(x)) are Lipschitz continuous on
B(z,7r),

(i)  o(z,a(z))=0 Vx € B(z,7)NOG,
(iii) 7TC(z,b(x,a(x)),r) CG  Vx e B(z,7)NG.

(A6) For each x € R", the set {(c0”(z,a),b(z,a), f(x,a)) | a € A} is convex.

(A7) The set A is a convex subset of a normed space with norm | - | and there is a
constant M > 0 such that for any ¢ = o,b and for all z € RV, a,a’ € A,

|¢($7a) - ¢(’Tﬂal)| < M|a’ - a’llﬂ

and moreover there are a Lipschitz continuous function @ : RV — A and a
constant r > 0 such that

(i) o(z,a(x))=0 Vo € 0G,

(i) TC(x,b(zx,a(x)),r)Cc G Vred.

Remark. It is clear that (A7) implies (A5) and that (A5) implies (A4). The bound-
edness assumption in (A3) could be replaced by the uniformity in z in (A4) in the
results of this paper. Moreover the Lipschitz continuity of f in (Al) is only needed
to obtain the Lipschitz property of the solution of (4), and it can be replaced by the
Holder continuity or just the continuity of f in x in the assertion of Holder continuity
of solution of (4) or in other results, respectively.

First of all we consider the problem (4). To be precise, we let A(x), in the definition
of H;,, denote the subset of A consisting of those a such that there are a constant r > 0
and a continuous map @ : B(x,r) NG — A satisfying a(z) = a for which (i), (ii) of (A4)
hold with x in place of z.

Remark. We note that H;,(x,p, X) = H(z,p, X) if x € G.

Theorem 1. Assume (A1), (A3), and (A4). Then there exists a unique viscosity

solution U € C(G) of the problem (4).

In what follows, under the assumptions of Theorem 1, we write U for the unique
viscosity solution of (4).

The theorem above extends the existence and uniqueness result in [IK]. We refer the
reader to [BR] for results closely related to the above, in which the “strong” comparison
principle has been established under a similar but more general assumption.
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Next we consider the identification of value functions with the solution of (4).

First Control Problem : state constraint in G.

The control problem with state constraint in G is already described in the introduc-
tion. The value function V associated with this control problem is defined by (3) with
help of the sets A(z), * € G. For each x € G we call a controlled system o € A(x)
admissible at z € G with respect to G, i.e., « € C(x) is admissible with respect to G if
X} satisfies

Xred Vt >0 P%-as.

Second Control Problem : finite selection.

Henceforth we let I(n) denote the set {1,...,n} for n € N. Let £ denote the family
of all finite subsets of C(R™,A). Let E = {ay,...,a,} € £. Define o* € C(RN x
I(n),RY*H b* € CRN x I(n),RN), and f* € C(RN x I(n),R) by

o*(2,i) = o(z,ai(x)), b (i) = b(z,a;(x)), and  f*(z,i) = f(z, ai(x)).

Define Cg(z), Ar(x), Jg(x,a), and Vg(x) in the same way as C(z), A(x), J(z, a),
and V' (z), respectively, but replacing o, b, f, and A by o*, b*, f*, and I(n). For this
control problem the controller has only n choices at each moment.

If z € G and

a=(Q,F,P{Fi}i>0, {Wihe>0, {ir}e>0, { Xt }e>0) € Ar(2)

and if we set
U = U/it (Xt) Vt Z 0,

then it is immediate to see that
B=(Q,F, PAFi}i>0, {Wih>0, {ut b0, { Xt }10) € A(z),
and Jg(z,a) = J(x,3). This shows that
(5) V(r) <Vg(x) VEE€E, red.
Finally define V4 : G — R by
Va(x) = géfg Ve(z).

Third Control Problem : relaxation.
We introduce the space I' = I' 4 of those Borel measures v on [0,00) x A for which

v([0,8] x A) =t  Vt>0.
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By virtue of Prohorov thereoem, the space I' can be equipped with metric p with which
it is a compact metric space and the convergence in p is equivalent with the weak
convergence of measures on each [0,7] x A, with T > 0 (see [IW] and [SV]).

Define

B(T') = a{{fy el'|vB)eC} | BC[0,t] x A and C C R are Borel subsets}.

This family {B,(I')} provides a natural filtration on I.
As before we define the set C,.(x) for x € RN as the set of the collections

o= (Qaafaapa: {Fta}tszya: {X?}tZO):

where (Q%, F*, P®, {F }+>0) is a filtered probability space satisfying the usual condi-
tion, v* is an Fy*—progressively measurable (i.e., F;*/B;(I')-measurable) I'-valued ran-
dom variable, and {X*}:>0 is an F{*-adapted continuous stochastic process satisfying
X§& =z such that for any ¢ € CZ(RV),

o) = [ ey (dsda
[0,¢]x A
is an Ff-martingale with £% denoting the linear operator on C?(RY) defined by
LO(z) = %tr ool (z,a)D*¢(x) + b(z,a) - D(x).
We define A, (x) for x € G as the set of those a € C,(x) for which

XreG Vt>0  PYas.

Finally we define the (relaxed) value function V,. by

Vi(z) = inf E“ / e MF(X2, a)y*(dtda) V€ G.
a€ A, () [0,00)x A

A standard remark here is that V(z) > V,.(z) for all x € G. Indeed, for = € G, if
a = (Q%F% P AF hxo, AW b0, {uf hiz0, {X{ }i>0) € C(w)
and if we set

’Y:dt®6’uf‘a
ﬁ = (Qaafaapaa{-”t?}tZOa’Ya {X?}tZO)a
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then 8 € C,(z) and J(z,a) = J,(z, ) > V().

Fourth Control Problem: state constraint in G.

We are as well interested in state constraint problems where the states are required
to stay in G for t > 0. For each € G we call a controlled system « admissible with
respect to G at x € G if

X} ed Vi >0 P%-as.

The set of admissible systems a with respect to G' at z will be denoted by Ay (z).
The value function corresponding to Ag(x) is defined as

6 Vo(z) = inf J(=,
) ()=t Ja.a)
for any z € G.

Theorem 2. Assume (A1)-(A83) and (A5). Then: (i)

Ux) =V(z) =Vg(r) =V, (2) in G.
(i) If OG is of class C? and (A7) is satisfied, then

U(z) = Vp(x) in G.

Recall that U denotes the unique viscosity solution of (4).
Theorem 2, of course, says that, under the assumptions above, the value functions
V', Vu, V;, and Vj are all equal to the unique viscosity solutions of (4).

Regarding the existence of optimal control we have

Theorem 3. Assume (A1)-(A3), (A5). Then: (i) For each x € G there exits
a (relazed) controlled system o* € A,(x) such that V,(z) = J.(x,a*). (ii) If (A6) is
satisfied, then there exists a controlled system o* € A(x) such that V(x) = J(x,a*).

Now we are concerned with the regularity of solutions of (4).

Theorem 4. Assume (A1), (A3), and (A4). There is a constant k > 0 such that
for each v € (0,1], if A > k~y then the viscosity solution U of (4) is Hélder continuous
with exponent .

Theorems 2 and 3 immediately yield Lipschitz or Holder estimates of the value
functions V', V4, and V,. under appropriate assumptions.

Here we give an example which shows that the Lipschitz continuity of value functions
is a rather optimal regularity result.



This example is the deterministic optimal control problem, and we show that the
value function is neither semiconcave nor of class C' independently how large the dis-
count factor A > 0 is.

Example. Consider the case where

N =2, A=[-1,1] CR,
G={>+y*<2}u{z>1, v —-2<y< —x+2},

o(x,y,a) =0,

b(z,y,a) =(a, ¢(z)),

f(z,y,a) = — (a+ 1)z,
where ¢ € C*°(R) is a function satisfying

oly) =0 ifly<1 and o(y) <0 ify] > 1.

The set G can be described as the union of the open disk with radius v/2 and center
(0,0) and the open triangle with vertices (1,1), (0,2), and (—1,—1).

Since ¢ = 0, the control problem is equivalent to the corresponding deterministic
one. Observe that, because of our choice of ¢, if the initial state (x(0),y(0)) is in the
strip |y| < 1, the any state (x(t), y(t), which is by definition a solution of

& a(0) 9(0)) = balt), y(0),u(t) for t >0,

with measurable u : [0,00) — A, stays in the strip |y| < 1.
Fix 0 <y < 1. It is easy to see that the best way to minimize the cost functional

O e AR (CONTORTOI
0

under state-constraint
(z(t),y(t) € G,

is to choose u : [0,00) — A to be

{1 ifo<t<2-y,
M”_{o ift>2—y.

Thus the value function at (0,y) is given by

2—y o]
V(0,y) = —2/0 te~Mdt —/2 e~ Mdt.
~y
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If we set

g(x) = —2/ te”Mdt —/ e Mdt Vx € R,
0 T
then V(0,y) = g(2 — y) and
Vy(0,40) = —¢'(2) = 3¢,

By symmetry, we get
V,(0,-0) = —3e~ 2.

These together show that V' cannot be either semiconcave or differentiable at (0, 0).

3. Proof of the main results
We begin with the preparations for the proof of Theorem 1.
Let (&0,7m0) € C(0G,RY x R) be a continuous function such that

(€o(),m0(2)) € co{(b(w,a), f(x,a)) [a € Alz)} V&€ dG,

and such that for some constant r» > 0,
TC(z,&(x),r) C G Vz€0G, z € B(z,7)NG.

By an argument utilizing partition of unity, we see (see e.g. [IK]) that under the as-
sumptions (A1), (A3), and (A4) there is a function (&, 10) satisfying these requirements.
Assuming (A1), (A3), and (A4), we fix such a function (£, 7)) in what follows.

We consider the problem

(7)

{ \u(x) + H(z, Du(x), D*u(z)) > 0 in G,
u(z) + Ho(z, Du(z), D*u(z)) <0 in G,

where
Hol X) = H(z,p, X) if x € G,
AT, Py )= —&o(z) - p — no(x) if x € 0G.

Since Ho(z,p, X) < Hip(x,p, X) for all (z,p, X) € G x RN x SN, it follows that any
viscosity subsolution of (4) is a viscosity subsolution of (7).
Theorem 3.1. Assume (A1), (A3), and (A4). Let u and v be a viscosity subsolution
and a viscosity supersolution of (7), respectively. Then u < v on G.
For the proof of this theorem, we adapt the arguments from [IK] to our case.
Theorem 3.1 and the remark preceding the theorem immediately yield the following
Theorem 3.2. Assume (A1), (A3), and (A4). Letu and v be a viscosity subsolution
and a viscosity supersolution of (4), respectively. Then u < v on G.
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The following two lemmas are needed for our proof of Theorems 3.1 and 3.
Lemma 3.3. Assume (A1), (A3), and (A4). Then there exists a function b €

C>(G) such that
o(x) - Dyp(z) >1  Vr € dG.

This lemma is similar to [IK, Lemma 3.3] in which & is assumed to be Lipschitz

continuous. We give a proof of Lemma 3.3 in the Appendix.
Lemma 3.4. Assume (A1), (A3), and (A4). Then there exist w € C**(G x G) and
constants C > 0, r > 0 such that

fo(x) - Dyw(x,y) <0 VredG, ye GnB(z,r),
and for all z,y € G,

lz — y|? < w(z,y) < Ol —y|?,
max{|Dw(z,y)|, |Dyw(z,y)|} < Clr —yl,
|Dyw(z,y) + Dyw(z,y)| < Clz — yl?,

) I - o (10
Duey) <ol ) ek (§9),

where D*w in the last inequality should be understood in the distributional sense.

This lemma is similar to [IK, Lemma 3.4], but we need here the stronger version of
the above form. A sketch of proof of this lemma can be found in the Appendix.

The proof of Theorem 3.1 is a combination of the proof of [IK, Theorem 3.1], which
is a comparison proof for first-order PDE, and the standard techniques for second-order
PDE, which can be found e.g. in [CIL]. However, we give the proof of Theorem 3.1 for
the interested reader in the Appendix.

Proof of Theorem 1. The uniqueness of viscosity solutions of (4) is a direct
consequence of Theorem 3.2.

