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Abstract: We study the geometric evolution of a nonconvex stone by
the wearing process via the partial differential equation methods. We use
the so-called level set approach to this geometric evolution of a set. We
establish a comparison theorem, an existence theorem, and some stability
properties of solutions of the partial differential equation arising in this
level set approach, and define the flow of a set by the wearing process via
the level set approach.
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1. Introduction

In this paper we study a mathematical model of the wearing process of a stone rolling
on beach via the PDE methods.

In [F] Firey proposed and studied a mathematical model of the wearing process of
such a stone in the case when it has a convex shape. In his model the motion of a stone
is described by the Gauss curvature flow. See, for instance, [A, C, CEI, H, T] for the

mathematical developments regarding the Gauss curvature flow.
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In [IM2, IM3] we extended Firey’s arguments to the case when the stone does not
necessarily have a convex shape. The idea of our extension was very simple, which is
explained as follows. Let V; C R"*! be a stone at time ¢ being worn due to hits of the
bottom of the sea (or beach). In the model the bottom of the sea is supposed to be a
hyperplane.

We look at the stone in a moving coordinates system for which the stone does not

rotate and translate and, for each unit vector p € R**!, we associate the hyperplane
n(p) = {z € R"" | z.p =0},

where z - p denotes the Euclidean inner product of z and p.
The set V; evolves by loosing its volume near the point where it is hit by the hyper-
plane 7(p) coming from the direction p. Here the sentence “a point X € V; is hit by

7(p) coming from the direction p” means that the half space
X+{zeR"|z.-p>0}

does not intersects with V;. In other words, part of the surface of a stone in our model
which locates in a cavity of the stone does not evolve until it is exposed so that it can
be hit by a hyperplane.

Three hypotheses in this model of the wearing process are imposed: (i) the prob-
ability of 7(p) hitting the stone V; is uniform with respect to the direction p, (ii) the
volume loss near a point X € 9V} is proportional to how often the point X is hit by
hyperplanes, and (iii) the total volume loss of the stone in a time period is proportional
to the length of the time period. Moreover, it is imposed that, once V; becomes empty
at a time to then V; = 0 for all £ > ¢,.

In [IM2, IM3] we restricted ourselves to the case when the boundary of the stone V;
at time ¢ is given by the graph of an evolving function, the case which corresponds to

stones with infinite volume.



Our main purpose here is to remove this non-realistic (in applications) hypothesis
that the boundary of stones is given by the graph of functions. This is carried out by
adapting the level set approach (see [0S, CGG, ES]) to our model of the wearing process.
One of main difficulties was in establishing the comparison assertion (see Theorem 2.6)
for viscosity solutions of the partial differential equation arising in the level set approach,
which has been resolved by reducing the problem to the case of evolving graphs. This
idea has been employed successfully in [GG] in the study of a general planar anisotropic
curvature flow. The PDE has a non-local factor which describes the “cavity” effect.
This non-local effect resembles in its character which one encounters in a mathematical
model of etching (see [AEI]).

The paper is organized as follows: In section 2, we recall the level set approach to
Gauss curvature flow, then introduce the PDE in the level set approach to our model of
the evolution of a set (stone) by wearing process, and state main results in this paper.
The rest of the paper is devoted to the proof of the main results: in section 3, we
establish our comparison theorem for (viscosity) solutions of the PDE in the level set
approach and in section 4 we study stability properties of (viscosity) solutions of the
PDE and then establish our existence theorem for the PDE. An elementary lemma is
presented in the appendix which gives a representation formula for Gauss curvature of

level sets of a function.

2. Level set approach and main results

We first recall the level set approach to the Gauss curvature flow.

Let {V;}+>0 be a collection of closed subsets V; of R™*! parametrized by ¢ > 0. The
collection {V;};>¢ is called the generalized Gauss curvature flow issued from Vj if there

exists a function u € C(R™! x [0, 00)) which satisfies

(2.1) ug(z,t) = G(Du(z,t), D?u(z,t)) for (z,t) € R" x (0, 00)

in the viscosity sense (see the definition in [IS], which is recalled below),
Vi = {(z,t) € R""! x [0,00) | u(z,t) <0} fort>0,

and for any A € R,
(2.2) the set {(z,t) | u(z,t) < A} € R™"*? is compact.
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Here G : (R™*!\ {0}) x 8"*! — R is defined by
G(p, X) = |pldet 4 (Ip| (I -p®P)X(I ~P®F) + F@P)

where p = p/|p| and
n+1
det 41 A= H max{\;,0} for A€ S"

=1

with A; (i =1,...,n+ 1) denoting the eigenvalues of the matrix A.
Note (see Lemma A in the appendix) that for any ¢ € C2(R"*1), if V:i={z € R"*1 |
©(z) < 0} is convex, 0 € 9V, and Dy(0) # 0, then

the Gauss curvature of OV at 0 = |Dy(0)|*G(Dy(0), D*p(0)).

graph of ¢

The choice of condition (2.2) is somewhat optional and it is put here in order to
make sure the uniqueness of the solution of the Cauchy problem for (2.1). See Theorem
2.2 below.

