A class of stochastic optimal control problems
with state constraint
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Abstract We investigate, via the dynamic programming approach, op-
timal control problems of infinite horizon with state constraint, where
the state X; is given as a solution of a controlled stochastic differential
equation and the state constraint is described either by the condition that
X; € G for all t > 0 or by the condition that X; € G for all t > 0,
where G be a given open subset of RY. Under the assumption that for
each z € OG there exists a, € A, where A denotes the control set, such
that the diffusion matrix o(x,a) vanishes for a = a, and for x € 9G in
a neighborhood of z and the drift vector b(z,a) directs inside of G at z
for a = a, and £ = z as well as some other mild assumptions, we estab-
lish the unique existence of a continuous viscosity solution of the state
constraint problem for the associated Hamilton-Jacobi-Bellman equation,
prove that the value functions V associated with the constraint G, V,. of
the relaxed problem associated with the constraint G, and V}, associated
with the constraint G, satisfy in the viscosity sense the state constraint
problem, and establish Holder regularity results for the viscosity solution
of the state constraint problem.
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1. Introduction

We investigate optimal control problems of infinite horizon with state constraint via
the dynamic programming approach.

To explain our control problems, we first introduce the controlled systems « at
z € RY as the collections

a= QY F*AF beso0, PO AW b0, {uf >0, { X }e>0),
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where (Q%, F*, {F{ >0, P®) is a filtered probability space satisfying the usual condi-
tion (see e.g. [YZ]), {W}i>0 is a standard I-dimensional Brownian motion on this
filtered probability space, {ug }+>0 is an {F§*}+>0-progressively measurable process tak-
ing values in a given control set A, and {X*};>0 is a strong solution of the stochastic
differential equation

(1) dX, = b(X,, u2)dt + o( Xy, u®)dWe, X, =z,

where b: RN x A =5 RN and 0 : RN x A — RN @ R! are given functions. The set of
controlled systems at x will be denoted by C*.
Let G C RY be a given open set. For each z € G, A(z) denotes the set of those
a € C” for which
XredG (t>0) P%-as.

Now let A > 0 be a given constant. The cost functional and value function are
defined, respectively, as

(2) Iw,a) = B° [ TN (X ug)de
0

for all z € RY and a € C*, where E® denotes the mathematical expectation with
respect to P, and

(3) V(z) = adlny” (z,)

for any z € G.

In the dynamic programming approach, one of most important aspects is the identi-
fication of the value function as a solution u of the associated Hamilton-Jacobi-Bellman
equation, i.e., the equation

\u(z) + H(z, Du(z), D*u(z)) = 0,

where

H(z,p, X) = sup{~ tro0” (z,0)X ~ b{z,a) -p ~ f(z,0)}.
a€EA

As is well-known, the value function V' is not so smooth in general that the Hamilton-
Jacobi-Bellman equation above makes the classical sense. It is nowadays well recognized
that the best way to interpret the Hamilton-Jacobi-Bellman equation above is to adapt
the notion of viscosity solutions. In this paper we mostly study our control problems in
this line.



The study of optimal control with state constraint in this framework goes back to
P.-L. Lions [LB], where the case of all possible states being confined in a given bounded
set was studied for deterministic control problems, i.e. the case when ¢ = 0. Later,
H. M. Soner [S] developed the theory of optimal control with state constraint in the
deterministic case, especially introducing a sufficient condition for the continuity of the
value function, introducing an appropriate boundary problem for the corresponding
Hamilton-Jacobi-Bellman equation and identifying the value function as the unique
continuous viscosity solution of this boundary value problem. Many other authors
contributed to develop further in this direction. Here we refer in particular to the
formulation in H. Ishii and S. Koike [IK], which is a modification of the value boundary
problem introduced by Soner, which has the advantage to have uniqueness of viscosity
solutions among bounded (and possibly discontinuous) functions, and which we rely on
in this paper.

In the stochastic case, the first contribution is due to J.-M. Lasry and P.-L. Lions
[LL] and in their paper they dealt with the case of nondegenerate diffusion (i.e., the
case where o = the identity matrix) and unbounded drift b so that the value function
behaves singularly near the boundary 0G. M. Katsoulakis [K] initiated to study the
case where diffusion depends on the control and degenerates on the boundary. G. Barles
and J. Burdeau [BB] studied the Dirichlet problem for degenerate elliptic equations,
obtaining a continuity result for the value functions under the assumption that the
diffusion coefficient depends only on the state variable but not on the control (i.e.,
o = o(z)). The study of the Dirichlet problem was further developed by G. Barles and
E. Rouy [BR].

The main results of this paper concern: (i) the identification of value functions of
different control problems as the viscosity solution of

(@) { Au(z) + H(z, Du(z), D*u(z)) >0 (7 € G),

\u(z) + Hip(z, Du(z), D*u(z)) <0 (z € G),

where
H;,(z,p, X) = suI() ){—l trool (z,0)X — b(z,a) - p— f(z,a)},
acA(z

with A(x) the subset of A consisting of those a such that o(x,a) = 0 and b(x, a) directs
inside of G at x (see the next section for the precise definition of A(x)), and (ii) the
Holder regularity of the value functions.

Regarding the identification, our results are close to those obtained by [BB] and
the new feature beyond [BB] in our result is dependence of o in a. Related results
can be found in [BR] in the framework of the Dirichlet problem. On the other hand
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our degeneracy assumption on o on the boundary is stronger than those in [BB] and
[K]. [K] studies a different case from ours, at least, for the continuity result of value
functions. In our results we consider three kinds of value functions, the identification
of which is new in the setting of stochastic control. For the deterministic case, we refer
to [L]. Again the Holder continuity is new in the setting of stochastic control. To our
knowledge, in the literature just the continuity of value functions is studied. For the
deterministic case, we refer to [CDL], [LT], and [IK]. Many results of this paper can
be extended to the case of differential games problems, we will not pursue this here in
order to make the paper concise.