Let M > 0 be the constant from (A1). Define g% : G — R by

gt (x) = £ M/
Clearly, g* and g~ are a viscosity supersolution and a viscosity subsolution of
Mu(z) + H(x, Du(zx), D*u(z)) = 0 in G,

respectively.
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Let (£0,70) be as above. Let x € G and ¢ € C%(G), and assume that g+ — ¢ attains
a minimum at x. Noting that the function:

t= (g7 — @) (z + téo(x))
on an interval [0,¢) attains a minimum at ¢ = 0 for some € > 0, we see that
D(g" = ¢)(@) - &olx) = 0.
Hence, we have
gt (x) + H(z, Do(x), D*¢(x)) > M — &(z) - Do(x) — no(x) > 0,

which proves that gt is a viscosity supersolution of (4). Similarly, we see that g~ is a
viscosity subsolution of (4).
Now, the standard Perron method (see e.g. [CIL]) yields a viscosity solution U of
(4) such that U € C(G) and g~ < U < g* on G. QED
For the proof of Theorems 2 and 3 we need the following three propositions.

Theorem 3.5. Assume (A1)-(A3) and (A5). Then U(x) < V,(x) for all x € RN.
Recall that U is the unique viscosity solution of (4) in the theorem above.
Theorem 3.6. Assume (A1)—(A3) and (A5). Then Vg(z) < U(x) for all z € G.

Theorem 3.7. Assume (A1)-(A3) and (A5). Then: (i) For each x € G there
exists a controlled system a* € A, (x) such that V,.(x) = J.(x,a*). (ii) If, in addition,
(A6) holds, then for each x € G there exists a controlled system o* € A(x) such that
Viz) = J(z,a*).

For each € € (0,1) we set

G:. = {x € G| dist (z,G°) > ¢}.

Assume (A7) for the time being. Let a be the function given by (AT7). For each
e > 0 choose a function x. € C1(RY) so that

0<xe(r) <1 VeeRY, x(z)=1 VeeG., x(¢)=0 VzeRM\G.p,
and define functions o, b, f- on RN x A by

O.E(x7 a) :O'(IE, XE(IL')(I + (1 - XE(:E))&(Z'))’
bs(xa a) :b(fB, XS(ZL')(L + (1 - XE(ZE))EL(CL')),
fe(@,a) =f (@, Xe(x)a + (1 — xe(x))a(x)).
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Note that the functions o. and b, are Lipschitz continuous and the function f. is
uniformly continuous on RV x A.

For z € R", C.(x) denotes the set of controlled systems associated with o. and b.
and for x € G, A.(x) denotes the set of admissible o € C.(x) at x € G with respect to
G.

The value function U; is defined by

(8) Us(xz) = inf EO‘/ e M (X u®)dt Vr € G.
a€A.(z) 0

Theorem 3.8. Assume (A1)-(A3) and (A7). Then

Us(z) = U(x)  uniformly for x € G ase — 0.

Theorem 3.9. Assume (A1)-(A3), (A5), (A7), and that OG € C%. Then

Us(x) > Vo(z) Vr € G.

Admitting Theorems 3.5 — 3.9 for the moment, the proof of which will be given in
sections 4-8, we complete the proof of Theorems 2 and 3.

Proof of Theorem 2. Assume (A1)—(A3) and (A5). From (5), Theorems 3.5 and
3.6, we see that for all z € G,

and hence

V(z) = Ve(z) = Va(z) = U(a).

Next, assume (A7) and that G € C2. Then Theorem 3.9 asserts that that U, (z) >
Vo(x) for all z € G and ¢ > 0, and hence U, (z) > Vo(x) > V(x) for all z € G and € > 0.
Now, since U = V on G and for all z € G, U.(x) — U(x) as € — 0 by Theorem 3.8, we
conclude that Vg(z) = U(z) = V() for all z € G and thus, the claim (ii) is valid. QED

Proof of Theorem 3. Theorems 3.7 is nothing but Theorem 3. QED

Proof of Theorem 4. Fix v > 0. We choose a function (£y,70) € C(G) and a
constant rg > 0 so that

(9) (€o(@),m0(2)) € co{(b(z,a), f(x,a)) |a € A(z)} Vz e OG,

(10) TC(y,&o(z),m0) C G Vx € 0G.
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Let ¢ € C?(G) be the function from Lemma 3.3.
Recall that we showed in the proof of Theorem 1 that |U(x)| < M/\ for all z € G.
If we replace U by the function

U=U+ (2M + 1)1,
then we formally have
~&o(@) - DU(x) < no(x) + A|Uloo — (2M + 1)éo(x) - Dip(x) < —1 Va € 6.

Indeed, it is not hard to see that U satisfies (7) in the viscosity sense with H and ng
replaced by the functions

H(z,p, X):= H(z,p— 2(M + 1)D¢(z), X — 2(M + 1)D*(z))

and 7jo(r) := —1, respectively. To prove that U is Lipschitz continuous on G, it is
enough to show that U is Lipschitz continuous on G. So, we may assume by replacing
U, H, and 7, by U, H, and fjo, respectively, that U satisfies (7) with ng(x) = —1 in the
viscosity sense.

Let w € CY1(G x G), r > 0, and C > 0 be from Lemma 3.4. Set

v(z,y) = w(z,y)"/%

Note that if x # vy,

D,U(‘Tay) = me(xay)a

1
2u(x,y)

D*v(z,y) = D?w(z,y) — Duw(z,y) @ Dw(z,y) < 5

43 (x, y)
Hence, for all z,y € G with = # y, we have

o(x) - Du(z,y) <0  ifz € 0G,
and

z —y| < v(z,y) < CY2z -y,
max{|Dzv(z,y)|, |Dyv(z,y)|} < C/2,
|Dzv(z,y) + Dyv(z,y)| < (C/2)|x —yl,

Doe) < ©fe - (1 ) re-u(y 9))

14



We write K for max{C/2, C'/2}.
Fix L > 0 and consider the function

®(z,y) =U(x) - Uly) — Lo(z, y)”
on the set G x G. We suppose that
sup{®(z,y) | z,y € G, |z —y| <7} > 0.
We select #,9 € G so that |# — | < r and
O(,9) = sup{®(z,y) | 2,y € G, v —y| <r}.
By choosing L large enough we may assume that
sup{®(z,y) |,y € G, |[v —y| =1} <0,

and hence that |z — g| < r. By the continuity of U we see that & # .
Now suppose that £ € JG. This yields that

§o(2) - Dyo(2,9) <0,

—&0(2) - Dyo(2,9) < 1.

These are contradictory. That is, this case never arises.
Since

v0(&,5)" " (Dev (@, 5), Dyo(2,9),

v(Z
LA I -1 .
K(|w—y| 1(—[ I>+|w— ( > e J2T (&, 9),

there are matrices X,Y € SV such that
(Lyo(@,5)" " Dov(&,5), X) € T U (%),
(~Lyo(@,§)~" Dyo(i, §), ~Y) € T U (@),
(3 3) stena(e-a (1 ) +le-a(
Since U is a solution of (7) and Z € G, we have
AU () + H (&, vLo(z, )"~ Dov(2,5), X) <0,
AU () + H(9, —vLo(#,9)"~ ' Dyo(#,§), =Y) > 0.

15
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Compute that for any a € A, if we set o;(x) = (01;(z,a), ...,oni(x,a))T then

(X 0) (m(@) , (%(56))

0 Y )\@oi(9) i (9)
< 2K Lyv(2,9)" " & — gl oy (&) — 0i(9)|* + 2K Lyv(2,9) & — gllo:(9) [
< AKLM?yv(#,§)" & — gl.

Summing over all ¢ € {1,..., N}, for any a € A we get

troo’ (#,a)X + troo’ (§,a)Y <ANKLM?*yv(i,9) " & — g].

Compute also that
b(Z,a) - Dyv(2,9) + b(9,a) - Dyv(, )
= (b(2,a) — (b(g, a)) - Dyv(Z,9) + b(9, a) - (Dzv(Z, ) + Dyv(2,9))
S Mli‘_@HDwU(l‘ay)l +M|Dwv(x7y) Dyv('%ag)l

2M K|z — .

IN

Combining these together we obtain
0 Z/\(U(A) - U(A)) + H(Aafyv(j: Q)W_IDQ:'U(QA:’ g)aX) - H(ya ’VU( 7y)7 lD U(i' g) Y)
1
>ALv(z,y)" + 1nf{—— trool (,a)X — 3 trool (§,a)Y

- fYU(:L‘ay)PY 1b(x,a) . va(xay) - ’Y/U(ia/g)fy_lb(?/\aa) . Dyv('%?g) - f(jva) + f(/ga a‘)}
>AL|& — " — 4yNKLM?|& — | — 2yMKL|% — 4|7 — M+~ |z — g|"
=(A\L —4yNKLM? —2yMKL — M)|z — g|".

If we set k = ANKM? + 2MK and assume that A > kv, then by choosing L large

enough we have
AL —4yNKLM? —2yMKL — Mr'=7 > 0,

which contradicts with the previous inequality, i.e., we have
Uz) = U(y) < Lo(z,y)” (2,9 € G).
This inequality yields
U(z) = U(y)| < KLylz —y|” (z,y € G),
proving the Lipschitz continuity of U under the assumption that A > k~. QED
4. Proof of Theorem 3.5
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Assume (A1)—(A3) and (A5). Define

() Y@= B /[O | MK a) +nd(XP)" (dhda) Vo€ RY,
T ,00) X

for all n € N, where
d(x) = dist (x,G) A 1.

By [EHJ, KU], we know that V™ is a viscosity solution of
(12) u(z) + H(x, Du(z), D*u(x)) = nd(z) in RN.

Then we have:
Proposition 4.1 Under the assumptions (A1)-(A3) and (A5), V] is a subsolution

of (4).
Proof. Fix n € N. We need to show that if 2 € G and a € A(z) and if p € C?(G)
and V,* — ¢ has a maximum at z, then

NV (2) — 3 tro0” (@) D%e(2) ~ b(z, ) - Dep() — £(z,a) < 0

Fix z € 0G, a € A(z). Then there exist r > 0 and a € C(RN, A) such that (i), (ii),
and (iii) of (A5) hold with these z, a, and r. Set U = G N Int B(z,7). Choose a C!
function ¢ on R" so that

¢>0 inRY, (=0 in RN\ B(z,7/2), (=1 in B(zr/3).

Note that if we set

then V" satisfies
1 - N
AV (@) = 5 tr 567DV (z) —b-DV™(z) — f <0 in RN

in the viscosity sense.
We now invoke [ILT, Theorem 2.1] (more precisely, its proof). It is easy to check
that (2.2) and (MP) of [ILT] with K = U and with

F(z,r,p,X)=Ar — %tr&&T(x)X —b(x)-p— f(z)

17



are satisfied. Therefore we see that V,* is a viscosity subsolution of

AV (z) — %tr 567 (2) D2V (z) — B(z) - DV (x) — f(z) <0 in T.

This shows that if ¢ € C?(G) and V;* — ¢ has a maximum over G at z then

0 2AV (&) - 5 1557 (2)D%6(2) ~ b(z) - Dp(z) - ()
>NV (2) — 5 troo” (:)D%(z) — b(z) - Do~ f(2,a),

which completes the proof.
By comparison we have

Vi (z)<U(x) Vred, VneN,

where as before U € C'(G) denotes the solution of (4).
From the definition of V", it is immediate to see that

Vi(z) < VY (z) Ve ed, VneN.

r

Set
VT(z) =supV*(x) Vzredq.

Theorem 4.2. Under the assumptions (A1)-(A8) and (A5), we have

(13) Vvt=U on G.

Proof. Since
Vi (z) <U(x) Vrxeq, VneN,

we have
Vi) <U(x) Vzred, VneN.

Next, we show that VT is a supersolution of (4). Indeed, if we set

W(z) = 7li{(%inf{V,ﬂ"(y) | ly—z| <7, n>rt},

then, since V,* are supersolutions of
(14) \u(z) + H(x, Du(x), D*u(z)) >0 in RV,

18
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we see that W is a supersolution of (14) in the sense that if ¢ € C?(RY), z € RY,
W(z) < 0o, and W — ¢ attains its minimum at z, then we have

AW (2) + H(z, Dp(z), D?*p(2)) > 0.

It is not hard to see that V*(x) = W(x) for x € G. Thus, in order to conclude that
VT is a supersolution of (4), it is enough to show that

(15) W(z) =00 VoeRN\G.

Fix z € R™ \ G and choose R > 0 so that B(z,2R) C RN \ G. We select a function
¢ : RN — R such that ¢ € C%(RY), ¢((2) > 0 and ¢ < —1 on 0B(z, R). (This can be
achieved by taking for instance {(z) =1 — 2|z — z|?.) We fix an upper bound K > 0
of
sup{—% troo’ (x,a)D*¢(x) — b(z,a) - D¢(x) — f(x,a)} + A(z)

a€A
over B(z, R).
Now, for n € N we set
_ n(RA1)
@ (2) = T2 (w)
Then we get
1
A, (z) + H(xz, D, (x), D*®, (z)) — nd(x) < @ —n(RA1) <0.