In what follows, for convenience of notation, we write N = n + 1.

We introduce a class of functions u defined on 2 C R¥ x [0,00) by imposing a

condition at infinity. The condition for u is stated as follows:

(A) for each T € (0,00) and (z,t) € QN (RN x [0,T]) there is a constant R > 0 such
that for all (y,s) € QN (RN x [0,T)), if |y| > R, then u(y, s) > u(z,t).

Similarly, we introduce condition (A)y for functions v : Q@ € RY — R

(A)p for each z € Q there is a constant R > 0 such that u(y) > wu(z) for all y €
Q\ B(0, R).

For Qp C RY and Q c RM x [0,0¢) we set

U (o) ={u € C(Qo) | u satisfies condition (A)p},
UQ) ={u € C(Q) | u satisfies condition (A)}.
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Since G(p, X) is singular for p = 0, the standard definition of viscosity solution (see
[CIL]) is not good enough for (2.1). Following [IS], we recall a definition of viscosity
solution which is appropriate to (2.1). We first introduce the set A of admissible test
functions. We define F as the set of those functions f € C?([0,00)) which satisfy

F(0)=f(0)=f"(0)=0,  f"(r)>0 forallr>0,
Il)i_r)x}) ip| = (|p)) max{|G(p, I)|,|G(p, —1)|} = 0,

where the prime ’ denotes the differentiation. This last condition can be phrased as

1' / —N+1 =0.
lim, f (r)r 0

Let Q be an open subset of RV x (0,00). A function ¢ € C2(Q) is called admissible
in Q if for each (2,%) € Q where D¢ vanishes, there is an f € F such that

o(2,8) = 0(2,8) = e (2. D)t = D) < f(lz = 2[) + o[t = ) as (2,8) = (2,9).

We denote by A(€2) the set of all admissible functions in 2.

We remark that the function f € C°°([0,00)) defined by f(r) = r¥*! belongs to F
and the function ¢ € C?2(RY x (0,00)) defined by ¢(z,t) = f(|z — 2|) is an admissible
function in RY x (0,00) for any 2 € RN,

It is convenient to define
G(Dg(z,t), D*p(2,1)) =0 if Dp(z,t) =0

for all ¢ € A(€2). With this notation, we consider the set of all those functions ¢ € A(2)
for which the function: (z,t) — G(Dyp(z,t), D?>¢(z,t)) is continuous on Q. We denote
this set by A (). Note that for any f € F, 2 € RN, ¢ € C?(R), and a € R, if we set

o(z,t) = af(|z — 2]) + ¥(t), then ¢ € Ap(£2).
A function v € USC(2) is called a viscosity subsolution of (2.1) in € if whenever
v € AQ), (y,s) € Q, and u — ¢ attains a local maximum at (y, s), then

ot(y, s) < G(De(y, s), D*¢(y, s)).

Similarly, a function u € USC(Q?) is called a viscosity supersolution of (2.1) in Q if

whenever ¢ € A(Q2), u — ¢ attains a local minimum at (y, s) € €2, then

ot(y, ) > G(De(y, s), D*¢(y, s)).
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A function u € C(Q) is called a viscosity solution of (2.1) in €2 if it is both a viscosity
subsolution and a viscosity supersolution of (2.1) in .

It is an easy exercise to check that in the above definition of viscosity sub- and
supersolutions we may replace A(£2) by A (£2).

A few of basic observations on the viscosity solutions of (2.1) are stated in the

following theorem.

Theorem 2.1. (a) Let 0 € C(R) be a non-decreasing function and Q an open subset
of RY x (0,00). Then, if u € USC() (resp., v € LSC(R)) is a viscosity subsolution
(resp., supersolution) of (2.1) in Q, then so is the function @ ou (resp., 6 ov).

(b) Let u,v € BUC(RY x[0,00)) be a viscosity subsolution and a viscosity supersolution
of (2.1), respectively. Assume that u(z,0) < v(2,0) for all z € RYN. Then u < v in
RY x [0, 00).