2. Statements of the problems and main results
Let A be a compact, convex subset of a Euclidean space R™ and let

oc:RY x4 -5 RN@R!, b:RY x A - RY, f:R¥x AR,

be given functions which satisfy:
(A1) there is a constant M > 0 such that for all z,y € R and a € A,

max{|o(z,a)|, [b(z,a)|, |f(z,a)[} < M;

max{|o(z,a) — o(y,a)l, [b(z,a) = b(y, ), |f(z,a) — f(y,a)|} < M|z —yl.

(A2) there exists a continuous function w : [0, +0c) — [0, +00), with w(0) = 0, such
that

max{|o(z,a) — o(z,d)|, [b(z,a) = b(z,d')|,|f(z,a) - f(z,d)]} <w(|a—d)),

for all a,a’ € A, Vz € RY.
Other assumptions we need are:
(A3) G is an open, bounded subset of RY;
(A4) for any z € 0G, there exist 7, > 0 and a, € A such that

(5) o(z,a,) =0 (z € B(z,7r,) NOG),
(6) B(xz +tb(z,a,),7,t) CG (x € B(z,r,)NG, 0<t<r,);

(A5) for each z € RY, the set {(0c0T (x,a),b(x,a), f(z,a)) | a € A} is convex.
In one of main results we need additional regularity assumptions on ¢ and b as well
as an assumption similar to but slightly different from (A4):

(A6) sup [|lo (-, a)”W?vw(RN) < oQ;
a€A



(A7) there is a constant M > 0 such that for all z € RY and a,d’ € A,
max{|a(m, G,) - 0-("1;7 al)‘a ‘b(]}, a) - b(.’lf, al)|} < M‘a’ - al"

Moreover there are a Lipschitz continuous function @ : RN — A and a constant
r > 0 such that

o(z,a(x)) =0 (x € 0G);

B(z + tb(z, a(z)),rt) C G (xe@n U B(z,1)).
z€0G

Remark The boundedness assumption in (A3) could be replaced by the uniformity
in z in (A4) in the results of this paper. Moreover the Lipschitz continuity of f in
(A1) is only needed to obtain the Lipschitz property of the solution of (4), and it can
be replaced by the Holder continuity or just the continuity of f in x in the assertion
of Holder continuity of solution of (4) or in other results, respectively. Regarding the
latter half of (A7), under assumption (A2) this condition with the Lipschitz continuity
requirement on d replaced by just the continuity is weaker than (A4). This weaker
assumption can be used in this paper in place of (A4) although we did not do so.

First of all we consider the problem (4). To be precise, we let A(x), in the definition
of H;y,, be the subset of A consisting of those a such that there is 7 > 0 for which (5)
and (6) hold with z, r, and a in place of z, r,, and a,.

Remark H;,(z,p,X)=H(z,p,X)if z € G.
Theorem 1. Assume (A1), (A2), (A3), and (A4). Then there exists a unique viscosity
solution U € C(G) of the problem (4).

The theorem above extends the existence and uniqueness result in [IK]. We refer the
reader to [BR] for results closely related to the above, in which the “strong” comparison

principle has been established under a similar but more general assumption.

Representation of the solution.

First Control Problem : state constraint in G

The control problem with state constraint in G is already described in the introduc-
tion. The value function V associated with this control problem is defined by (3) with
help of the sets A(z), # € G. For each x € G we call a controlled system o € A(x)
admissible at = € G, i.e., o € C® is admissible if X satisfies

XredG (t>0) P%-as.

Second Control Problem : relaxation.



Let M(A) denote the set of probability (Radon) measures on A. Define s : RN x
M(A) — SLY by

1/2

s(z, ) = [% / /A  (0(@.0) = 0(e.0)) (0 (z. ) — o(a,))" u(da)p(da)
We set
Gz, p) = (/A o(z,a)u(da), s(x, u)) e RN @ RV,
bz 1) = /A b(z, @) u(da),
fla, ) = /A f(z, a)u(da)

for (z,pu) € RY x M(A).
As before we define the set 5”” for x € RY as the set of the collections

a = (Q% F* AF >0, P AW b0, {08 F >0, { X He>0),

where (Q%, F*, {F}i>0, P*) is a filtered probability space satisfying the usual con-
dition, {W}s>0 is a standard (I + N)-dimensional Brownian motion on this filtered
space, {pg }+>0 is an {F }i>o—progressively measurable process taking values in M (A),
and {X{}:>0 is the unique strong solution of

dX = (X7, puf)dt + (X7, pg)dWy,  X§ =
We define jl\(ac) for z € G as the set of those o € C® for which
XreG (t>0) P%-a.s.

Finally we define the (relaxed) value function V,. by

Ve(z) ;== inf Ea/ e MF(XE, ud)dt (z € G).
a€cA(z) 0

Third Control Problem: state constraint in G

We are as well interested in state constraint problems where the trajectories are
required to stay in G for ¢t > 0. For each z € G we call a controlled system o admissible
with respect to G at z € G if

Xred (t>0) P%as.
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The set of admissible systems a with respect to G at = will be denoted by Ag(z).
The value function corresponding to Ag(z) is defined as

(7) Vo(z) = aeljllf(a:) J(z, )
for any z € G.
Main Results
A Representation Theorem.
Theorem 2. Assume (A1), (A2), (A3), and (A4). Then: (i) If either (A5) or (A7)
18 satisfied, then

U(z) =V (z) in G.

(ii) If (A6) is satisfied, then the unique viscosity solution U of the problem (4) has the
representation
U(z) =V, (x) in G.

(iii) If OG is of class C* and (A7) is satisfied, then

U(z) = Vo(x) in G.

In other words, under the assumptions above, the value functions V', V,., and V}, are
viscosity solutions of (4) and therefore, by the uniqueness of viscosity solutions of (4),
they are the same function.

A Regularity Theorem.
Theorem 3. Assume (A1), (A3), and (A4). There is a constant k > 0 such that for
each v € (0,1], if A > kv then the viscosity solution U of (4) is Hélder continuous with
exponent .