Since ¢ < —1 on dB(z, R) and by the definition of V,®, V.*(x) > —M/X for all z € R",
we have

O, (zr) <V'(xr) VzedB(zR)

if n is large enough. Hence by comparison we get the inequality
W(z) > &, (z) in B(z, R)

for n large enough, and we conclude (15) by letting n — oc.
Now, by using Theorem 3.2 we see that V+(z) > U(x) for all x € G, and conclude
the proof. QED

Completion of the proof of Theorem 3.5. Fix z € G. Since

J(@,a) = B /[ SO (X )

for all @ € A,(z) and = € R, it is immediate to see that for all z € G, V,*(z) < V,.(x)
and hence V*(x) < V,.(z). As a consequence of (13), we get U(z) < V,.(x) for all z € G.
QED
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5. Proof of Theorem 3.6

Throughout this section we assume (A1)—(A3) and (A5). We adapt some arguments
from the proof of [EHJ, Theorem 4.9]. The main part of proof is divided into several
lemmas.

The first lemma concerns a control problem with I(p) as its control set.

Let p € N and let

b:RN xI(p) = RN, &6:RN xI(p)—RY*, f:RN xI(p)— R.

Assume that b and & are Lipschitz continuous and f is uniformly continuous on RN x

I(p).
We denote by C(£) the set of all controlled systems at & associated with I(p), b, 4.
Set

Cp)={r=0"7"... . eR | ¥ >0, Y =1}
i€l(p)

For v = (v1,72,...,79P) € C(p) we set

Let v € BUC(RY). Let ¢ > 0,£ € RV, and

(Q,F, P {F:}i>0, AW}, {1t }i>0, { Xi }130) € C(€),

where C(£) denotes the set of all controlled systems at & associated with C(p), b, &.
Let h > 0, ¢ € RN and suppose that

Yt = V[gh—1t]lq—1h vt € [Oa OO),

where we used the notation: [z] denotes the largest integer < x for x € R. That is, we

assume that {v;} is a step process with step length ¢~ 1h.

Lemma 5.1. There exist an extension (Q,F, P,{F;}s>0) of a filtered probability
space (2, F, P,{Fi}+>0) and a controlled system

(Q F, PoAF 500 Wi}, {50, { Xt }e0) € C(2)

20



such that
h rorh R
E[/ f(Xt,'yt)e_’\tdt—l—e_’\hv(Xh)] +e> E[/ F(Xy, dg)e Mdt + e Mo (Xy) |,
0 0

where E denote the mathematical expectation with respect to P. In addition, if T > 0,
w €N, and vi(w) =0 on [0,7), then

U (w) # 1 vt € [0,7).

Proof. Let n € N and set for (i,w) € I(p) x £,

q—1n—1
IMw) = |J ke + mhg™'n™" > 4k i (w), jhg !
j=0m=0 k<i
+mh(qgn) ™"+ h(gn) ™Y Ak (W)
k<i
Also set
I ={(tw) |t € I} (w)}.
Note that
Z 1[in (t,w) =1
i€l(p)

and
(16) (@ w), ... 1 (tw)) = n(w) weakly-star in (L°°[0, h])?
for all w € €.

By El Karoui et al. [ENJ] (see also Proposition A.1 in the apendix), there are
Fi4+h(ng)-1—adapted processes

{Mtn’l}t207 SR {Mtnm}tZO
which are orthogonal martingales with respect to the natural filtration,
Fpri=oa(M!M|0<s<tic€Ip))V Fn1ie1h

having the quadratic variational processes

t
(M"’i>t:/ 177 (s, w)ds.
0

21



Moreover, we have
MP = (M., MPP) — My = (M},..., MP)

uniformly on [0, h], as n — oo, P-a.s., where
. t . 1 .
i = [araws W= . w).
0
Note that by (16), as n — oo,

SAES Z 1 (w)dt @ e, = i i= Z V(- w)dt @ 6,

iel(p) 1€1(p)

in Ty for all w € Q.

Define the probability measures Q7, with n € N, and Q on W x Lo X WP with
its natural filtration, by

Q"(B) = P((X",7",M") € B),

Q(B) = P((X,7,M) € B),

where X7 is the strong solution of

t
(17) X =&+ Z / X)L (s, w)ds-l—/ &(X;L,i)dM:’i)
0

iei(p) 79

Note that X} is a strong solution of

(18) Xe=£E+ ) / sw)ds—f—/ot &(X S,i)dM;').

iel(p)

Since the sequence {Q™};>¢ is tight, we may assume that
Q" — Q%

in the weak convergence of measures for some probability measure QQ°°.
For n € Cy(T () x W) we have

/ n(y", M™) P(dw) — / n(y, M) P(dw),
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Since

/( 2)Q" (dzdydz) = /n%M” dw),

/ n(y, 2)Q(dxdydz) = / n(y ),

and, as n — o0,

/ 0y, 2)Q" (dedydz) — / 0y, 2)Q> (dwdydz),

we have

/ 1(y, 2)Q% (dwdydz) = Tim / n(y™, M™)P(dw)
=/77(%M)P(da2) =/n(y,Z)Q(dwdde)~

For any open set U C I'c(p) X WP, define

or(y,z) =1 Akdist ((y,2),U¢) for k € N.

Then
ok(y,2) S 1u(y,z)  as k — oo,
and hence
/1U(y, 2)Q% (dxdydz) = kli_}ngo/(bk(y,z)Qoo(dazdydz)
= Jim [ 66(0,2)Qdndyds) = [ 10(s,2)Qdndyda).
That is,

QYWY xU)=QWN x U).

Therefore, for any Borel B C I'g(p) X wtrp,

(19) Q¥(WYN x B) =Q(W? x B).

Since {M{ }1>0 is an Fyyp(nq)-1martingale, (M) is an F;'~martingale, where
Fp = o(XEMP0<s <ty i€ 1)) A (") (BlTog).

Fix any countable family {f;} C C([0,00) x C(p)). Fix any 0 < s <t < o0, k,m €
N, and any g € Cp(RWVHP+mE)  We have

Eg(Y)(M]" = M) =0,
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where

Y = (Xfl,...,X&,Mﬁ,...,MZZ,’yﬁ(fl),...,’yfl(fm),...,’y&(fl),...,’y{l(fm))

and 0 <t; <ty <---<t, <s. Hence

(20) E"g(n)(2(t) = 2(s)) = 0

where

n:i= (x(tla ;Zﬂ(tk),Z(tl), .. 'az(tk)aytl (fl)a ceey Yty (fm)a e Yty (fl)a e Yty (fm))

and E™ denotes the mathematical expectation with respect to Q".
This is, on the probability space

(WN X FC(p) X Wlp, B(WN X I1(7(;[3) X Wlp)7 Qn)v

with its natural filtration {F}'}:>0, the process {z(t)}+>0 is an F}'-martingale. From
(17), we see that the process {x(t)}+>0 is the strong solution of

(1) o) =€+ mlbor)+ 3 [ olals). ()
iel(p)*°

on the filtered probability space
(WN X FC’(p) X Wlp, B(WN X FC(p) X Wlp),Qn, {ftn}tzo),

where
box(t,v) =b(x(t),)

and

wor)= [ Goa(s,)yldsdy)
[0,t]x C(p)

In (20) we send n — oo, to conclude that {z(¢)};>0 is an F;°-martingale on the
filtered probability space

(WN X Tap) x WP, BWN xTopy x W), Q% {F°}i>0),
where {F7°)}+>0 is the natural filtration on the probability space
(W x Doy x WP BWYN x Toy x WP),Q%).
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Now, from (21), we see that the process {z(t)}:>0 is a strong solution of

(22 z()=€+mon)+ Y / 5(a(s),i)dzH(s)

ieI(p) "

(:£+/[Ot]><0(19)b( el yldsdn) + Z / s))

i€l(p)
on the filtered probability space
(WN X FC’(p) X WlpaB(WN X I‘C’(p) X Wlp)’Qoo’ {ftoo}tZO)'
Similarly we see that x(t) is also a strong solution of

(28) (t)=¢+ /[Ot]xc()b“” (dsd)+ 3 / 2i(s),

iel(p)

on the filtered probability space
(WN x Tay x WP, BWYN x Top x WP),Q, {Fi}i>0),
where {F;};>0 is the natural filtration on
(WN x Loy x WP, BWYN x Ty x W), Q).

Recalling the construction of a solution of (22) or (23), in the standard iteration process
and using (19), we see that the distribution of (x,y, z) on the probability spaces

(WN X FC(p) X Wlp, B(WN X Fc(p) X Wlp)a QOO)
and
(WY X Toy x WP BWN xTopy x WP),Q)

are the same. That is,

Q¥ =Q.
Hence, as n — oo,

Q" —Q

in the weak convergence of measures. In particular we have

{ > / e MF(XP, i) 1 (tw)dt+e (X;;)] —>E{/Ohf(xt,%)dt_,_e—,\hv(Xh) .

iel(p)
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Define the map :
(t,w) = i (w)

on [0,00) x € by
uy(w)=1 if and only if (t,w)e I

This is well-defined since

i€I(p)
on [0,00) x Q.
With this notation, we have
h A h A
S [ e fp i = [ e
iel(p)*° 0
and . .
X{‘z&-l—/ (X, af)ds + ) / &(X2,0)dM™.
0 icl(p) 0
Writing
MM = (N, .. N9,
we have

(N9, N™™); =0
if (i, ) # (n,m), and
t
<Nij>t :/ 1]ind8.
0

By the representation formula for martingale (see, for instance, [IW]), we find an ex-

tension

(Qaﬁ’-ﬁa {ﬁt}tZO)

of
(Qa fa Pa {ft}tZO)

and a standard /-dimensional Brownian motion {Wt}tzo such that
. . t A
(N, ...,NY = / 12 dW, Vi € I(p).
0
Now, choosing n large enough, we see that
h A ho
E[/ (X, v)e Mdt + e_’\hv(Xh)} +e> EU FXP ) dt + e Mo(XD)
0 0
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and

t t
X{‘—§+/ (X7, a7)ds + / F(XT, )1 dW,
0 0

t t
=§+/ b(X?,&?)ds—f—/ (X2, al)dWs.
0 0
Now, fix 7 > 0, w € Q and i € C(p), and assume that
Y (w) =0 vVt € [0, 7).

This implies that
1]?(t,w)=0 VtE[O,T),

and hence
iy (w) #i  Vte[o,7),
which completes the proof. QED

By (A5) and the compactness of 0G, there are a constant r > 0, a sequence
{zj}jer(q), with ¢ € N, of points in 0G|, sequences {fj}jef(q), {nj}jer(q) of C* functions
on RV, and a sequence {a; }ier(q) of a continuous maps : RN — A such that

(24) 0<( <1, 0<n; <1 onRN VjelI(q);
(25) nj=1 on (spt)er Vi€ I(q);

(26) Zje](q) éj (z) =1 Vz € (0G)4r;

(27)

27) the functions « — b(z, a;(x)) and & — o(x,a;(z)) are Lipschitz continuous on a

neighborhood of sptn; for any j € I(g);
(28) o(z,a;(z)) =0  Vae (spté)e NIG, Vj € I(q);
(29) TC(z,b(z,ai(x)),r) CG  Vx € (spt(;)a NG, Vj € I(q).
Fix p € (0,7] and choose a C* function (5 on R" so that

0< CO <1 on RN:
. 0 if ze€ (8G)3p,
Colx) = { 1 if zeRN\ (0Q)s,

Then we have

Co(@) + (1 — Co(x ZCJ =1 VzeRVM.

J€I(q)

We define C* functions ¢; on RV, with j € I(g), by

Gi(x) = (1 = Co(@))¢; ().
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Of course, we have

Z Gi(z) =1 on RV; spt(; C spt é‘j Vi€ I(q).
Jj€lo(q)

Choose a dense subset {a;}ien of A, fix any p € N and define functions b, &, f on
RN x I(p) by

b(x, i) = Co(x)b(x, a;) ZCJ b(z,a;(x)),

J€l(q)
o (x,1) =(C0( )20(x,a:), i (x )%U(w @1(x)), -.rs G ()2 0 (2, Gg (7)),
f( i) =Co(x) f(, a;) Z Cy wa] ).