(c) Let h € BUC(RY). Then there is a viscosity solution u € BUC(RY x [0,00)) of
(2.1) satisfying the initial condition

(2.3) u(z,0) = h(z) forall z € RV,

For a proof of the above theorem, see [IS].

The following result justifies this definition of the generalized Gauss curvature flow.
Theorem 2.2. (a) For any h € Uy(RY) there is a unique viscosity solution u €
URYN x [0,00)) of (2.1) satisfying the initial condition (2.3).

(b) Let A € R and u, v € U(RN x [0,00)) be two viscosity solutions of (2.1). If

(2.4) {ze RN |u(2,0) <A} C {z € RY | v(2,0) < A},
then
(2.5) {(z,t) e RN x [0,00) | u(z,t) < A} C {(2,t) € RN x [0,00) | v(2,t) < A}.

It follows from the above theorem that for any compact set S C R, there is a unique
generalized Gauss curvature flow {V;};>0 such that V5 = S. To see the existence, for
a given compact set S C RY choose h € Uy so that S = {z € RN | h(z) < 0}, apply
Theorem 2.2, (a), to find a viscosity solution u € U satisfying the initial condition
(2.3), and set V; = {z € R | u(z,t) < 0} for ¢ > 0. The uniqueness is an immediate

consequence of Theorem 2.2, (b).



We remark that in [IS] the generalized Gauss curvature flow is defined even for
noncompact initial sets S. However, we restrict ourselves to the case when initial sets
are compact in order to make presentation simple.

Theorems 1.8 and 1.9 of [IS] contain an assertion similar to Theorem 2.2. However,
there is a small difference in their formulations, and so we give below an outline how to
get it from Theorem 2.1.

In the following arguments we use many ideas developed in [CGG, ES| without

mentioning.

Outline of proof of Theorem 2.2.  Observe that if § € C(R) is a non-decreasing
function such that supg # < oo, h € Up, and u € U, then # o h € BUC(RY) and
0 ou € BUC(RY x [0, 00)).

Proof of (b): Fix A € R and u,v € U so that (2.4) holds. It is not hard to see that there
are increasing functions 61,02 € C(R) such that supg (61 +62) < 00, 01(A) = 02()), and
61 0u(z,0) > 030v(2,0) for all z € RY. Noting that 61 ou,f, 0v € BUC(RY x [0, c0)),
we conclude from Theorem 2.1, (b) that 6; o u > 5 0 v in RN x [0,00), from which
follows (2.5).

Proof of (a): The uniqueness assertion is an immediate consequence of (b).

Fix any h € Uy. Fix an increasing function § € C(R) so that §(R) = (—o0,0).
By virtue of Theorem 2.1, (c), there exists a viscosity solution w € BUC(RY x [0, 00))
satisfying (2.3) with h replaced by 6 o h.

Note that ! is a continuous function on (—oo, 0). We intend to show that w(z,t) <
0 for all (z,t) € RN x [0, 00).

For this purpose, we set
o(z,t) = [2|¥ + Nt for (z,t) € RN x [0, 00),

and observe that ¢ is a viscosity solution of (2.1).

Fix any R > 0 and € > 0 and observe as well that the function

¥(z,t) ;== emin{p(z,t) — R,0}
is a viscosity solution of (2.1). If ¢ > 0 is sufficiently small, then we have

w(z,0) <4(2,0) forall z€ RV,



and hence, thanks to Theorem 2.1, (b), we get
w(z,t) < (z,t) for all (z,t) € RN x [0,00).

That is, for any R > 0, if ||V + Nt < R, then ¢(z,t) < 0 and w(z,t) < 0, which implies
that w < 0 in RY x [0, 00).
Set u =071 ow. Then u € C(RY x [0,00)) and u is a viscosity solution of (2.1).
We wish to show that u € . Fix any A € R. Let ¢ be the function defined above.
Note that

{(z,t) € RN x [0,00) | u(z,t) < A} = {(2,t) € RY x [0,00) | w(z,t) < O(N)}.
We choose R > 0 so that
{ze R | h(z) < A} € B(0,R),
and define ¢ € C(R" x [0,0)) by
P(z,t) = Amin{p(z,t) — (R+1)N,0} +0()), with A > 0.
If A is sufficiently large, then
w(z,0) > (z,0) forall ze RN,
and then, by comparison, we have
w>1v¢ in RN x[0,00).