Theorems 2 and 3 immediately yield Holder estimates of the value functions V', Vg,
and V,. under appropriate assumptions.

3. Proof of the main results
We begin with the preparations for the proof of Theorem 1.
Let (£0,m0) € C(0G, RN x R) be a function such that

(o(2), mo(x)) € co{(b(z,a), f(x,a))[a € Alz)}  (z € 0G),

such that & is Lipschitz continuous on G, and such that for some constant r > 0,

B(x +té&(z),rt) CG (€ 0G, 0<t<r).



By an argument utilizing partition of unity, we see (see e.g. [IK]) that under the as-
sumptions (A1), (A3), and (A4) there is a function (&g, 79) satisfying these requirements.
Assuming (A1), (A3), and (A4), we fix such a function (§p,70) in what follows.

We consider the problem

®) { \u(z) + H(z, Du(z), D*u(z)) > 0 (x € G),
\u(z) + Ho(z, Du(z), D*u(z)) < 0 (r € @),
where
H(z,p,X) ifx € G,

Ho(x,p,X) = { —&)(:E) -p— 7]0(3;) if z € 0G.

Since Ho(z,p, X) < Hin(x,p, X) for all (z,p, X) € G x RN x SL¥, it follows that any
viscosity subsolution of (4) is a viscosity subsolution of (8).

Theorem 3.1 Assume (A1), (A3), and (A4). Let u and v be a viscosity subsolution
and a viscosity supersolution of (8), respectively. Then u < v on G.

For the proof of this theorem, we adapt the arguments from [IK] to our case.

Theorem 3.1 and the remark preceding the theorem immediately yield the following
Theorem 3.2 Assume (A1), (A3), and (A4). Let u and v be a viscosity subsolution
and a viscosity supersolution of (4), respectively. Then u < v on G.

The following two lemmas are needed for our proof of Theorems 3.1 and 3.
Lemma 3.3 Assume (A1), (A3), and (A4). Then there exists a function p € C*(G)
such that

&o(z) - Dyp(z) > 1 (z € 0G).

For a proof of the lemma above see [IK, Lemma 3.3].
Lemma 3.4 Assume (A1), (A2), (A3), and (A4). Then there exist w € C11(G x G)
and constants C' > 0, r > 0 such that

&o(z) - Dyw(z,y) <0 (z € 0G, y € GN B(x,1)),
and for all z,y € G,

|$ - y|2 S ’lU(Jf,y) S C|$ - y|27
max{|Dyw(z, y)|, |Dyw(z,y)|} < Clz —yl,
|Dyw(z,y) + Dyw(z,y)| < Clz —y?,

) I —I L (I 0
D<ol ) et (§9),

where D?w in the last inequality should be understood in the distributional sense.
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This lemma is similar to [IK, Lemma 3.4], but we need here the stronger version of
the above form. A sketch of proof of this lemma can be found in the Appendix.

The proof of Theorem 3.1 is a combination of the proof of [IK, Theorem 3.1], which
is a comparison proof for first-order PDE and the standard techniques for second-order
PDE, which can be found e.g. in [CIL]. However, we give the proof of Theorem 3.1 for
the interested reader in the Appendix.

Proof of Theorem 1 The uniqueness of viscosity solutions of (4) is a direct

consequence of Theorem 3.2.
Let M > 0 be the constant from (A1). Define g* : G — R by

gE(x) == M/
Clearly, g™ and g~ are a viscosity supersolution and a viscosity subsolution of
\u(z) + H(z, Du(z), D*u(z)) = 0 (x € G),

respectively.
Let (£o,7M0) be as above. Let z € 0G and ¢ € C%(G), and assume that g™ — ¢ attains
a minimum at . Noting that the function:

t (97 — o) (@ + téo(x))

on an interval [0,¢) attains a minimum at ¢ = 0 for some € > 0, we see that
D(g™ = ¢)(@) - €o(x) = 0.
Hence, we have
A" (z) + H(z, Do(x), D*¢(x)) > M — &o(x) - Do(x) — no(z) = 0,

which proves that gT is a viscosity supersolution of (4). Similarly, we see that g~ is a
viscosity subsolution of (4).

Now, the standard Perron’s method (see e.g. [CIL]) yields a viscosity solution U of
(4) such that U € C(G) and g~ < U < g* on G. QED

For the proof of Theorem 2 we need the following three theorems.
Theorem 3.5 Assume (A1), (A2), (A3), and (A4). Let U be the unique viscosity
solution of (4). Then U(z) < V(z) for all x € G. If in addition (A5) holds, then
Uu=V.

For each € € (0,1) we set

Ge :={z € G| dist (x,G°) > e}.
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Assume (A7) for the time being. Let & be the function given by (A7). For each
e > 0 choose a function x. € C1(RY) so that

0<xe(x) <1 (z€RY), xe(2)=1 (z€Gc), xe(z)=0 (z€RV\G.p),
and define functions o., b, f- on R x A by

oc(z,a) =0z, xe(x)a + (1 — xe(z))a(r)),
be(z,a) =b(z, xe(z)a + (1 — xe(z))a(z)),
fe(w,a) =f(z, xe(x)a + (1 — xc(z))a(z)).

Note that the functions o, and b. are Lipschitz continuous and the function f. is uni-
formly continuous on RY x A.
As before we call any collection

o= (Qaa faa {Fg}tZOa Paa {Wta}tZOa {u?}tZOa {Xta}tZO)

a controlled system at z € R associated with o, and b, if (Q%, F*, {Fete>0, P%)
is a filtered probability space satisfying the usual condition, {W};>¢ is a standard I-
dimensional Brownian motion on this filtered probability space, {uf' }+>0 is an {F* }+>0—
progressively measurable process taking values in A, and {X{*};+>¢ is the unique strong
solution of the stochastic differential equation

(9) dXt = bs(Xt,’U,?)dt-i-O'E(Xt,uf)tha, X() =xT.

For z € RY, C* denotes the set of controlled systems associated with o, and b, and for
r € G, A.(z) denotes the set of admissible a € C? for x € G, i.e., those of o € C% such
that

XXeG (t>0) P%-as.