Jj€l(q)

Observe here that since ¢; € C*(RY), we have
v = (i(a) o (e, 4;(2) € WH (RN, RV).

In order to see this, we only need to recall (see, for instance, [SV, the proof of Lemma
3.2.3)) that if v € C?*(RYN) satisfies v > 0 in RN and |D*y(z)| < M for all z € RN
and for some constant M > 0 then the following inequality holds:

M)1/2

(30) v @) -2 Wl < () -yl VeyeRN.

Select a C™ function 79 on RY so that

0<m<1 onRV,

(z) = 0 if ze€0G,
TWE=11 i zeRN\(0G),,

Note that for all (z,i) € RN x I(p),

b(z,i) = Co(@)no(@)b(x,a;) + Y Ci(@)n;(@)b(z, a;(x)),
Jj€I(q)
ﬂa@=@d@é<>(w%>@<ﬁ (W@axmwﬁgwﬁwww@ﬁaw»
Fla,i) = Go(@mo(@) f(z,a:) + Y ¢(@)n;(@)f (@, a;()).
Jj€I(q)
Set

Cp)={y=@" ) ERP |1 >0, Y 4 =1}
iel(p)
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and define functions b, @, f on RN x C(p) by

= Z ’yi x,1
i€I1(p)
(31) L a(z,7) = (1) 2a(x, 1), (¥1) 26 (2, 2), ..., (V) 25 (x, p)),
e, =Y +fx1i)
\ 1€I(p)

Set
K =1(p) xIo(q) ={(4,4) |i=1,...,p, 1 =0,1,...,q}.

and define b, &, f on RN x K by

13(1:,2,0) =no(x)b(z, a;),
b(z.i,5) =n;(@)b(z, a5(x)) i j>1,
o(x,4,0) =no(x)o(x,a;),
o(z,i,7) =n;(x)o(x,a;(z)) if 7 >1,
(@i, 5) = mo(@) f(x, as),
fla.iyj) =nj(@)f(,a5(2)  ifj>1

Note that for all (z,v) € RN x C(p),

= > 7 Y G@ble,ij),

i€l(p) j€lo(q)
a(z,7) = (712 ¢(@)26(2, 1,0), () 2 C1(2) 26 (2, 1,1), ...y (41)
o pﬁco( )26 (x ,p,o> (77

Z Y G@)f(aig).

i€l(p) j€lo(q)

~—
N
I
—
—~
8
~—
N
Q»
—~
&8
=
—
~—
—~~
)
kS
~—
N

Note also that for all (z,7) € RN x C(p),

\IJ(’Ya l’) = (’YICO(x)a ’YICI (.Z'), ceey 71Cq($)7 ’724.0(1')) ’YZCI(‘T)a ceey 72Cq(x)a
s V()77 G (), 7P (g (7)) € Cp(1 + ).

Associated with the collection C(p), b, @, and f, we define the set C(x) of all controlled
systems at x € R, the cost functional J(x, ) and the value function V(z).

Lemma 5.2. For any e > 0 there are p € (0,7] and p € N such that
Ulx)+e>V(z) Vred.
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Proof. Note that conditions (A1) and (A2) are obviously satisfied with @, b, f,
and C(p) in place of o, b, f, and A. Moreover, a condition much stronger than (A5) is
satisfied for 7, b, f, and C(p). Indeed, we have:

(A8) For any z € 0G, there exists a constant r, > 0 such that
(i) o(z,v)=0 Vz € B(z,r,) N0G, Vv € C(p),
(i) TC(z,b(z,v),r,) CG  Vx€ B(z,m,)NG, v€C(p).

We prove that (A8) is valid. Let z € 0G. Observe that if spt(; N B(z,p) # 0 for
some j € I(q), then B(z,p) C (spt{;)2p. From this we see immediately that (i) of (A8)
is satisfied.

Also, we see that if z € spt (; N B(z,p) NG for some j € I(q), then we have

Cl(z, G(x)b(x, a;(x)), ¢ (x)p) C TC(x,b(z, a;(x)),p) C G.
If z € B(z,p) NG \ spt(; for some j € I(q), then it is clear that
C(z, G (@)b(, a;j(2)), ¢ (z)p) = {z} C G.
Therefore, if z € B(z, p) N G, then we have
C(z, ¢ (2)b(z, a;(x)), (x)p) C G

Note also that (p(x) = 0 for all x € B(z, p) and therefore,

= Y ¢@b(z,a;(x))  V(z,7) € Blz,p) N C(p).

Jj€I(q)

It is easily seen that for some j € I(q) we have

G(2) 2

'Qli—‘

We may assume by relabelling (a;,(;)’s that ¢ is one of such j’s. Reselecting p if

necessary, we may assume that

Cq(x) > Vz € B(Z,p).

1
2q
Fix x € B(z,%). Choose ¢ € (0, p] sufficiently small so that eM < £. Then, if
r€B(z,5),0<t<e and I C I(q), we have
z+t3 (@)b(e, a;(x)) € B(z,g+sM) c B(z,p).

JEL
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By induction we see easily that if x € B(z,4) and 0 <t < ¢, then

B+t ) ((@)b(z,d;(2)),(x)p) € G,

j€l(q)
and hence
:c-l—tZC] b(z,a;(x)), 2£)C§ Vv € C(p).
q
j€l(q)
This yields immediately (ii) of (A8).
We define
_ 1 _ _
H(‘Ta v, X) = sup {__ trﬁT(;L',’y)X - b(l‘, 7) U= f(il?, 7)}

~YEC(p)

for (z,v,X) € RN x RN x 8N. Observe that for all v € C(p),

troal (z,7)X = Z vitraat (z,4),
i€l (p)

and that if x € 0G, then

ﬁ(x,v,X) > —§($) U= X(CE),

where
Z G (2)b(z, a;(x)),
Jj€l(q)
Z G()f (@, a;(x)).
j€l(q)

Note that for all x € 0G,

(€(x), x(x)) € co{(b(z,a), f(x,a)) | a € A(z)}.

Define

o0
W,p(x) = inf E® / e MF(X2 ud)dt Vre RV,
a€eC(z) 0

Since C(p) is convex, by a classical result (see, e.g., [NA, NI1, NI2]), we know that
u = W, satisfies

\u(z) + H(z, Du(z), D*u(z)) =0 in RY

in the viscosity sense, where H : RN x RN x SN — R is given by

H(z,v,X) = arélgé){—%traaT(az, a)X —b(z,a)-v— f(zx,a)}.
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Since F := H satisfies condition (MP) of [ILT] with K = G by virtue of (A8), we
see from ( [ILT, Corollary 2.3]) that u := W, , is also a viscosity solution of

(32) \u(x) + H(z, Du(x), D*u(z)) =0 in G
and that if z € G and « € C(z), then
X¥ed Yt >0 PY-a.s.,
i.e., any element of Cs(x), with = € G, is admissible with respect to G. This shows that

V(z) = W,,(z) Vz € G.

Thus we need only to show that the viscosity solution U, , := V of (32) converges
to U uniformly on G as p \, 0 and p — oo.

For this, we see that M /A and —M /X are a supersolution and a subsolution of (32),
respectively, and therefore by comparison that |U, ,(x)| < M/ for x € G. If we define

U*(x) = gldigosup{Up,p(y) 10<p<é, p>61t yed, ly—z| <6},

and
U.(x) = %i\ir(l)inf{Upm(y) |0<p<d, p>d", yed, |ly—z| <6},

then U* and U, are upper and lower semicontinuous on G, respectively, and u := U*
and w := U, are a subsolution and a supersolution of the problems

\u(z) + H,(x, Du(z), D*u(x)) = 0 in G,
\w(z) + H*(z, Dw(z), D*w(z)) = 0 in G,

respectively, where H, and H* are defined for (z,v, X) € G x RN x SN by,

H*(x,U,X):}i{%inf{Hg(y,q,Y) | (v, ¢, Y)eGXRN xSV, |ly—z|+|g—v|+|Y - X| < r},

H*(x,v,X)z}i\I%sup{Hg(y,q,Y) | (v,4,Y)eGXxRN xSV, |y—zx|+|g—v|+]Y =X| < r}.
Note that for all (z,v, X) € G x RV x SV,
H*(z,v,X)= H.(x,v,X) = H(z,v,X),
and for all (z,v, X) € G x RN x SV,
H*(z,v,X)=H(z,v,X);
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H*(I',’U, X) > _5(1") ‘U= X(‘T)
The comparison result, Theorem 3.1, applied to the problem
in G,

(33) { u(z) + H* (2, Du(x), D*u(x)) > ne

Mu(z) + Hy(z, Du(z), D*u(z)) <
guarantees that U* < U, in G and so U* = U, in G. Since U is a viscosity solution

of (33), we conclude by the same comparison result that U = U* = U, on G. This
immediately yields the uniform convergence of U, ,(z) to U(z) for all z € G. QED

We fix € > 0 and select p € N so that
Ulx)+e>V(r) Vred.

Let h > 0 be a constant to be fixed later.

Lemma 5.3. For any v € RY and § > 0 there is a controlled system @ € C(x) such
that

Vi(z)+d> E( /0 ' e MF(X,,7,)dt + e—AhV(Yh))

and such that {7, }+>0 is a continuous stochastic process, i.e., the function t — 7, is
continuous on [0,00) almost surely, where

a=(QF,PA{Fi}1>0, {Witi>0, {¥: } 130, { Xt }1>0)

and E denotes the mathematical expectation with respect to P.

Proof. Fix any z € G and select a € C(z) so that

h
Be / e MF(XE,uf)dt + e MV (XE) < Vi(z) +
0

N S

Define the stochastic process {v; }:er with values in C'(p) by
ve=uy Vt>0 and wv;=(1,0,..,0) € C(p) Vt<O.

(Here the choice “(1,0,...,0)” is not important and any fixed e € C(p) can be used
instead.)

For k € N we define the F*progressively measurable continuous stochastic process

{wi}ezo by
t
wy = k/ veds.
t—1/k
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Let {XF};>0 be the strong solution of
dXF = b(XF, wh)dt + 7(XF, whawe, Xt==

By standard estimates for solutions of SDE, we get

h
B sup |X7 = XY <GB [ (BOGE uf) ~ BOXE wh)
0<t<h 0
(X u) — o (X wh)
h
§C'2E°‘/ Ju$ — wk|?dt,
0

where C'y and Cy are positive constants independent of k. Here we have used the fact
that the functions &(z,-) are 1/2-Holder continuous on C(p) uniformly in z € RN (see

(30)).

Noting that as k£ — oo,

h
0

we deduce that as k — oo,

h h
E“© e MF(XE, u®)dt — E® e MF(XE, wh)dt] — 0;
. t o Ut ; t s Wt

EY V(X)) = V(XE)| — 0.

Hence we conclude that for sufficiently large k&,
h — —_—
E° / e ME(XF wh)dt < V(z)+6. QED
0

Define functions b*, ¢*, f* on RY x C(p(1 + q)) by

= Z Z “ijg(xaiaj)a

i€l(p) j€lo(q)
a*(a:,m:((uw)% (2,1,0), (1) 26(x, 1, 1), ooy (1P 26 (2, p, q)),

=2 2 wiid),

iel(p) jel(q)

where p = (p'% p'l, ..., uP9). For any z € RY let C*(z) denote the set of controlled
systems at x associated with C(p(1 + ¢q)), b*, and o*.