This shows that
{(2,t) € RN x [0,00) | w(z,t) < O(N)} C {(2,t) € RY x [0,00) | 9(2,t) < O(N)}
= {(z,t) € RN x [0,00) | [2|N + Nt < (R+ 1)V}

Hence, we see that {(z,t) € RN x [0,00) | u(z,t) < A} is bounded, and conclude that u
satisfies condition (A).
= |2V

Remark. Each sub-level set of the function ¢(z, t) + Nt corresponds to the Gauss

curvature flow of a ball.

Now, we introduce the partial differential equation in the level set approach to our

mathematical model of the wearing process of a rolling stone.
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It is a simple modification of (2.1) and is given by
(L) ug(z,t) = o(u, Du(z,t), z,t)G(Du(z, t), D*u(z,t)) for (z,t) € RN x (0, 00).

The only difference of this PDE from (2.1) consists in the new factor
“o(u, Du(z,t),z,t)”. The precise interpretation of this factor o will be explained soon,

but, roughly speaking, o = 1 if the sub-level set
{y e RY |u(y,t) <u(zt)}

is hit by the hyperplane m(Du(z,t)) coming from the direction of Du(z,t) and ¢ = 0

otherwise.

We henceforth use the notation: for p € R™ \ {0} and z € RV,

H(p,z)={y e R | (y—2)-p>0, y# z}.

The precise definition of solution of (L) is given in the following.

Definition 2.3. Let 0 < T < oo and set Q = RN x (0,T). A function u € USC(Q) is
called a viscosity subsolution of (L) in Q if whenever ¢ € A(Q), (z,t) € Q, and u — ¢

attains a local mazimum at (z,t), then
pi(2,t) < o (u, Dp(z,t), 2,8)G(Dp(z,t), D*p(z,1)),
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where for p € RN \ {0},

U+(u,p, t) = { 1 ifu(-,t) > u(z,t) on H(p, 2),

0 otherwise.

A function u € LSC(Q) is called a wviscosity supersolution of (L) in Q if whenever
p € AQ), (2,t) € Q, and u — ¢ attains a local minimum at (z,t), then

(Pt(zv t) >0 (u7 D‘P(zv t)? Z, t)G(Dcp(z, t), D2(P(zﬂ t))7

where for p € RN \ {0},

o (. 2.0) = { 1 ifu(-,t) > u(z,t) on H(p, 2),

0 otherwise.

A function u € C(Q) is called a viscosity solution of (L) in Q if it is both a viscosity
subsolution and a viscosity supersolution of (L) in Q. Here and henceforth we use the

convention: for any u: Q C RN x (0,00) = R, ¢ € A(Q), and (2,t) € Q,
o (u, Dg(2,t), 2,t)G(De(z,t), D*p(2,1)) =0 if Dyp(z,t) = 0.

Note that ot (u,p,z,t) > o~ (u,p,2,t) for all u : Q@ C RN x (0,00) — R and all
(p,z,t) € (RN \{0}) x Q. Note as well that in the above definition we may replace
A(Q) by Ag().

In order to define the flow of a stone by the wearing process in the level set approach,
we will establish theorems corresponding to Theorem 2.2 for (L).

We state our main results below in this section without proof. Their proofs will be
presented in the following sections.

We start with stability properties of solutions of (L).

For any S C R™ and f : S — R we define the upper (resp., lower) semicontinuous
envelope f*: S — RU {oo} (resp., fx : S — RU{—o0}) by

@ = lmsup{f) |y € Sly—al <r} and fo=—(1)"

Proposition 2.4. Let T € (0,00] and set @ = RN x (0,T).
(a) Let S be a non-empty collection of viscosity subsolutions of (L) in . Set

u(z,t) = sup{v(z,t) |v € S}  for (z,t) € Q.
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Assume that u*(z,t) < oo for all (z,t) € Q. Then u* is a viscosity subsolution of (L)
mn Q.
(b) Let S be a non-empty collection of viscosity supersolutions of (L) in Q. Set

u(z,t) = inf{v(z,t) |v e S}  for (z,t) € Q.

Assume that u.(z,t) > —oo for all (z,t) € Q and that u, satisfies condition (A). Then
Uy 08 a viscosity subsolution of (L) in .

(c) Let f1, fo € C(2) be a viscosity subsolution and a viscosity supersolution of (L) in
Q, respectively. Assume that f1 < fo in Q. Set

u(z,t) = sup{v(z,t) | v is a viscosity subsolution of (L) in Q, f1 <v < fy in Q}.

Assume that u, satisfies (A). Then us is a viscosity supersolution of (L) in .
The next proposition is similar to Theorem 2.1, (a).