The value functions U, are defined by

Uele) = int E" /O eME(X WAt (z € G):

Theorem 3.6 Assume (A1), (A2), (A3), (A4), and (A7). Then V(z) = U(x) for all
z € G. Moreover

U.(x) = U(x) uniformly for x € G ase — 0.
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Theorem 3.7 Assume that 0G € C? | (A1), (A2), (A3), (A4), and (A7). Then

U.(z) > Vo(z) Vzed.

Admitting Theorems 3.5, 3.6, and 3.7 for the moment, the proof of which will be
given in sections 4, 5, and 6, we complete the proof of Theorem 2.

Proof of Theorem 2 Assume (Al), (A2), (A3), and (A4). If, in addition, we assume
(A5), then we see immediately from Theorem 3.5 that U(z) = V() for all z € G.
Now assume that (A6) is satisfied. It is well-known that (A6) yields

sup |[|s(-, ) [ w0 vy < 0.
neM(A)
Also, by (A2), s is uniformly continuous on RN x M(A). Therefore, conditions (A1)
and (A2) are satisfied with o, b, f replaced by &, b, f.
Observe by the definition of s that

s(x,u)2:[400T(m,a)u(da)—/AJ(:U,a)u(da) (/Aa(x,a’)u(da’))T.

Therefore,

6&T:/Acr,u(da)/AaT,u(da)+82=/ oo’ p(da),

A

and . R
{(66™ (z, 1), b(x, ), f(z, 1)) | € M(A)}

= 5{(0’0"11(-%, a),b(x,a),f(a:,a)) | a € A}

In particular, for any z € RY the set {(667 (z, p), b(z, p), f(z, 1)) | p € M(A)} is a
closed convex set in SLY x RV x R, and

A~

max {5 w667 (@, 0)X = b(o. ) -p = fla, )} = Hla,p, )
for all (z,p, X) € RN x RN x SL”.

Recall that the set A can be regarded as a subset of M (A) by identifying a € A with
the Dirac measure 6, € M(A), and note that s(z,d,) =0 for all z € RY, a € A. Tt is
then clear that (A4) is satisfied with o and b replaced by ¢ and 13, respectively. If we
define A(z) C M(A) in the same way as A(z) but with A replaced by M(A), then we

have
{6, a€ Ax)} c A(z) VzeG,
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and hence

1 . o A
sup {— tr66” (z, )X = b(w,p) - p = f (2, 1)} > Hin(z,p, X)
HEA(x)

for all (z,p, X) € RN x RV x SLV.

Thus we see from Theorems 3.5 (see the remark just before Proposition 4.1) that
U=V, onG.

Next assume that (A7) is satisfied. Let @ be the Lipschitz function from (A7). Let
e>0and 7 € G. If

a= Q% F*AF b0, PY AW 0, {ug b0, { X es0) € Ae()

and if we set
vy = Xe (XP)ug + (1 — xe(X{Y))a(Xy),

then
(Q*, FUAF Ho, PO AW Hiso, {0 b0, { X{ Hi>0) € Alz).

Hence,
Ue(z) > V(x) Vx € G.

By Theorem 3.5, we have U(z) < V() for all z € G. Hence we have
V(z) < Us(x) vz € G.

Now Theorem 3.6 tells us that
V(z)=U(x) Vzed.

In what follows we assume (A7) and that OG € C?. Theorem 3.7 guarantees that
U.(x) > Vy(z) for all z € G, € > 0 and hence U, (z) > Vo(z) > V(z) for all z € G,
e > 0. This together with the above considerations yields that Vy(z) = U(z) = V(x)
for all z € G. QED

We continue to prove Theorem 3. Fix v > 0. We choose a function (&g, 70) € C%(G)
and a constant r¢ > 0 so that

(10) (o(2), mo(x)) € co{(b(z,a), f(z,a)) | a € A(z)} (2 € IG);

(11) B(y +téo(z),trg) C G (x € 0G, 0 <t <1p).
Let ¢ € C%(G) and w € C11(G) be functions from Lemmas 3.3 and 3.4, respectively.
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Recall that we showed in the proof of Theorem 1 that |U(z)| < M/) for all z € G.
If we replace U by the function

U=U-+ (2M + 1)1,
then we have
—&o(w) - DU () < no(@) + AU low — (2M + 1)éo(2) - Dip(x) < —1 (€ IG)

in the viscosity sense. To see that U is Lipschitz continuous on G, it is enough to show
that U is Lipschitz continuous on G. So, we may assume by replacing U by U that U
satisfies that

—&o(z) -DU(z) < -1 (x € 0G)

in the viscosity sense.
Let w € CY1(G x G), r > 0, and C > 0 be from Lemma 3.4. Set

v(z,y) = w(z,y)"/>

Note that if x # y,

Dv(z,y) = me(ﬂ%y),

1
2v(z,y)

D?*v(z,y) = D*w(z,y) — Duw(z,y) ® Dw(z,y) < D?>w(z,y).

1
4v(z,y) 2v(z,y)

Hence, for all z,y € G with x # y, we have
£o(z) - Du(z,y) <0  ifz € G,
and

|z —y| < v(z,y) < CY2|z -y,
max{|Dzv(z,y)|, [Dyv(z,y)|} < C/2,
|Dzv(z,y) + Dyv(z,y)| < (C/2)|z -y,

Do < ©{e - (L ) re-u(y )}

We write K for max{C/2,C"/?}.
Fix L > 0 and consider the function

O(z,y) =U(z) —U(y) — Lo(z,y)"
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on the set G x G. We suppose that
sup{®(z,y) |,y € G, |z —y| <r} > 0.
We select #,9 € G so that | — | < r and
O(z, ) = sup{®(z,y) | 7,y € G, [z —y| <r}.
By choosing L large enough we may assume that
sup{®(z,y) | z,y € G, |z —y|=r} <0,

and hence that |Z — §| < r. By the continuity of U we see that & # .
Now suppose that & € 0G. This yields that

§o(2)  Dyo(2,9) < 05

=& () - Dyv(2,y) < —1.