34



Lemma 5.4. For any x € RN and any § > 0 there is a controlled system

(Q, F, PAFi >0, AWt }i0, {te }e>0, { Xt }1>0) € C* ()

such that

h
V(z)+6 > E( / e M FH (X, ) dt + e_’\hV(Xh)>;
0
e =V (Vmh-16jm-1hy Xpmh-1tjm-11)  VE>0

for some m € N and some F,—progressively measurable C(p)—valued stochastic process
{%}tzo-
Proof. By definition, we have

b(z,v) =b"(x,¥(y,)), o(z,7)=0"(2,¥(7,2),  flz,7)=["(z,¥(7,2))

for all (z,v) € RN x C(p).
Fix z € RN and § > 0. According to Lemma 5.3, there is a controlled system
a € C(x) such that

h
Vix) + g > B¢ (/ e‘”?(Xf‘,'yta)dt + e_’\hV(X,OL‘))
0

and such that {7 };>0 is a continuous stochastic process.
For each k € N, we define the F*progressively measurable stochastic processes
{wi >0 and {pf}i>0 with values in C(p(1 + ¢)) by

pe =¥y, X(), 1Y = [{gh-1 k-1 h-

Recall that for ¢t € R, [t] denotes the largest integer less than or equal to t.
Note that {uf};>0 is a step process with step length k~'h.
Let {X[}:>0 be the strong solution of

dXF = b (XF, uf)dt + 0" (XF, pf)dWe,  X§ =
Since X{* is a strong solution of
dX( = 0" (XP, p)dt + o* (X, p)dWe,  X§ =u,

as in the previous proof, we have

h
B sup | X — XF|] < C3E° / g — e,
0<t<h 0
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where C3 is a positive constant independent of k.
Since

h h
EO‘/ e MF(XY, v dt = EO‘/ e M (X, pg)dt
0 0

and
pk = py  in C(J0, R)) P%-a.s.

as k — oo, we see that for sufficiently large k,
h —_ —_—
E- (/ e M (XE, ukydt + e_’\hV(X,‘f)) <V(z)+6. QED
0

For z € RN let C (z) denote the set of controlled systems at x associated with
K, b, 6.

Observe that the pair of functions b*, o* satisfies condition (MP) of [ILT] with
respect to G. Indeed, it is easy to check that

o*(x,p) =0 V(z,p) € RN x C(p(1+q)),

and arguments similar to the proof of (A8) work to show that for each (z,u) € G x
C(p(1+ q)) there is a constant ¢ > 0 such that

z+th*(z,0) € G Vte[0,cl
Therefore, for any € G and any controlled system

(Q, F, PAFi >0, {Wih>0, {tt }e>0, { Xt }1>0) € CF (),

we have
X, eG Vt>0 P-a.s.

Moreover, for any z € RY and any

(2, F, PAF } 0, {(Wihizo, {t}ez0, { Xt hiz0) € C(a),

if we set
(W) = €4, (w) V(t,w) € [0,00) x €,

where é,, with u = (i, ) € K, denotes the unit vector of RP(1+9) with unity as its (4, 5)
component, then

(QF, PAF:} >0, AWi} >0, {1t }e>0, { X¢ }e>0) € CT ().
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Hence, if z € G and

(Q,F, P, {F: }i50, {Wi }30, {ue 1130, { Xt }130) € C(2),
then

X, eG t>0 P-a.s.
The following Lemma is an easy consequence of Lemmas 5.1 and 5.4.

Lemma 5.5. For any 6 > 0 and any x € RN there are controlled systems

(0 F, PAFi}t>0, {Wi}e>0, Attt }e0, { X Jes0) € CF (),

(Q,F, P, {Fi}1>0, {Wi >0, {us >0, {Xt}tzo) € é(a:)
such that

h
V(e)+0> B / e M (X, ug)dt + e V(X))
0

and such that for any w € Q, j € Iy(q), and 7 € (0, h], if

G X[ (w)=0 on [0,7),
then

w(w) # (6,5)  V(t,4) €[0,7) x I(p).

Proof. Fix z € G and § > 0. By Lemma 5.4, there is a controlled system

(Q, F, P, {Fi}t>0, {We }e>0, {1t }e>0, { Xt }e>0) € C*(2)
such that

h
V(z) + g > E(/ e~ M P (X, pg)dt + e_/\hV(Xh)>;
0

(34) tt = Y (Vmh-14Jm=1h» X[mh-1tJm-1h)

VvVt >0

for some m € N and some F;—progressively measurable stochastic process {7 }+>0.
Next, by Lemma 5.1, there is a controlled system

(€, F, P, {Fi} 150, Wi }e0, {50, { X }e0) € C(2),

where (Q,F, P, {ﬁt}tzo) is an extension of the filtered probability space
(2, F, P,{F;}+>0), such that

h h
E[ / e‘“?(Xt,ut)dt+e_’\hV(Xh)] + g > E[ / F(Xy, ty)e Mdt + e MV (Xp) |,
0 0
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where E denote the mathematical expectation with respect to ]5, and such that for any
7> 0,weQ, and (4,5) € C(p(1 +q)), if 4 (w) =0 on [0,7), then

ﬂt(w) 7é (27.7) vt e [Oa T)'
It is immediate to see that
h
V(z)+6> E[ / F(Xy, dg)e ™ Mdt 4+ e 2V (X))
0

Let w € , 7 € (0,h], and j € Ip(¢g). Suppose that (;(X¢(w)) =0 on [0,7). By (34),
we have
py (w) =0 Y(t,i) € [0,7) x I(p),

and so,
(W) # (4,7)  Vte[0,7).
The proof is complete. QED
For
@ = (,F, PAF}iz0, {Wikiz0, {ue}izo, {Xi}120) € C(),
we set

h
Jne.a) = B /O e F (X ug)dt + eV (X)).

Let m and m denotes the moduli of continuity of f and V, respectively.

Lemma 5.6. For any z,y € RY and any

ar = (Q, F, P, {ft}tZOa {Wt}t207 {Ut}tZOa {Xt}tzo) € CA(il?)a
ay = (U F, P {Fi} 450, Wi b0, {te }ez0, {Yi}ez0) € C(y),

we have
[Ja(@, 00) = Jn(y, ay)l < X~ Hi(Cla — y|) + m(Clz — yl)
for some constant C = C(h, M, no, ...,n4) > 0.

Proof. Note that m and m are non-decreasing concave functions. We calculate
that

h
| (z, ) — Jn(y, )| < E/ e Mi(| X, — Yy|)dt + Ee (| X}, — Yal)
0

h
< r(sup | X, — m)E/ e Mdt + e Em(sup | X, — Y;|)
0

t<h t<h
< A Yn(Esup | X, — Yi|) + Em(sup | X, - Vi)
t<h t<h
< A((Bsup X, = Yil*)$) + (B sup | X, — Yi*)?)
t<

t<h
<A '(Clz — y|) + m(Cla — yl),
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and finish the proof. QED

Completion of the proof of Theorem 3.6. Assume that h < 1. Fix T"> 0 and
m € N so that
AN le MM <e and T<mh<T+1.

By using Lemmas 5.5 and 5.6 we infer that there is a constant
0 =0(h,M,no,...,ng) >0

such that for each € RY there are

ay =(Q,F, P, {Fi}t>0, {Wetiso, {1t }e>0, { X7 }i>0) € CF (o),
bz = (2, F, PA T }iz0, {(Wihizo, {te }i0, { Xt iz0) € C()

having the properties:
(i) ify € B(x,6) and Y; is the strong solution of

{ dY, = b(Yy, uy)dt + 6(Yy, uy)dW,  for t > 0,
Yo = Y,

then .
V(y) +h*> E(/ e M F (Y, u)dt + e_’\hV(Yh));
0

(ii)  for any w € Q, if
GX) =0 on [0, 7)

for some j € Iy(q) and 0 < 7 < h, then
w(w) # (4,5) V(1) €0, 7) x I(q).

We may assume that 20 < p.
We can choose a finite family {Bj}er(y) of disjoint Borel subsets of RY such that

for some z1,...,z, € G.
For each k € I(v) we fix

O‘;k = (Qkafkapka {ftk}tZOa {Wtk}tZOa {Mf}tzoa {Xt*k}tZO) € C*(‘T’V)’
OA‘M = (Qka fkapk: {Tf}tzoa {Wtk}tZOv {uf}tZO’ {Xf}tZO) € é($k)
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so that (i) and (ii) above hold with x = zy.
We define stopping times 77, ..., 7, by

% =inf{t > 0| |X;* — x| > p} Ah.

Set
By =RN\G,

and fix
(Qoa foa Poa {fto}tZOa {Wto}tZO’ {u?}tZO)

arbitrarily so that (Q°, F° P° {F }i>0 is a filtered probability space satisfying
the usual condition, {W?};>0 is an [-dimensional standard Brownian motion on
(Q0, FO, PO {FP}i>0, and {uf};>o is an F-progressively measurable process taking
values in K.

Fix € G. We intend to define a sequence {a, }ner(m) of controlled systems

Qn = (Qn’]}n’ Pn’ {ﬁf}tzo’ {th}tZO’ {ﬂ?}tzo’ {X?}tZO) € é(x)’

together with a sequence {7, },,cr(m) of stopping times.
We may assume by relabelling { By} that € B;. Let th be the strong solution of

dX} = bo(X} ub)dt + 6(X}H ul)dW}l,  Xi ==
Set
Qt=0l, Fl=rt, pP=p., Fl=r Wr=w} al=ul
Define the stopping time 7! by
Fl=inf{t >0 |X} —x1] > p} AT} (w).

Of course, we have

QL FY PYA{F im0, W hso, {4 }es0, { X[ Fes0) € C(),

and

h
V(z)+h2 > El(/ R )t + TR,
0

Here and later E? denotes the mathematical expectation with respect to P?.
Let w € Q! and t € [0, 7 (w)]. Then

sup | X' (W) —m| <p, X[} (W) —a] < p.
0<s<t
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We see from (ii) that if 4 (w) = (4, ) for some (i,j) € K, then
G(X(w) >0 for some s € [0, t],

and hence,
X} (@) = XoH (W) < X (W) = 21| + |21 — X7 (w)] < 2p.

Since n; =1 on (spt(j)2p, we have

By using a standard estimate for solutions of stochastic differential equations, we
get
EF sup | X7 — 2]t < OB,
0<t<h
where C' = C (13, ) is a positive constant and E* denotes the mathematical expectation
with respect to P*. From this we get
Ch?

PE( sup |X7* —ap] > p) < =,
0<t<h P
i.e.,
Ch
p* (tp < h) < —
p*

Similarly, setting
mi(w) = inf{t > 0| |X} (@) —a| > £},

we have 9\ 4
Pl <h)<C(Z) B
(m<m<c()

Since
X} (w) — 21| > p= | X[ (w) — x| >

NI
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we have
P'(# < h) < PY(my < h) + P'(rf < h) < 2C,h?,
where C, := C(2)*.
Set
Gi=F® - F, r=0%...xQ", Q=P'°®..-@ P".
Set
P=0'x%, P’=P'®Q, F2=F'2Gun),-

For w € Q2 we write

w= W w') =W w!? .. w").

Define F72-progressively measurable processes {?}¢>0 and {W2}1>0 by
ui(®)  if 0<t<h,
ub  (w'* if  t>hand X} (w0) € By,
WQ(w) [ WHwY) if 0<t<h,
EETAWE L (W) i t> hand X}Hw0) € By,

respectively. It is easily seen that Wtz is an [-dimensional standard Brownian motion
on (02, F2, P2 {F?}i>0), where
F?i= \/ FL.

>0
Let XE be the strong solution of
(35) dX? =b(X2,a2)dt + 6(X2,02)dW?, — XZ=u.
We then have
(@2, F%, P2 {F 20, AW hizo0, {8 bz, { X7 }20) € C(2).

We set
I={keIy(v)| PY(X}(w) € By) > 0}.

Note that, since

A~

Xl (w)eG Vt>0 Plas.,
we have 0 ¢ I. For k € I we set

Ck = {w € Ql | Xﬁ(w) € Bk},

0*(B) = PY(BnC*)

X VB e FL.
P1(CF)
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Then Q* is a probability measure on (Q', 1) and we have
PY(BNC*) =PY(CHQFB) VBe F
and

=> PY(CHQ¥B) VBeF.
kel

For k € I we set

Q2k — Ql % Qk:, P2k Qk ® Pk ﬁfk — f}% ® fta ka \/
t>0

For k € I let thzk be the strong solution of
X DR Vit + 52, )V, 26 = §
on the filtered probability space
(O2k, F2h P2k {-ﬁ?k}tzo)-
In view of the uniqueness of strong solutions of (35), we see that

o) = X} (w0) if 0<t<h,
t X2, (@O w'®)  if t>hand X}(w°) € B, kel

We calculate that

2h
B[ e i i+ e T
0

/N

h h
E? </0 e Mf(X7,a7)dt + 6_/\}1/0 e MF(X t+ha“t+h)dt+ G_QMV(th))

h
=B [N e
0
h
e MY PUCHEH ([ MO, b @)t + e TR0 0))
kel 0
(where E* denotes the mathematical expectation with respect to probability Q* @ P¥,)

h
< B / MNP ud)dt+ e MY PHCH)ER (V(XR) +12)
0 kel
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by (i) since Q¥ ® P*-almost surely we have X2k ¢ By,
h

h
< El/ e—“f(th,u,})dtJre—*thl(c’f)/V(X,i)@k(dwo) + h?
0 kel

h
:E1/ MF(XH ul)dt + e gth/ (XD 1ce PH(dw®) + A2
0 kel

h
= E! / e MFXY ub)dt + e MV (X )) + h?
0

Ve

< V(z) + 2n%

Thus we obtain
—_— A 2h A~ A —_— A~
V(z) +2h% > B2 (/ e MF(X2,42)dt + e—mV(Xgh)).
0

Define the stopping time 75 by

#1(w) if # (w0 <h
Ta(w) = ¢ h+inf{t > 0 | | X2* (w0, w'* — 2| > p} if 7y (w0) > h and
X} (w®) € By, kel

Fix any w € Q2 and 0 < t < 7y (w). Consider the case when ¢ < h. Then we have

and hence
b(X7 (w), @ (w)) = bo(X7 (w), i} (w)),
5(X7 (W), @7 (w)) = 00(X7 (), i} (),
FXP (W), 4} (W) = fo(XP(w), iF ().