Proposition 2.5. Let Q be as in the previous theorem. Let 8 € USC(R) (resp.,
6 € LSC(R)) be a non-decreasing function and u a viscosity subsolution (resp., super-

solution) of (L) in Q. Then 0 ou is a viscosity subsolution (resp., supersolution) of (L)
i ).
One of our main results is the following comparison theorem.

Theorem 2.6. Let T € (0,00]. Let u € USC(RY x[0,T)) and v € LSC(RY x[0,T)) be
a viscosity subsolution and a viscosity supersolution of (L) in RN x (0,T), respectively.
Assume that v satisfies condition (A) with Q = RN x [0,T) and that u(z,0) < v(z,0)
for all z € RN. Then u <wv in RN x (0,T).

Our existence result for the Cauchy problem for (L) is stated as follows.

Theorem 2.7. Let h € Uy. Then there exists a (unique) viscosity solution u € U of
(L) satisfying the initial condition

(2.6) u(z,0) = h(z) for all z € RV,

We are now in a position to define the flow of a set by the wearing process.

Let S € RY be a compact set. We choose an h € Uy so that

(2.7) S ={ze R |h(z) <0}
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By virtue of Theorem 2.7, there exists a viscosity solution u € U of (L) satisfying (2.6).
We define

(2.8) V ={(z,t) | u(z,t) <0},
(2.9) Vi={ze RN | (2,t) eV} fort>0.

The collection of mappings : S — V;, with ¢ > 0, of compact subsets of RV to

compact subsets of R is well-defined as the following theorem ensures.

Theorem 2.8. For fired compact S C RYN, as far as h € Uy satisfies (2.7), the set V
defined by (2.8) is determined independently of the choice of h.

We give here a proof of this theorem, which is based on previous results.

Proof. Let S C RY be a compact set. Let hi, ha € Uy satisfy (2.7) and uy,us € U be

the viscosity solutions of (L) satisfying (2.6) with h = hy and with h = hg, respectively.

Define V1, V2 C RN x [0,00) by (2.8) with u = u; and with u = us, respectively.
Define vy, v2 € C(RY x [0,00)) by

v1(2,t) = min{u(2,t),1} and wy(z,t) = max{ua(z,t),0}.

By virtue of Proposition 2.5, v and ve are viscosity solutions of (L). Note as well that

VI ={(z,t) € RN x[0,00) | v1(z,t) < 0},
V2 ={(z,t) € RN x[0,00) | v2(z,t) < 0}.

Since v1(+,0) is uniformly continuous in RY, we may choose an increasing function
6 € C(R) such that 6(0) = 0 and

v1(2,0) < O owvy(2,0) forall z€ RV,
Now, thanks to Theorem 2.6, we have
vy <Oowy in RN x [0, 00).

Observing that V2 = {(z,t) € RY x [0,00) | § o va(2,t) < 0}, we see that V2 C V1. By
symmetry, we have as well V! C V2. Thus, we conclude that V! =V2. |

Finally, we may define the flow of a set starting from S by the wearing process as
the collection {V;}+>0, where V; are defined by (2.9).
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3. Comparison principle for PDE (L)
In this section we prove Theorem 2.6. The proof is divided into four steps, each of

which is described in subsections from 3.1 to 3.4.

3.1. Graphs representing part of the boundary of an evolving set

In this subsection we take a step to reduce the proof of the comparison principle for
(L) to that for PDE for functions describing part of the boundary, as their graphs, of
an evolving set by the wearing process.

Let © C R™ x (0,00). Consider the case when part of the boundary of an evolving
set by the wearing process is represented as the graph of the function v in 2. Following
[IM2], the PDE for v is

(G) ve(z,t) = x(v, Dv(z,t), z,t)g(Dv(z,t), D*v(z,t)) for (z,t) € Q,

where the functions g and y are defined respectively by

det+X
X) =
_J1 ifv(y,t) > v(z,t)+p-(y—2x) forall y e Qy,
X(v,p, 2, t) = {0 otherwise,

and €; denotes the set {z € R™ | (z,t) € Q} for ¢ > 0.
We call v € USC(£2) a viscosity subsolution of (G) if whenever ¢ € C%(£2) and v — ¢

attains a local maximum at (Z,%) € Q then

Qot(‘f:a ﬂ < X+(U7 DQO(S?), 05 i‘a E)Q(DV’(@, i)ﬂ DZ()O(‘%’ 0)7

where x* (v, p, z,t) = x(v,p, 7, ).
We call a function v € LSC(Q2, RU{cc}) a viscosity supersolution of (G) if whenever
@ € C%(Q) and v — ¢ attains a finite local minimum at (&,%) € Q then

¢e(2,1) > X~ (v, Dop(2, 1), &,8)g(De(2, 1), D* (2, 1)),
where x~ (v, p, x,t) = 1 if
v(y,t) > v(z,t)+p- (y—x) forye Q\ {z},
and there is an € > 0 such that for any (y, s) € Q satisfying |y| > 7! and |s — t| < ¢,

v(y,s) >p-y+elyl,
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and otherwise, x~ (v, p, z,t) = 0.