These are contradictory. That is, this case never arises.
Since
(2, 9)" " (Dyv (2, g) D,v(%,9),

k(e—al= (1, 5 ) +ie- ) € It (3, 9),
=
there are matrices X,Y € SLY such that
(Lyv(, §) " Dyv(i, ), X) € 7 U (2),
A A — A A _27_ ~
(_L’Y'U(J@y),y lDyU($7y)7 _Y) eJ U(y)a
X 0 1 (ji - I -1 A_AIO)
(0 Y)<LK’)’U( gz —g” (_I ;) HlE=ally 1))
Since U is a solution of (8) and # € G, we have
U (£) + H(&,vLo(Z,9)" *Dyv(s,9), X) <0,
)‘U(g) + H(:&7 _’YL,U(£7 g)’y_lDyU('f% g)7 _Y) 2 0.
Compute that for any a € A, if we set 0;(z) = (01i(x, a), ..., oni(z,a))T then
(X 0) (O'i("i')) _ («n(ﬂ?))
0 Y )\oi(9) oi(9)
< 2K Lyo(2,§)"7 |2 — §| 7 oi(2) — 03(9)|* + 2K Lyo(2, §)" & — §l|o3(9)
< AKLM*yv(#, )" & — g1,
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Summing over all i € {1,..., N}, for any a € A we get
trool (#,a)X + troo? (§,a)Y < ANKLM?yu(&,9)" "z — ).
Compute also that

b(z,a) - Dv(2,9) + (g, a) - Dyv(2,9)
= (b(&,a) = (b(g,a)) - Dgv(Z,§) + b(g, a) - (Dzv(%,9) + Dyv(%, 7))
< M|& — §l[Dav(#,9)| + M| Dz (&, §) + Dyo(2,9)]
<2MK|z — g|.

Combining these together we obtain

0 >A(U(2) = U(§)) + H(&,vv(&,§)"" Dav(%, §), X) = H (5§, —yv(&,§)" " Dyv(%,§), =Y)
>ALv(z,9)7 —1—(;22{—‘51‘0 T(#,0)X — traaT(y a)Y

—yu(2,9)"7 (&, a) - Dyv (@, §) — yv(2,9)7b(§, a) - Dyv(,9) — f(&,a) + f(§,0)}
>AL|Z — " — 4yYNKLM?|& — 4|7 —2yMKL|Z — §|" — Mr*~ 7|z — |7
=(AL —4yNKLM? - 2yMKL — M)|z — §|".

If we set k = ANKM? + 2MK and assume that A > kv, then by choosing L large
enough we have
AL —4yNKLM? — 2yMKL — Mr=7 > 0,

which contradicts with the previous inequality, i.e., we have
Uz) - U(y) < Lu(z,y)?  (z,y € G).
This inequality yields
U(z) =U(y)| < KLylz —y|" (z,y € G),
proving the Lipschitz continuity of U under the assumption that A > k~. QED

4. Proof of Theorem 3.5
We divide the first part of the proof of Theorem 3.5 into two propositions.
Define

(12) Va(z) = inf E“ /00 e MF(XE,ul) + nd(X8)|dt (z € RM),
aeC® 0

for all n € N, where
d(z) = dist (z,G) A 1
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We note by [NA, NI1, NI2] that V;, is a solution of
\u(z) + H(z, Du(z), D*u(z)) = nd(z) (z € RY).

We remark that a careful review of [NA, NI1, NI2| and finite dimensional approxi-
mation techniques allow us to conclude that the assertion above is still valid when A,
o, b, f, etc are replaced by M(A), &, b, f, etc.

Then we have:

Proposition 4.1 Under the assumptions (A1), (A2), (A3), and (A4), Vy is a subsolu-

tion of (4).
Proof. Fix n € N. We need to show that if 2z € G and a € A(z) and if ¢ € C?(G)
and V,, — ¢ has a maximum at z, then

AV, (2) — %tr ool (z,a)D*¢(z) — b(z,a) - Dp(z) — f(z,a) < 0.

Fix z € 0G, a € A(z). Then there exists > 0 such that (5) and (6) hold with these
z, a, and 7. Set U = G N Int B(z,r). Choose a C* function ¢ on R so that

¢>0 imRY, (=0 imRN\B(zr/2), (=1 inB(zr/3).
Note that if we set
5(z) = ((z)o(z,a), b(z) = (*(2)b(z,a),

f(@) = @) f(z,a) + (1 = C(@)AVa(2) + n*(z)d(@),
then V,, satisfies

1 N
AV, (z) — 5t 66T D*V,(z) —b-DVy(z) — f <0 in RV

in the viscosity sense.
We now invoke [ILT, Theorem 2.1] (more precisely, its proof). It is easy to check
that (2.2) and (MP) of [ILT] with K = U and with

F(z,r,p,X)=Ar — %tr&&T(m)X —b(z)-p— f(z)

are satisfied. Therefore we see that V,, is a viscosity subsolution of

AV (z) — %tr 567 (@) D>V,,(x) — b(z) - DViy(z) — f(z) <0 in .
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This shows that if ¢ € C?(G) and V,, — ¢ has a maximum over G at z then

0 AV, (2) — %tr 567 (2)D2%p(2) — b(2) - Doo(2) — F(2)
>AV,(z) — %tr GJT(z)D2<p(z) —b(z) - Dy — f(z,a),

which completes the proof. QED

Let U € C(G) be the solution of (4). By comparison we have

Vi(z) <U(z) (z€G, neN).

By the definition of V,,, we see that
Vo(z) < Vpii(z) (z € G, neN).

Set
Vi(z) = 5171Lp Vo(z) (z€Q).

Theorem 4.2 Under the assumptions (A1), (A2), (A3), (A4), we have

V+:U.