Next we consider the case when ¢ > h. For some k € I we have
X}w®) e B, and 7 (w°) > h.

By the definition of 75, we see that

sup |X;"k(w1k) — x| < p, |X§k(w0,w1k) — x| < p.
0<s<t—h

Using the fact that 7; =1 on (spt(;)2,, we deduce as before that
(0,5, H)(XF (), @* () = (bo, 70, fo) (X7 (w), & (w)).
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We have A A .
P*(7y < h) =P?(7* < h) + P*(h < 7% < 2h)

<P'(h <h)+) P*w’eC* 1i<h)

kel
+ ZP2(wO e Ck, TQk(wO,wlk) < h),
kel
where
2 = inf{t > 0| | X2 — x| > p}.

Note that

Y PO, ') <h) =) PYCF)PH(rf < h) < C,h* Y PYCF) = C,h*

kel kel kel

sz(wo € C’k, TQk(wO,wzk) < h)= ZPI ® P’I"(wO € Ck, Tzk(wo,wzk) < h)

kel kel

=Y PHCH)P*(r*(w°, w?*) < h).
kel

Note also that since
ng € By, P*_as.,
we have

E* sup | X2 — X2k < Ch2
0<t<h

Hence, as before we have
P (1% < h) < O,h2.
Therefore,
Y P e, WO w'F) < h) <C,h Y PYCF) = Coh?,
kel kel
and so

P2(#% < 2h) < 20,k + 2C,h* = 4C,h>.
Inductively we find a controlled system
(™, F™, P {FT Ym0, AW b0, {87 ez, { X7 }20) € C(2)
and a stopping time 7" such that

mh
V(a) +mh? > £ / A+ TR
0

(b, 6, )X, @) = (bo, 00, fo) (X, @) Vtelo, 7™  P-as.;
P™(+™ < mh) < 2mC,h2.
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In view of Lemma 5.1, we find stochastic processes {y}1>0 and {X;};>0 so that

pr(w) = ar(w) YVt €[0,7™(w));
(Qm’ ]':-'m’ Pm, {-ﬁ:ﬁm}tzm {th}t207 {:ut}tZOa {Xt}tEO) S CO (:L')a

where Co(z) denotes the set of controlled systems at = associated with K, bg, oo;

N

Xi(w)eG Vt>0  P™as.

Of course, we have

Setting

O ={w e Q™| ™ (w) < mh}, Qs = {w e Q™ | 7™ (w) > mh},

we compute that
V(@) + (T 4+ Dh> E™g, [ e FORP s
0
L B, / e fo(Xp, )t — T [ V]|oc
0

mh
Z —2M(T + l)pm(Ql) + Em/ B_Atfo(Xt, ﬂ't)dt — &
0

v

Em/ fo(Xy, pue)dt — 26 — 2M (T + 1) P™(£2))
0

v

(e o]
Em/ Jo(Xss )t — 26 — 4MC, (T +1)%h.
0
Choosing h > 0 small enough, we get
A w —_—
Em/ Q_Atfo(Xt, ﬂt)dt < V(.’E) + 3e.
0
In conclusion, there is

(Q, F, PAF i }>0, {Wih>0, {te }e>0, { Xt }1>0) € Co(2)

such that

X, eG Vt>0 P-a.s.;

V(z) + 3¢ > E/ e M fo(Xy, e )dt.
0
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We set,
u = Jai if pe = (i,7) and j =0,
Tla(X) i = (6,5) and j > 1,

and observe that

(Q,F, PAF:} >0, {Wi}iso0, {ts }e>0, { Xt }e>0) € C(2);
E/ 6_>\tf0(Xt, ,ut)dt = E/ G_Atf(Xt, Ut)dt
0 0
If weset E={a; |1€I(p)}U{a;|je€ lo(q)} €&, then Ve(z) < Vg < U(xr)+4e. QED

6. Proof of Theorem 3.7
We prove (ii). Assume (A1)—(A3) and (A5)—(A6).
Define

36 Va)= inf B[ e MO ) £ nd(XP)d Ve e RY,
acC(x 0

for all n € N, where d(z) = dist (z,G) A 1.
By a result of [NA, NI1, NI2], we see that V}, is a viscosity solution of

(37) \u(z) + H(z, Du(x), D*u(z)) = nd(z) in RV,
As in the proof of Theorem 3.5, we see that

(38) Vi(x) := sup Vp(x) = lim V,(z) = U(z) Vr € G.

Fix z € G and let
an, = (Q", F", P" {F[ hi>0, {W] }i>0, {uf }e>0, { X7 }e>0)

be a controlled system at x such that
o0
V(@) 40t > B / e MUF(XP, ) + nd(XT))dt,
0

where E™ denotes the mathematical expectation with respect to P™.
Following for instance the argument of [YZ, Theorem 5.3|, we can find a controlled
system « € C(z) for which we have

liminf J(z, o) = J(z, a),

n—00
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n—00

(o] (e 0]
lim inf E™ / e Md(XM)dt = B / e Md(X®)dt.
0 0

Note that we needed the convexity assumption (A6) in the above assertion. We see
from the latter identity that

E® / e Md(X®)dt = 0,
0

which ensures that a € A(z). On the other hand, the former guarantees that

J(z,a) < lim V,,(z) = Vi(x).

n—>o00

Since Vi (z) = U(z) = V(x), we have J(z,a) < V(z) and therefore,
J(z,a) =V (x).

The proof of (i) is more or less the same as (ii). We use the observations in [EHJ,
KU] instead of those in [NA, NI1, NI2|. QED

7. Proof of Theorem 3.8
In what follows the symbols C.(x), A.(z), and U, denote those defined in Section 3.
Let a be the Lipschitz function from (A7). Let ¢ > 0 and x € G. If

a = (Q%FY P AT b0, AW b0, {ug 0, {X{ Hex0) € A:()

and if we set
vi = Xe (XP)uy + (1 — xe(X7))a(Xy),

then
(Q%, F, P AT Heso, AW b0, {08 heo, { X Hi0) € Al().

Hence,
Ue(x) > V(x) Vz € G.

By Theorem 3.5, we have U(z) < V() for all z € G. Hence we have
(39) V(z) < Uc(x) Vz € G.

Next, arguments similar to the proof of Lemma 5.2 yield that as ¢ \, 0, Ug(x)
converge to the unique viscosity solution of

(40) { Au(x) + H(x, Du(x), D*u(zx)) >0 in G,

u(z) + H,(x, Du(z), D*u(x)) < 0 in G,

48



where

_ H(x,p,X) ifx e G,
H.(zp, X) = { —Ltroo”(z,a(x)X — b(z,a(x)) -p — f(z,a(x))  ifz € dG.

Noting that U is the unique viscosity solution of this problem, we conclude the proof.
QED

Remark. The same arguments as the above proof but with minor changes yield
that the assertion of Theorem 3.8, with (A7) replaced by the following (A9) holds.
(A9) There are a continuous functions ¢ : RV x Ax[0,1) — A and ¢ : RY — A such

that for any A € [0, 1) the functions: (z,a) — b(x, ¢(z,a)), (z,a) = o(z, p(x,a)),
(z,a) — f(z,¢(z,a)) on RN x A satisfy (A1) and (A2), such that for any A €
[0,1),
é(z,a,\) =a  VY(x,a) € (G\ (0G)2r) X A,
b(z,0,0) =do(x)  V(w,a) € (GN (9G)y) x A
and such that for some r > 0,
o(x,do(x)) =0 Vo € 0G,

TC(z,b(z, ¢o(z)),r) C G Vr € GN (0G),.

Here we used the notation: E, = {x € RN | dist (z,E) < r} for E ¢ RN and
r > 0.

8. Proof of Theorem 3.9

Let € > 0. We utilize the functions U,, o., etc defined in the formulation of Theorem
3.8.

We choose a function d € C%2(RY) so that
>0 ind,
d(z) <0 in G°,
d(x) = dist (x,G°) — dist (x,G) in a neighborhood of 0G.

For each n € N we choose a function ¢, € C?*(R) so that

Cu(r) >0, n(r) <0,
T r<n-—
(n(r):{n ET;TL ;

We may assume that the sequence of {(,} satisfies

sup ([ llee + 11¢7 llos) < oo

neN
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Then define the function 1, € C?*(R) by

n

n(—logr r>0),
wam={<( g7) iz@;

~~

Fix v > 0 and choose a function p € C?(R) so that
p(t)=0 Vt>~v,  0<p(t)<1 Vt<vy,  [|pflo <1

For each n € N, v > 0, and 6 € (0,1), we set

g(z,t) = gn,'y,ts(xat) i= Yn(d(z) + 6p(t)).

Clearly, g € C?(RN*1).
In a neighborhood N of G, we have

: tro0” (z,a(2)) D%d(x) + b(z, a(x)) - Dd(x) >

for some constant 3 > 0.
Note that for » > 0,

U4 (r) = = G, (= logr)T <0,

S | =

2 1
)+¢emw>

2
1

1
< (~logr) 55 = —¥4(r) .

) =G~ tog)

We may assume that d(x) = —1 for z € RN with large |z|. Choose § > 0 and p > 0
so small that if z € RY satisfies

-0 <d(z) <p, thenzeN.

We may assume as well that A" C RN \ G/».
Let (z,t) € RN*L. We now divide our considerations into three cases:
Case 1. Consider the case where d(z) +6p(t) < e~ (™1 i.e., the case where we have
either
d(z) +0p(t) <0 or —log(d(x)+dp(t)) >n+1.

Then we have g(y, s) = n near the point (z,t) and hence
1
ge(z,t) + 5 tro.ol (z,a)D?g(z,t) + b.(x,t) - Dg(z,t) = 0.
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Case 2. Consider the case where 0 < d(x)+ 0p(t) < p. We have —§ < d(x) < p. We
compute that

1
gi(z,t) + 3 tro.ol (z,a)D?*g(z,t) + b(z,a) - Dg(x,t)

= ! (d(z) + dp(t)) [5p'(t) + %tr oo’ (x,a(zx))D%d(z) + b(x, a(z)) - Dd(x)

+ SUA() + 50(0)) tro0” (e, a(2)) Di(2) © Dil(x)
< Y (d(z) +0p(t)) (B — 9)

- %(x)lﬁ;(d(x) +0p(t)) troo” (x,a(x))Dd(z) @ Dd(x)
< dn(d(z) +dp(t)) (ﬁ — 65— %(x)ﬁd(xfllDngo) ,

where L is the Lipschitz constant of the function x — o(z,a(x)). We may assume by
replacing 6 and N by smaller ones if necessary that

1
5+ 5L2d(gc)||Dd||3>o < B.
We thus have
1
gi(x,t) + 3 tr agag(w, a)D?g(x,t) + be(x,a) - Dg(z,t) < 0.

Case 3. Now consider the case where d(z)+dp(t) > p/2. In what follows we assume
that n is so large that —log(p/2) < n — 1. Hence,

—log(d(z) + ép(t)) <n —1

and therefore g(z,t) = —log(d(x)+ dp(t)). Thus there is a constant C' > 0 independent
of n such that

1
gi(x,t) + 3 tro.o! (z,a)D*g(z,t) + b.(x,a) - Dg(x,t) < C.
This way we conclude that for any (z,t) € RN¥*!, we have
1
gi(z,t) + 2 tro.ol (x,a)D*g(x,t) + b.(x,a) - Dg(z,t) < C.