Because of the factor x in (G), the PDE (G) has a nonlocal character. However, it
is clear that if v € USC(Q2) is a viscosity subsolution of (G) in € and €; is an open
subset of €2, then v is a viscosity subsolution of (G) in ;. On the other hand, this local
property does not hold for supersolutions.

It is convenient for us to allow viscosity supersolutions of (G) to take the value +o0
as we do here.

The above PDE was the starting point of the mathematical analysis in [IM2], but
here we show that, speaking loosely, certain part of the boundary of any of sub-level
sets of viscosity solutions of (L) is represented as a viscosity solution of (G). This is
precisely stated in the following two theorems.

Let u € LSC(RY x [0,00)) be a viscosity supersolution of (L). Fix A € R, and
consider the set

K = {(z,t) e RN x [0,00) | u(z,t) < A}.

Since u is lower semicontinuous, K is a closed subset of RN x [0, 00).

Assume that X, t
(3.1) K is a bounded subset of RY x [0, c0).
We define u™ : R™ x [0,00) — R U {oo} by
ut(z,t) =inf{y € R | u(z,y,t) < A} =inf{y € R | (z,y,t) € K}.
Theorem 3.1. The function u™ belongs to LSC(R™ x [0,00), R U {oc}) and it is a
viscosity supersolution of (G) in R™ x (0, 00).

Proof. In view of Proposition 2.5 (whose proof will be given below), we may assume
by replacing u by 6 o u, where §(s) = 0 for s < X and 6(s) = 1 for s > A, that A =0

and u has only two values 0 and 1. Then, by the definition of u™, we have
u(z,y,t) =1 for all (z,t) € R" x [0,00) and y < u™ (z,1).
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Since u is lower semicontinuous, by the definition of u* we have for all (z,t) € R™ x
[0, 00),
u(z,ut(z,t),t) =0 if wuT(z,t)€R.
We next check the lower semicontinuity of u™. Note first that for all (z,t) € R™ X
[0, 00),
(z,ut(z,t),t) € 0K if ut(z,t)# cc.
In particular, since K is a bounded subset of R"*2, we see that the function ut is

bounded from below on R™ X [0, 00).

Let R™ x [0,00) 3 (zk, tx) = (2,t) € R™ x [0,00) as k — oo and

7 == liminf u™ (2, tg)-
k—o0

We need to show that u™(z,t) < v. There are two possibilities: v € R or v = oo. If
v = oo, then there is nothing to prove.

Suppose that v € R. By replacing {(zk,tx)} by a subsequence if necessary, we may
assume that u™ (zg,tx) € R for all k € N and that the sequence {u™ (z, tx)} converges
to 7. Since u(xg, u™ (g, tx), tx) = 0 for all k € N and u is lower semicontinuous, we see

that u(z,v,t) < 0. From this we see that
ut(z,t) <.

Let (#,1) € R® x (0,00) and ¢ € C2(R™ x (0,00)). Assume that u*(#,%) € R and

that u™ — ¢ has a minimum at (Z,%) € R” x (0,00). We may assume that
u+(§7a ﬂ = ¢(2, ﬂa
ut(x,t) > ¢(z,t) for (x,t) € R™ x (0,00).

We write § = ut(2,1) and p = Dp(&, 1).
Now we claim that the function ®(x,y,t) := u(z,y,t) — p(z,t) + y attains a local
minimum at (%, §,t).

To show this, we first note that
®(z,4,t) = 0.
Fix any (z,y,t) € RN x (0,00). Observe that if y > ut(z,t), then
D(z,y,t) > —p(z,t) +y > —ut(2,t) +y > 0.
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If y < ut(z,t), then

Since 1 — ¢(&,%) + § = 1, there exists a constant § > 0 such that for all (z,y,t) €
B(2,6) x [§ — 0,9 + 6] x [t — 6,1 + 4],

1 —o(z,t)+y > 0.
Then we have
®(x,y,t) >0 for (x,y,t) € B(&,0) x [§— 6,5+ 6] x [t — 6, +9].