Proof. Since V, is a pointwise supremum of viscosity subsolutions of (4), V is a
viscosity subsolution of (4).
We now check that V is a supersolution of (4). Indeed, if we set

W(z) = lim inf{Va(y) | |y — o] <7, n>r"1,

then, since V,, are supersolutions of
(13) \u(z) + H(z, Du(z), D*>u(z)) >0 in RV,

we see that W is a supersolution of (13) in the sense that if ¢ € C2(RY), z € RV,
W(z) < 00, and W — ¢ attains its minimum at z, then we have

MW (2) + H(z,Dp(z), D*¢(z)) > 0.

It is not hard to see that V, (x) = W (zx) for z € G. Thus, in order to conclude that V,
is a supersolution of (4), it is enough to show that

W(z) =00 (z€RN\G).
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Fix z € RY \ G and choose R > 0 so that B(z,2R) C RV \ G.

We select a function ¢ : RN — R such that ¢ € C?(RY), ((z) > 0 and ¢ < —1 on
0B(z, R). (This can be achieved by taking for instance ((z) =1 — 25|z — z|%.) We fix
an upper bound K > 0 of

sup{—troo(z,a)T D*¢(z) — b(z,a) - D{(2)} + A(z)

over B(z, R).
Next, for n € N we set

Rn
P, (x) = — .
() = 5 ¢(2)
By a simple computation we get
A, (z) + H(z, DO, (z), D*®,(x)) — nd(x)

R
< sn+sup—f(z,a) —nR <0
2 a€A

as n is large enough, and since ( < —1 on 0B(z, R) we get the inequality

W(z) = Pn(z),

in B(z, R), and we conclude letting n — oo.

Therefore we find that V; = U and finish the proof. QED
Completion of the proof of Theorem 3.5 Assume (Al), (A2), (A3), and (A4). Fix
z € G. Since

Tw,a) = B [ MK ) + nd (XNl
0

for all & € A(x), it is immediate to see that V,,(z) < V(z) and hence Vi (z) < V(z).
By using Theorem 4.2 we get U(z) < V(z) for all z € G.
We now assume (A7) as well. Let

Op = (Qna Fna {Ftn}t207 Pn7 {th}tz()’ {u?}t207 {Xf}tzﬂ)

be a controlled system at z such that
o0
Vi(z) 0t > E" / e MF (XD, up) + nd(XP)]dt,
0

where E™ denotes the mathematical expectation with respect to P™.
Following the argument of the proof of Theorem 5.3 of [YZ], we can find a controlled
system a € C* for which we have

liminf J(z, ay,) = J(z, @),

n—o0
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liminfE”/ e_}‘td(Xf)dt:Ea/ e Md(X®)dt.
0 0

n—0o0

Note that we needed the convexity assumption (A5) in the above assertion. We see
from the latter identity above that

E° / e Md(X®)dt = 0,
0
which assures that o € A(z). On the other hand, the former guarantees that
J(z,a) < lim V,(z) = Vi (z).
n—0o0

Thus we see that V(z) < Vi (z) and hence V(z) < U(z) for all z € G. Hence we have
U=V. QED

5. Proof of Theorem 3.6
We begin by defining

o0
We(z) = inf E° / e M (X2 uX)dt  (z € RM).

As already explained, we have

(14) Ue(z) > V() (x € G).
By a classical result (e.g. [NA, NI1, N12]), we know that u := W, satisfies
\u(z) + H.(z, Du(z), D*u(z)) =0 (x € RM)
in the viscosity sense, where H, : RY x RN x SL¥ is given by

1
H (z,p,X) = meajl({_i trocol (z,a)X — be(z,a) - p— fo(z,a)}.

Since F := H. satisfies condition (MP) of [ILT] with K = G, we see from ( [ILT],
Cor. 2.3 ) that u := W, is a viscosity solution of

\u(z) + H.(z, Du(z), D*u(z)) =0 (r € G)
and that if z € G and « € C?, then
X*eG (t>0) P*as.,
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i.e., C® = A.(z) for all z € G. This shows that

Ues(x) = We(x) (x € G).

We see that M /A and —M /X are super- and subsolutions of (4) and therefore by
comparison that |W(z)| < M/ for x € G. If we define

U*(z) := }i{r(l)sup{Ue(y) [0<e<r yel, |ly—=|<r},

and
Ui (x) = li\r‘l(l)inf{UE(y) 0<e<r, yeq, ly—z|<r},

then U* and U, are upper and lower semicontinuous on G, respectively, and u := U*
and v := U, are sub- and supersolutions of the problem

\u(z) + H,(z, Du(z), D*u(z)) = 0 (z € G),

Mv(z) + H*(z, Dv(z), D*v(z)) = 0 (r € Q),

respectively, where for (z,p, X) € G x RY x SLY,

H,(z,p, X)=}i\moinf{Hs(y,q,Y) | (¥,4,Y) €GXRY xSLY, |y—z|+|g—p|+|Y —z| < r};

H(2,p, X) = lim sup{H.(y,4,Y) | (y,4,Y) €GXRN XSLY, |y—z|+|g—p|+|Y —z| < r}.
Note that for all (z,p, X) € G x RN x SLV
H*(z,p, X) = H.(2,p, X) = H(z,p, X);
for all (z,p, X) € 0G x RN x SLY
H*(z,p, X) = H(z,p, X);

Ha(z,p, X) = —% troo” (z,4)X — bz, a(z)) - p — (=, a(z)).

The comparison result, Theorem 3.1, applied to the problem

(15) {,\u(a:) + H,(z, Du(z), D*u(z)) <0  (z €G),

Mu(z) + H(z, Du(z), D*u(z)) > 0 (z € G),

guarantees that U* < U, in G and so U* = U, in G. Since U is a viscosity solution
of (15), we conclude by the same comparison result that U = U* = U, on G. This
immediately implies the uniform convergence of U, (z) to U(z) for all z € G. QED
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6. Proof of Theorem 3.7 Let ¢ > 0. We utilize the functions U, o, etc defined in
the formulation of Theorem 3.6.