Let
a = (% F P AT b0, AW hio, {uf fi>0, { X i>0)
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be an admissible controlled system at z associated with o. and b.. Le., o € A (z). We
apply the Ito formula, to obtain

9(Xi,t) =g(2,0)

+ /Ot (gs(X;", s) + %tragaZ(X;",u‘;)DQQ(X;" s)

+ b (Xs,ul) - Dg(X, s))ds

+ [ Daxe )0
From this, we get

9(XZn T AE) =g(2,0)
TAt 1
+/0 (gs(Xsa s) + gtrasag(X?,u?)DQg(X? s)
+ b (X ud) - Dg(XS, 3)>ds
TAt
+ [ Da(xss) o5
where 7 is the first hitting time of X* after time 7 to the closed set, 0G, i.e.,
r:=inf{t > v | X € 0G}.
Hence, if n is large enough, we have
E%g(Xoat, TAE) < g(2,0)+ Ct vVt > 0.
If n is large enough, then
9(2,0) = —log(d(z) + 6p(0)) < —1log(dp(0)).
We may assume that for each r» > 0,
U (r) S —logr as n — 0o.
Now the monotone convergence theorem implies that
E%[—log(d(X%h,) +0p(T At))] < —log(dp(0)) + Ct vVt > 0.
This implies that 7 = oo P*-a.s. and by the arbitrariness of v > 0 that
Xred Vi>0 P%as.
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If we define
v = Xe (XP)ug + (1 = xe(XP))a(Xy),

then
(Q, F, P AT Hesos AW Hiz0, {vg b0, { X Hi>0) € A(2).

Therefore,
Us(z) > Vo(z) > V() vz € G.

Thus in the limit as € N\, 0, using Theorem 3.8, we get:
U(z) > Vo(z) > V() Vzed. QED

Remark. As the proof above shows, the assumption (A7) of Theorem 3.9 can be
replaced by (A9). Hence the assertion (ii) of Theorem 2, with (A9) in place of (A9), is
valid.

Appendix
Proof of Lemma 3.3
For 6 > 0 we introduce the set

Gs:={z e RV | dist (z,G) < 6}.

Our strategy for constructing a function v with the required properties is to define
1 as a mollification of the distance function

d(x) := dist (z,R™ \ Gs)

with § > 0 small enough.
Fix r > 0 so that

(A.1) B(x + t&o(z),rt) C G (€ 0G, x€ B(z,7)NG, 0<t<r).

Let 0 < 79 < 7/3. Let 0 < § < 1o, 2 € 0G5, and x € B(z,79) N Gs. Then there are
points 2 € G and % € G such that |2 — z| = 6 and |2 — x| < §. Since

|2—2| <20+ |z —x| <3rp <,

from (A.1) we get
B(& +t&(2),rt) G (0<t<r).

Hence,
B(a+ téo(@), 1) + B(0,6) C Gy (0<t <),
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and so,
(A.2) B(x +t&(2),r1t) CGs  (0<t<r).

We may assume that r < 1 and furthermore by choosing rg > 0 small enough that if
y,n € G1 and |y — 5| < ro, then |&o(y) — &o(n)] < r/2. Now, from (A.2) we see that

B(x +téo(z),(r/2)t) C G5 (0<t<7).
From this we conclude that for any 0 < § < r,
B(z + &(z),rot) C G (2 € 0Gs, © € B(z,70) NGys, 0 <t <rp).
Next, for § > 0 we define

es := sup dist (z, d(Gs)).
r€OG
Note that 6 < e5 < co and that es — 0 as § — 0. Fix 0 < § < rg so that if y,n € G;
and |y — n| <es+ 9, then [&5(y) — &o(n)| < 10/2.
Since the function d(x) := dist (x, RN \ Gj) is Lipschitz continuous on RY, it is
differentiable a.e. in RY. Let x € (0G)s be a point where d is differentiable, which
means that there is a unique point & € 0Gs for which

d(z) = |z — z|
Moreover we have .
n = Dd(x) = i
: Tl

We want to prove that
&o(x) - Dd(x) > ro/2.

For this we first note that

B(z,d(x)) C Gs,
B(& + t&o (&), rot) C Gs (0 <t < ).

Then we define the half space
S:={zeR"N|z-n>0},

and claim that

(A.3) B(&y(2),m0) C S.
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To prove this claim, we argue by contradiction. Thus we assume that

B(&(2),r0) \ S # 0.
This implies that
Int B(&o(2),7m0) \ S # 0.
Fix p € Int B(&o(Z),70) \ S. Clearly we have

p-n <O0.

We may assume that |p| = 1. Let ¢ > 0 be a small constant to be specified later, and
set
Te =T — ep.

Note that for some ¢g > 0, if 0 < ¢ < g¢, then
|z — z|? =|r — 2. + ep|* = |d(x)n + ep|?
=d(x)? + €?|p|? + 2ed(x)p - n < d(x)?,

and hence, . € Gs. Furthermore, if 0 < ¢ < min{eg, 7}, then we have |z. — &| < 7o

and therefore, o
G DB(x: +€&o(2),er1) = xc + eB(&o(2),71)

3% —ep+e(p+ B(0,p)) =z + B(0,ep)
for some constant p > 0. This is a contradiction, which shows that (A.3) holds.
Now, from (A.3) we see that
(€o(&) —ron) - n >0,
and hence,
§o(2) - n > ro.

Since |z — Z| < es + §, we have |{o(z) — &o(z)| < 70/2 and therefore,
&o(x) - Dd(z) > ro/2,

proving that
&o(x) - Dd(x) > ro/2  a.e. in (0G)s.

Finally choose a function ¢ € C§°(R¥) so that spt¢ C B(0,1), ¢ > 0, and
Jan ¢(@)dz = 1. For ¢ > 0 define ¢, € C®°(RMN) by 9. = ¢, * d with ¢.(z) =
e~ N¢(x/e). If we choose e > 0 small enough, then ). has the required properties. QED
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Sketch of proof of Lemma 3.4

We give here comments on the proof of Lemma 3.4. As already noted, the same
construction of w in the proof of [IK, Lemma 3.4] yields a function having the desired
properties in our lemma. Unfortunately, the assertion of [IK, Lemma 3.4] is apparently
different and weaker than our Lemma 3.4. The differences are that the function w in
[IK, Lemma 3.4] has only the C! regularity as it stated and that the last inequality

(A.4) Dzw(w,y)é(/’(_lf }I>+C|m_y|2<é ?)

is not in [IK, Lemma 3.4].

We explain how to show these properties of w, the function constructed in the proof
of [IK, Lemma 3.4].

The function w constructed in the proof of [IK, Lemma 3.4] has the form:

w(z,y) =v((x—y) - E@), e —y — (= —y) -EB)EWI?)?,
where £ : RY — R is a O function and v : R? — R is a function in C(R?) N
CHY(R?\ {0}) satisfying the homogeneity property
v(tz) = tv(x) Vr € R? t >0,
and the property
D,,v(z1,0) =0  Vz; € R

To see the C1! regularity of w, define the functions f : R?> =+ R and g : R'*N = R,
respectively, by

f(z) =v(x)? Vr € R?,
g(z.y) = f(z,lyl)  V¥(z,y) e RxRY,
and observe that f € CL1(R?) and that for all z,y € RY,

(A.5) w(z,y) =g((x —y) - &(y), QEW)) (x —¥)),

where
Q) =I-¢®¢.
For the moment we assume that f € C?(R?) and calculate that for all z € R and
y € RV \ {0},

Dog(w,y) = Do, f(w,yl)s  Dyg(a,y) = D, f(x, |y)) =

lyl’
Y
D?cg(l'a y) = Dilf(l'a lyl), DyDyg(x,y) = Dy, Dy, f(2, |y|)Ma
yQuy I yQuy
Dig(a?,y) = szf(xa |y|) |y|2 + DSEQf('Ta |y|)m - D-TQf(x? |y|) |y|3 :
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If we fix R > 0, then, since D,,v(x1,0) =0,
| Do, f (2, [y])] < Crlyl if |z| + |yl < R,
for some constant C'gr > 0, and hence, from the calculations above we have

sup | D?g(x,y)| < oc.
2l +lyl <R

A simple approximation argument and the above calculations show that g €
CLL(RMY). Now (A.5) shows that w € CLH(R2Y).
Next we set

h(Ep) =g -p,QE)p)  (&peRY).

With an approximation argument in mind we may assume that h € C?(R2V). Note
that

w(z,y) =h(E@y),z-y) (r,y € RY),
and that
h( tp) =t°h(&,p)  (&,pe RN, t>0).

By this homogeneity, for each bounded subset B of R there is a constant Cg > 0 such
that for any £ € B and p € RV,

max{h(¢,p). ID¢h(&, )|, |D¢h(&, p)I} < Crlpl?,
max{|Dph(€, p)l, [DpDeh(€, p)| < Cplpl,

Compute that
Diw(x,y) = D;h(&(y),a: - y)a
Dnyw(w,y) = (Dg(y))TDﬁDph(é.(y)aw - y) - D;h(§(y),w - y)a

Dw(z,y) =(DE(y)) DER(E(y), © — y)DE(Y) + DER(E(Y), x — y)
— (DeDph(£(y), z — y)DE(y) — (DE(Y))" DpDeh(E(y), z — y),

to obtain

2 o Ay —A 0 As 0O 0
wo puea= (4 )+ (0 M)+ (0 L)

where

Ay =D2h(E(y),x —y), Az = (DeDph(€(y), = — y))DE(y),
As = (DE(y))" DZh(€(y), x — y) DE(y).
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For instance, for each bounded B ¢ RY and for all z,y,p,q € RY, if y € B, then we
have

0 As p Py _ A _ -
(A a2 ar) (2)(3) =240 -0 < 2l vlalp—d

<Cx(lp - q> + |z — y*|q?)

for some constant C'g > 0, i.e.,

0 4 I -1 2 (10
(AQT —AQ—AQT)SCB(<—I I)+|x_y| (0 I>)

This way we see from (A.6) that for each bounded B C RY, there is a constant Cg > 0
for which

) I = L (T 0 N
Dw(x,y)gCB((_I 7 + |z —y| 0 I) Ve e R", y € B. QED

Proof of Theorem 3.1
We argue by contradiction, and hence assume that

max(u(z) — v(z)) = 0
zelG

for some constant 6 > 0.
If necessary, by replacing u by

(x) == u(x) + (2M + 1)Y(x),
where 1 is the function from Lemma 3.3, we may assume that u satisfies
—&o(z) - Du(z) < -1 Vz € 0G

in the viscosity sense.
Let w € CY1(G x G), r > 0, and C > 0 be from Lemma 3.4.
Let L > 0 and consider the function

O(z,y) = u(x) —v(y) — Lw(z,y)
on the set G x G. We select #,9 € G so that | — g| < r and
O(2,9) = sup{®(z,y) |2,y € G, |[x —y| <1}
note that ®(z,9) > 0. By choosing L large enough we may assume that
sup{®(z,y) | z,y € G, |z —y| =71} <0,
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and hence that |z — g| < r.
Now suppose for the moment that & € 0G, which immediately yields that

§o(2) - Dyw(2,9) < 0;
—&(2) - Dow(z,y) < -1

This a contradiction, which shows that & € G.
Since

A A I -1 A I 0 FN
et opoi.c(( L, ) +-ir (§9)) et

there are matrices X,Y € SV such that

(0 ) =se(( ) we-e(y 7))

Since u and v are a subsolution and a supersolution of (7) and & € G, we have
Mu(z) + H(z, LD yw(z,79),X) <0
() + H(y, —LDyw(z,9),—Y) > 0.
Computations parallel to those in the proof of Theorem 4 yield
trool (#,a)X + troo? (§,a)Y < ANCLM?|z — 4|2,
and
b(#,a) - Dyw(Z,9) + b(9,a) - Dyw(,9) < 2MC|z — g|*.
Thus we obtain
0 Z)\(U(.’i‘) - /U(g)) + H(i"v D.’Ew(i‘a Q)a X) - H(Q: Dyw(a“:, g)a _Y)
>N — ANCLM?|& — g*> — 2MC|z — 9|* — M|z — g|.

Now, noting (see e.g. [CIL]) that L|& — ¢§|> — 0 as L — oo, we get a contradiction,
0 > 6, from the above inequality as we let L — oc. QED

An approximation of Ito integrals

Let {\¢};>0, with i € I(m), be stochastic processes with values in [0, 1] on a filtered
probability space (2, F, P, {F;}+>0) satisfying the usual conditions. Assume that the
processes {\i};>0 are F;—adapted, that

Y Aw)=1  Vt>0, VweQ,
i€I(m)
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and that for all ¢ € I(m),
A(w) = Ay(w)  VE>0, Vw e Q,

ie.,

M(w) = A (w) if ke NU{0} and k<t <k+1.