Thus we conclude that & has a local minimum at (&, §, £).
Define ¢ € C?(RY x (0,00)) by ¥(z,y,t) = @(x,t) —y. Since u is a viscosity

supersolution of (L), we get

A,

(32) $i(2,9,1) > 0~ (u, DY(&, 9, 1), &, §,1)G (D (&, §,1), D* (&, §,1)).
We need to show
0u(2,1) > x~ (u', B, & 8)g(p, D*p(&,1))-
Consider the case when x~ (ut,p, Z,%) = 0. From (3.2) we have
0u(&,1) = u(,9,8) > 0= x~ (u*, p, & )g(p, D*¢(&,1)).

Consider next the case when x~ (u™,p, Z, ﬂ = 1. Observe that if

then (3.2) reads
De(,9,1) > G(DY(%, §,1), D*p(2, §,1)),

from which we get
i(,8) > g(p, D*¢(#, 1)) = x~ (u*, p, 2, 8)g(p, D?¢(%,1)).
( See, e.g., Lemma A in the appendix. ) Therefore we need only to show that
o~ (u, D(%,9,%),2,9,1) = 1.
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From the assumption that x~ (ut,p, #,%) = 1, we see that
ut(z,t) >§+p-(x—2z) forallzeR™\ {z},
which guarantees that for all (z,y) € RY, if

yS?)-l-ﬁ(:E—a%) and (:an)#(i.ag%
then y < ut(z,%) and hence
u(z,y,t) = 1.
That is,
u(z,y,t) >0 for all (z,y) € HDy(&,9,1),%,9),
which shows that
O-_(U7D/€b(',f;7 A’ﬂ?'%’@?i) = 1' I
Now let u € USC(RY x [0,00)) be a viscosity subsolution of (L). Fix A € R, and
consider the sub-level set
W ={(z,t) € RN x[0,00) | u(z,t) < A}.

Note that W is an open subset of RY x [0, 00) in the relative topology.

We assume that
(3.3) W is a bounded set.

Fix any ¢ € R. We consider the intersection of W and the hyperplane y = ¢ of
RN*! and its projection © onto the hyperplane y = 0, which we may identify as a

subset of R**!. In other words, we define Q as the set
Qe = {(z,t) € R"*! | (z,c,t) € W}

Observe that €2, is an open subset of R™ X [0, 00) in the relative topology.
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We define u_ : 2. — R by
u, (z,t) = inf{a € R | max u < A} =inf{a e R | {z} X [a,c] x {t} C W}.
asysc

Note that u; (z,t) < c for all (z,t) € Q..
Theorem 3.2. u_, € USC(Q.) and u_ is a viscosity subsolution of (G) in ..

Proof. We may assume by replacing u by 6 ou, where §(s) = 0 for s > X and 6(s) = —1
for s < A, that A = 0 and u has only two values 0 and —1. Then, by the definition of

u, , we have
(3.4) u(z,y,t)=—1 for all (z,t) € Q. and y € (u_ (z,1), .
Since u is upper semicontinuous, by the definition of u_ we have
u(z,ug (x,t),t) =0 for all (z,t) € Q..
We next show that u, € USC(2.). Note first that
(z,u; (x,t),t) € OW  for all (z,t) € Q..

Hence, by (3.3), we see that the function u, is bounded on ..
Fix (z,t) € Q. and a € (u; (z,t),c). By (3.4), we have

{z} x [a,c] x {t} C W,

and, since W is an open set, there is a positive number e such that B(z,¢) x [a, ¢] X

[max{t — ¢,0},t +¢] C W, which shows that
u, (y,8) <a forall (y,s) € B(z,e) X [max{t —¢,0},t + €.

This guarantees that u; € USC(£2,).
Let (,%) € Q. and ¢ € C%(Q,). Assume u] — ¢ has a maximum at (£,7) € Q.. We
may assume that
Ue (jaﬂ = 90("2'35)’
u, (z,t) < p(z,t) for (z,t) € Q..
We write § = u_ (2,%) and p = Dp(#, ).
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Now we claim that the function u(z,y,t) — ¢(z,t) + y attains a local maximum at
(&, 9, 1)
To see this, let (z,t) € Q. and y € (—o0, ¢|, and observe that if p(z,t) > y, then

u(z,y,t) <0< p(2,t) —y,
and if —1 < ¢(z,t) —y < 0, then u; (z,t) < y and hence

u(z,y,t) = -1 < p(z,t) —y.
Since

u(ijagaﬂ_(p(jaﬂ+g:05

and the set
{(Zl?,y,t) | (SIT,t) € Qca Yy € (—OO,C], QO(CC,t) ) > _1}

contains a neighborhood of (,4,t), we conclude that u(z,y,t) — ¢(z,t) + y attains a
local maximum at (&, ,1).