We choose a function d € C2(RY) so that
d(z) >0 inG,
d(z) <0 in G,
d(z) = dist (z,G°) — dist (£, G) in a neighborhood of 0G.
For each n € N we choose a function ¢, € C%(R) so that

(n(r) >0, Cn(r) <0,
r<n-—1),

C"(T):{:L Erzn—}—l).

Note that we may choose the sequence of (,, so that

sup |¢ns G lloo < oc.
neN

Then define the function 1, € C?(R) by
{ Cn(—logr) (r>0),

n (r <0).

PYu(r) =

Fix v > 0 and choose a function p € C?(R) so that

p(t)=0 (t>7), 0<p®)<1l (t<7v), [lleo<1

For each n € N, v > 0, and 6 € (0,1), we set

9(:t) = gny,5(2, 1) = Y (d(z) + 5p(t)).

Clearly, g € C?(RN*1).
In a neighborhood N of G, we have
1
2 troo” (z,a(x))D?d(z) + b(z, a(x)) - Dd(z) > B
for some constant 5 > 0.

Note that for » > 0,
1

7

Y (r) = = G, (—logr)

1) =i~ togr)



We may assume that d(z) = —1 for x € RN with large |z|. Choose § > 0 so small
and fix p > 0 so small that if z € R satisfies

—0<d(z)<d+p, thenzelN.

We may assume as well that ' C RV \ Ge/o-
Let (z,t) € RN*!. We now divide our considerations into three cases:
Case 1: Consider the case where d(z) + dp(t) < e~(+1) i.e., the case where we have

—log(d(x) + dp(t)) > n+ 1.
Then we have g(y, s) = n near the point (z,t) and hence
1
ge(z,t) + 50’,;0’?(:[:, a)D?g(z,t) + be(z,t) - Dg(z,t) = 0.

Case 2: Consider the case where 0 < d(z) + dp(t) < p. We have —0 < d(z) < §+ p. We
compute that

ge(z,t) + %tr 0603(32, a)D?g(z,t) + be(z,a) - Dg(z, 1)
— U} (dl) + 59(0) [39/(0) + § 100”2, 8(2) Do) + b (2)) - D)

+ %w;{(d(a:) +6p(t)) troo” (z, (x)) Dd(z) @ Dd(z)
< P (d(z) + dp(t))(8 - 0)

- #@)W@(d(a:) +8p(t)) troo” (z, a(x))Dd(z) ® Dd(z)
< 9n(d(@) +0p(t)) (ﬂ — 05— #@)mwnpdni) ,

where L is the Lipschitz constant for the function z — o(x,a(x)). We may assume by
replacing § and N by smaller ones if necessary that

1
6+ 5L2cz(;n)||Dd||go < B.
We thus have
1
ge(z,t) + 2 tro.ol (z,a)D?g(z,t) + be(x,a) - Dg(z,t) < 0.

Case 3: Now consider the case where d(z) + dp(t) > 6/2. In what follows we assume
that n is large enough so that —log(u/2) < n — 1. Hence,

—log(d(z) + 6p(t)) <n —1
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and therefore g(z,t) = —log(d(x) +dp(t)). Thus there is a constant C' > 0 independent
of n such that

1
gt(z,t) + 2 trocol (z,a)D*g(z,t) + be(x,a) - Dg(x,t) < C.

for some constant C' > 0 independent of n.
This way we conclude that for any (z,t) € RVt we have

1
g¢(z,t) + 2 tro.ol (z,a)D*g(x,t) + be(z,a) - Dg(x,t) < C.

Let
o= (Qa7 }'a’ {Fta}t207 Paa {Wta}tZ()? {u?}tZOa {Xta}tZO)

be an admissible controlled system at z associated with o, and b.. Le., a € A.(z). We
apply the It6 formula, to obtain

9(Xi5t) =g(2,0)
+ /Ot (90X, 9) + 5 trowo? (X3, u) D?g(X S, )
+ be(Xs,uf) - Dg(XE, 8) )ds
+ /Ot Dg(XZ,s) oo(X ud)dWE.
From this, we get
9(XZne, T A E) =9(2,0)
TAL 1
+ /0 (gS(XSO‘, s) + 2 tro.ol (X, u®)D?g(X, s)
+bo(X2,ug) - Dg(XE,5))ds
TAL
= [ Dax ) o,
where 7 is the first hitting time of X;* after time 7 to the closed set, G, i.e.,
7:=inf{t >~ | X{* € 0G}.
Hence, if n is large enough, we have
E®g(Xont, TAL) < g(2,0) + Ct (t > 0).
If n is large enough, then
9(2,0) = —log(d(z) + 6p(0)) < —1log(5p(0)).
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We may assume that for each r» > 0,

Yu(r) S —logr as n — oo.

Now the monotone convergence theorem implies that
E*(—logd(X%\;) + dp(t At)) < —log(d(z) + dp(z)) + Ct (t>0).
This implies that 7 = co P*-a.s. and by the arbitrariness of v > 0 that
Xred (t>0) P%as.

If we define
v = Xe(X)ug + (1= xe (X7))a(Xy),
then
(Q%, F4AF ez, PY AW Fzo, {07 20, {X¢ Fe20) € A(2)-
Therefore, if we define Ag(z) C A(z) for each = € G as the set of those o € A(z) for

which
Xred (t>0) P%-as.

and

Vo() := Lt B /0 e M F(XP, uf)dt,

then
Ue(z) > Vo(x) > V(z) (z € G).

Thus in the limit as € N\ 0, using Theorem 3.6, we get:

U(z) > Vo(z) > V(x) vz € G. QED

Appendix
Sketch of proof of Lemma 3.4

We give here comments on the proof of Lemma 3.4. As already noted, the same
construction of w in the proof of [IK, Lemma 3.4] yields a function having the desired
properties in our lemma. Unfortunately, the assertion of [IK, Lemma 3.4] is apparently
different and weaker than our Lemma 3.4. The differences are that the function w in
[IK, Lemma 3.4] has only the C? regularity as it stated and that the last inequality

(A1) D2w(ﬂf,y)éc<_11 _II)JFC'x_y'Q(é ?)
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is not in [IK, Lemma 3.4].
We explain how to show these properties of w, the function constructed in the proof
of [IK, Lemma 3.4].