Fix n € N. Define intervals depending on w € € as
_ J 1 ! J 1 !
i) = [k 24 23 M), k4 T+ MW)).
1<i 1<i
where k € NU {0}, j € {0,....,n— 1}, and ¢ € I(m). Set
oy —krl iy
k(W) =k+ " + o Z k(W)
1<i

for k e NU{0}, j € {0,...,n — 1}, and ¢ € I(m + 1). Note that for each w € Q, the
family of intervals If! ; ;, with k € NU{0}, j € {0,...,n—1}, and ¢ € I(m), are mutually
disjoint,

Il?,j,i(w) = [GZ,j,i(w), Z,j,i—l—l(w))v

and

U 12;iw) = [k+ i,k+j+1).
i€I(m) n n

For k € NU {0}, j € {0,.....,.n — 1}, and i € I(m) we define %3 : [0,00) x Q —
[0,1/n] and ™" : [0,00) x Q — [0,00) by

¢
. (N (@)™ 1 i(w)(S)dS if A\ (w) >0,
¢7’L,k,],l(w) — 0 7 .
¢ )0 if /\}'c(w) =0 and t <6}, (w),
1 if Ay(w)=0 and ¢t >0}, (w),
and
) oo n—1 o
Pt (W) =D ) et w).
k=0 j=0

It is clear that for each w € 2, the function: ¢ — go?’i (w) is non-decreasing and right-
continuous on [0,00). Note that if ¢t > 0 and (k,j) € N U {0} x {0,...,n — 1} satisfy
k+21 <t<k+ZH then

W) = k4 2+ W),
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In particular, we deduce that

lim W) =k+2L ifk>1,
tk+L n

and

(1) lpPRdd(W) —t < = WE>0, Yw € Q.

3

Observe that for each ¢ > 0, the random variable go?’i is a stopping (or Markov)
time relative to (Q, F,P,{Fi}+>0). To see this, let k € NU {0} and j € {0,...,n — 1}
satisfy k+ 4 <t < k+ 211,

Fix T > 0. Consider ﬁrst the case when T' < k + % Then we have

T < o (w) Yw € Q,

and hence,
B::{wGQ]cp?’z(w)gT}ZQG}"T.

Next consider the case when k + 2 < T <k + J+1 By the definition of ;" Rt we see
that if A% (w) = 0, then

@?z()ST — t<9k:_77,()

and if A} (w) > 0, then

(p?’i(w) <T <= t- Z“(w) <A (w) (T — k- %) .

Hence, we have
B:{w€Q|)\?€( )_0 t<9k]z( )}

U{w€Q|)\§c(w)>0, t— 0i(w) < AL(w) (T—k—%)}efkc}}.

Finally, if T > k + %, then we have

. i1
go?’z(w)ﬁk+j+ <T VYweqQ,
n
and so, B = Q € Fpr, concluding that go?’i is a stopping time relative to

(Qafa Pa {ft}tEO)-
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Let {W{}i>0, with i € I(m), be independent d-dimensional standard Brownian
motions on (Q, F, P, {F; }+>0). Fix i € I(m). Define

s =Fni={B e F|BN{eM < T} e Fp VT > 0}.
Define X™* : [0,00) x © — R% and M™® : [0,00) x Q — RY, respectively, by

XM (w) = W"n,i(w)(w)a

Pt

and for any (t,w) € [0,00) x Q,if ke NU{0} and k <t <k +1,

(2) MM w) = Y (W) (G (@) — X (w))
0<p<k—1

+ (A (@) (X (w) — X' (W)

By virtue of the optional sampling theorem due to Doob ([IW, Theorem 6.11}),
we see that the process {X;""}i>0 is a G;"'—martingale. It is easily seen that for all
(t,w) € [0,00) x €,

M{ (w) = Z()‘ﬁv(w))% (XZL/\,ék+l)(w) — X3 (@))-
k=0

Now observe that {Mtn’i}tzo is a G;—martingale. Let 0 < s < t and k € NU{0}. If
s < k <'t, then we have
B (N (Xl — X100 1 927)
= B ()P B (XXl — Xk 1 977) 1927)
= B (()* (xp* = xp7) | g2
=0= (A;’C)%(X;LA’%'(HI) — X7L).
If £ < s, then we have
B (W)} (Xl — X000 | 62
= O (B Ry 1629 = X27)
= ) F (X = X330
Next, if ¢ < k, then

E ()} (X3l 0) — Xiki) | 927)

i\ L n,i n,i
=0= (/\27) ? (Xs/\(lc—i—l) B Xs/\k:)'
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Thus we see that
E (Mz%z | gn,z) — Mn,i'

Note that the process {M}"*};>0 is a continuous process. Indeed, for any w € Q and
k € N U{0} the function

Frt= Ab(w)? (X (W) - Xpiw)

is continuous in [k, k + 1). Moreover, we have

Jim f(0) = ()T (K (@) - X)),

and therefore,

1' Mn,z — Mn,z — 1‘ Mn,i .
t/%km+1 ¢ (w) k+1(w) t\fﬁl i (W)

This shows that for each w € Q the function : ¢ — M]""*(w) is continuous on [0, oc).

Note also that the process { X} ’i}tzo is right—continuous. We use the notation:

Wiw) = W W), X () = (X (@), e X770 (W),
M (W) = (M (W), ey M (W),

Fix any o € I(d) and i € I(m). Since {(W}®)2 — t}i>o0 is an Fy-martingale, the
optional sampling theorem guarantees that {(X[""*)? — ¢["*};50 is a G;”*~martingale
and hence that

(X5 = gy

Next, fix any £ € N U {0} and observe that for k < s <t <k +1,
N2 , , . N2 o , . .
(Mtn,z,a) — (Msn,z,a)2 + )\’;c (X;L,%Oz _ X;’L,’L,Ot) + 2(/\7],6)5M:,,'L,a (X;nﬂ,a o X;’L,Z,a) ,
and
n,i,a 2 n,i
B((M])" | g
n,i,a\ 2 7 n,i,0 2 n,s n,i,o n,%,0 n,i n,i,a\ 2
:(Ms”) +)‘k{E((Xt ) |gs’)_2Xs”E(Xt |gs,)+(XsH)}
+2(N)E MPE (B(X | G3) = X10°)
= (M)’ + X (B | gm0) — i)
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Similarly, for £ < s <t < k+1 and for «, § € I(d), with a # f3, using the independence
of
oW =W} | k<7<k+1) and oW’ -W)P | k<7t<k+1)

we have
E (MtnﬂaaMtnﬂaﬁ | g;’b,l)
o Mn,i7OCM’n,7:,B
+ (/\i)%[M:,i,aE(XZ%,i,B _ X;L,i,ﬁ | gn,Z) + M:,i,BE(XZL,i,a _ X;L,i,a | gn,i)]
+ )\ZE[(Xfyi,a _ X;L,i,a)(XZL,i,a _ X;m’,a) | gg,z’] — M:,i,aM;L7i7ﬁ'

Therefore, we conclude that

t
<Mn,i,a>t _ / X'g,i(w)dS,
0
<M'n,,i,oz’ M'n,i,ﬁ>t =0 if o ?é ﬁ,
where

n—1
n,i _ —
Xt (w) = Z Z 1Ig,j’i(w)(t) =1 ;°=0 7;01 Ig,j,i(w)(t)'
keNu{0} j=0 J
To continue, we need the following proposition.
Proposition A.1. Let (Q,F, P) be a probability space. Let {A;}", be a family of
sub-o—fields of F. Assume that Ay, A1, ..., A, are independent. Let F;, with i € I(n),
be sub-o—fields, respectively, of Ao V A; such that Ay C F;. Set

Let X be an Ag V A1-measurable random variable. Then we have

E(X|G) =EX|F) as

We give a proof of this proposition later, and now continue our discussions.
Define

H?,i,a — }—[t] vV O.(M;‘b,i,a _ M['f;],i,a | [t] <s< t),

for all n € NU{0}, i € I(m), and a € I(d), By the construction of M""® (see (2)), we
see that

g(MpH* = M | [(] < s <t) Co(Wi* =W [ 1] < s <[t] + 1),
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and therefore, that

Fupp o(MPH = Mgt [ [1] < s <t), with (i,a) € I(m) x I(d),

are independent. It is clear that {#}""*},>0 are non-decreasing ofields for all (n, 4, a) €

N U {0} x I(m) x I(d).
Since H;""* C G and M;""“ is H;""*—measurable, it follows that {M;""*};>0

is an H™%*-martingale and that
. t . . .
(M™5), = / X5'ds and (M””’O‘,M"’W)t =0 ifa#p.
0
Define

HD = \/ H oo
(t,a)EI(m)xI(d)

for t > 0 and n € NU {0}. Using Proposition A.1, we deduce that {M™%*};5, are all
HP-martingales and that for all ¢ > 0 and (n,i,a) € NU{0} x I(m) x I(d),

t
ey = [ i
0
In view of (1), we see that as n — oo,
X[ w) = Wi(w)
almost surely for all (¢,4) € [0,00) x I(m), and hence, from (2) that as n — oo,

M W) = Y (W) (Wi (w) — Wi (w))
0<p<[t]

+ (X)) (W (w) — Wy (w))

almost surely for all (¢,7) € [0,00) x I(m). Recalling the definition of the Ito integral,
we observe that as n — oo,

M (w) = /0 (N (w)) FaW?

almost surely for all (¢,4) € [0,00) x I(m).

Proposition A.2. 1) {M"}y>0 are HP—martingales for all i € I(m). 2)
Hy C Fypn. 8) Fort>0, (n,i) € NU{0} x I(m), and o, B € I(d),

t
(M™e), = / Xitds and  (MMRC MM =0 if o B,
0
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where
oo n—1

=N 1 =1 . g (.

k=0 j=0 k=0 \Jj=0 "k.,j,¢

t

1) M (w) — / (N ()2 AW for all (t,1) € [0, 00) x I(m) as n — oo,
0

We now present a proof of Proposition A.1. We begin with a lemma.

Lemma A.1. Let A, B, and C are complete sub—o—fields of F. Then

(AvB)NC=(ANC)V(BNC).

Proof. Set
S={ANB|Ae€ A, BeB}
T:{ U Si|m€N, 5168}
1€I(m)
Then 7 is a subfield of F. That is,
1) 0,Q€eT,

2) TeT =T €T,
3) meN, T, €T VieIlm) = |J TieT.
i€I(m)
It is well-known that any set D € AV B can be approximated by a set in AU B,

i.e., for any ¢ > 0 and D € AV B there is a set E € T such that P(DAEFE) < &, where
DAE = (D\ E)U(E\ D).
Fix D € AV B. For each j € N we choose a set £ € T so that

P(DAE;) < *.
j

The set E; can be represented as
Ej = U Ajz‘ N Bji
i€ I(k)

for some k € N, where A;; € A and Bj; € B, and we may assume that the sets 4N B,
oy Ajx N By, are mutually disjoint.

Set
Fj= |J DnA;nBj.
i€I(k)
It is clear that F; € (ANC)V (BVC) and F; C D. Noting that

P(D\ F}) < P(DAE) < %
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we observe that if we set

F=|JF,

JEN
then
FcD, P(D\F)=0 and Fe(ANC)V (BNC().
Setting
N =D\F,
we have

D=NUFe(AnC)Vv (BNC(),
because of the completeness of A, B, C. QED

Proof of Proposition A.1. By replacing A; and F; by their completions if
necessary, we may assume that A; and F; are all complete.
For i € I(n) set
Bi = F;NA;.

Then we have
Fi=AoV B; ViGI(TL).

Indeed, since F; C Ag U A;, using Lemma A.1, we have

Also we have
G=AoVBLV---VB,.

Define
n
i=2
Then we have
G=FVH.

It is easy to see that F; and H are independent, and Aq V Ay and H are independent.
Set
¢ =E(X | F1).

By definition, we have
E(pf)=E(Xf) for all bounded F;—measurable f.
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For any bounded F;-measurable g; and any bounded H-measurable g5, we have
E(Xg192) = E(Xg1)Eg2 = E(pg1)Egs = E(pg192)-
Hence, we have
E(Xg) = E(¢g) for all bounded G—measurable g.
Since ¢ is G-measurable, we conclude that ¢ = E(X | G) almost surely. QED
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