The function w constructed in the proof of [IK, Lemma 3.4] has the form:

w(z,y) =v((z—y)-£W), |z —y— ((x—y) - £@)EW)?)?,

where ¢ : RV — RY is a C* function and v : R?> — R is a function in C(R?) N

CL1(R?\ {0}) satisfying the homogeneity property
v(tz) = tv(x) (r € R? t>0),
and the property
D,,v(x1,0) =0 (z1 € R).
To see the C1! regularity of w, define the functions f : R?> -+ R and g : RtV — R,
respectively, by

fl@)=v(x)® (zeR?;
g(z,y)=f(z,ly)  ((=,y) e RxRY),

and observe that f € C1(R?2) and that for all z,y € RV,

(A.2) w(z,y) =g((z—y) - &), QRE®Y)) (= —v)),

where

Q) =I1-¢1¢.

For the moment we assume that f € C?(R?) and calculate that for all z € R and
y € RV \ {0},
Y
lyl’

Y

Dgg(z,y) = Dy, f(z,ly)),  DyDag(z,y) = Dy, Day f (=, i
T y®y
vl

D.g(x,y) = Do, f(z,|yl),  Dyg(x,y) = Dy, f(z, |y|)

y®y
ly[?

- D:czf(ma |y|)—

+Da:2f(xa|y|) |y|3

Dyg(w,y) = D, f (. |yl)
If we fix R > 0, then, since D,,v(x1,0) =0,

| Da, f (2 [y))| < Crly| if 2] + |y| < R,
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for some constant C'gr > 0, and hence, from the calculations above we have

sup ||D?g(z,y)| < oo.
lz|+|y|<R

A simple approximation argument and the above calculations show that g €
CLL(RMY). Now (A.2) shows that w € CLL(R2Y).
Next we set

hép) =g p,QE)DP)  (&peRN).

With an approximation argument in mind we may assume that h € C?(R2Y). Note
that

w(z,y) =h((y),z—y)  (z,y€RY),

and that
h(&, tp) =t°h(&,p)  (&,pe RN, £>0).

By this homogeneity, for each bounded subset B of RY there is a constant Cz > 0 such
that for any ¢ € B and p € RY,

max{h(, p), | Deh(&, p)l, | DERE, )|} < Crlpl?,
max{|Dph(£, p), [[DpDeh(€, )l < Cslpl;
IDzR(E, p)|l < CB.

Compute that

Diw(z,y) = DIh(E(y), = — y),
DyDgw(z,y) = (DE(Y))T DeDyph(E(y), © — y) — Dyh(E(y), = — v),

Dw(z,y) =(DE(y))  DER(E(y), = — y)DE(y) + DEh(E(y), = — y)
— (DeDph(&(y), x — y)DE(y) — (DE(y)) " DypDeh(E(y), & — y),

to obtain

2 — 1 ! 2
(A.3) Dw(a:,y)—(_Al Ay )+<Ag _AQ_A5>+<O A3)7

where

Ay =D2h(E(y),z—y), Az = (DeDyph(€(y), = — y))DE(y),
As = (DE(y) " DZh(€(y), = — y) DE(y)-
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For instance, for each bounded B C RY and for all z,y,p,q € RY, if y € B, then we
have

0 A D P\ _ o _ _
(A;” _A2_A;r> (q)-<q) =2A2q - (p — q) < 2CBlz — yllg|lp — gl

<Cx(lp—q>+ |z — y[*q|?)

for some constant C'g > 0, i.e.,

0 4 I -1 2 (1 0
(A;P —Az—Ag“)SCB((—I I)+|$_y| <0 I))

This way we see from (A.3) that for each bounded B C R¥ | there is a constant Cp > 0
for which

v <oa((; ) +ie-ur () ]))  werV.yem. amp

Proof of Theorem 3.1
We argue by contradiction, and hence assume that

max(u(z) — v(z)) > 0
zeG
for some constant 6 > 0.
If necessary, by replacing u by

i(z) == u(z) + (2M + 1)y(z),
where %) is the function from Lemma 3.3, we may assume that u satisfies
—&o(z) - Du(z) < -1 (x € 0G)

in the viscosity sense.
Let w € CY1(G x G), r > 0, and C > 0 be from Lemma 3.4.
Let L > 0 and consider the function

b(z,y) = u(z) —v(y) — Lw(z,y)
on the set G x G. We select £, € G so that | — §| < r and
(2, §) = sup{®(z,y) [ 2,y € G, |z —y| <1}
note that ®(z,9) > 0. By choosing L large enough we may assume that
sup{®(z,y) |,y € G, |z —y| =7} <0,
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and hence that |Z — §| < r.
Now suppose for the moment that & € 0G, which immediately yields that

§o(2) - Dow(2,9) < 0;
—&o(Z) - Dow(Z,9) < —1.

This a contradiction, which shows that & € G.
Since

A A I -1 PO I 0 SN
(Daw(#,9), Dyw(#,9),C(( + 12 - I ) € I Hu(a, g),
I I 0 I
there are matrices X,Y € SLY such that

(LD,w(i, ), X) € T u(@),
~ —=2,— .
(—LDyw(#,9),~Y) € T v(f),

(v v)=eel(L 7)) re-ie (3 7))

Since u and v are a subsolution and a supersolution of (8) and # € G, we have

T

Mu(z) + H(z, LD,w(z,9), X) <0,
)"U(g) + H(?)a _LDyw(aA:a ?))a _Y) 2 0.
Computations parallel to those in the proof of Theorem 3 yield
trool (2,a)X + troo? (§,a)Y < ANCLM?|z — §|?,
and
Thus we obtain
>N —ANCLM?|i — §* — 2MC|z — §|> — M|z — ).

Now, noting (see e.g. [UG]) that L|Z — §|2 — 0 as L — oo, we get a contradiction,
0 > 6, from the above inequality as we let L — oo. QED
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