Define ¢ (x,y,t) = p(x,t) —y for (z,y,t) € W. Since u is a viscosity subsolution of
(L), we get

(3.5) Pi(2,9,1) < ot (u, DY(&,9,1), &, 9, 1) G(DY(&, 9, t), D*(2, 9, 1)).

A,

Consider the case when ot (u, Di)(,9,1),2,9,%) = 0. In this case, from (3.5) we get

0t(£,1) = (&, 9,1) <0 < xT(u;,p,2,8)g9(p, D*p(%,1)).

A, A

Consider next the case when o (u, D (%, 9,t),Z, 9,t) = 1. In this case, we see easily

that

Hence, from (3.5) we get

wt(i’y’ )< G D'@b A) D ¢($ yaﬂ)

It is a standard fact (see, e.g., Lemma A in the appendix) that the above inequality
yields

(pt(:ﬁ’ﬂ < g(D(p(:f:,ﬂ,DQ(p(;f:,ﬂ).
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Thus in both cases we have

oi(2,1) < xT(uz, Do(%,1),2,1)g(De(%,t), D*p(,1)). i

3.2. Comparison lemma for PDE (G)

We establish a comparison lemma for (G), which is a key observation in our proof
of Theorem 2.6.

Let Q be a bounded, relatively open subset of RY x [0,00). As before, we use
the notation: Q; = {x € R" | (z,t) € Q} for t > 0. Let E be a compact subset of
R"™ x [0, 00).

Let u € USC(Q2) and v € LSC(R™ x [0,00), RU {cc}) be a viscosity subsolution of

(G)s ug(z,t) = x(u, Du(z,t), z,t)g(Du(z,t), D*u(z,t)) —§ in Q,

where § > 0 is a constant, and a viscosity supersolution of (G) in R™ x (0, 00), respec-
tively. Here the closure Q of € is taken as a subset of R™*! and viscosity solutions for

(G)s are defined in the same way as those for (G).

Lemma 3.3. In addition to the above hypotheses, let ¢ € R and assume that u < v on

0Q, that if (z,t) € Q is a mazimum point over Q of u — v, then
1) v(zt)=c,
(2) 0 € D}u(z,t), i.e.,

u(z +&,t) <ulz,t)+o(lg]) as& —0,

and that for (z,t) € E\ Q
>c or (z,t) € )
v ?) {= o0 for (z,t) € (R" x [0,00)) \ E.

Then u < v in Q.
We adapt the arguments of [IM, Theorem 1] to the following proof.

Proof. We may assume by replacing u and v respectively by u —c and v —c if necessary,

that ¢ = 0. We argue by contradiction, and thus suppose that

6 := sup(u — v) > 0.
Q
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For k € N, we define functions (sup- and infconvolutions) uy, vy on R"*1 by
e, 1) = max{uy, ) — oy — 2’ + |s— 1) | (v.) € O,
vk (2, t) = minf{v(y, s) + g(ly —a* + s —t°) [ (y,5) € Q}.
Since u < uy and v > vi on Q, we have
mﬁax(uk —wvg) > 6.

Since u € USC(Q) and v € LSC(Q, R U {o0}), u and —v are bounded above on .
We may thus choose a constant M > 0 so that

maxu < M and max(—v) < M.
Q Q

For (z,t) € Q, if ug(z,t) > vg(z,t), then we have
—M < wvg(z,t) < ug(z,t) < M.
If, in addition, (y, s) € Q satisfies
ue(, 1) = u(y, ) = 5 (o =y + |t = 5P,
then we have
(3.6) lz —y|>+ [t — s> <4kIM.
Similarly, if (z,t) € Q and and (y, s) € { satisfy
ug(z,t) > vg(z,t) and wg(z,t) = v(y,s) + g(|w —y2+ [t — s/?),
then
(3.7) lz—y®+ |t — s> <4k™'M.

Define
P={(z,t) € Q| (u—w)(z,t) = 0},

which is a closed subset of Q.
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For € > 0 we write
Us={(z,t) € Q| t>e, dist((x,t),2\Q)>e}
Since v < v on 9Q, u — v € USC(Q, RU {—c}), and
Q\ U, C {(z,t) € Q| dist ((z,t),00) < €},
we may choose a constant € > 0 so that
(3.8) P C Us..

Since v > 0 on E'\ Q2 and v € LSC(F,R U {oc0}), we may choose a constant v > 0 so
that
v>v on [EN(R"x (e,00))]\ U..

We fix a constant v > 0 such that for any a € (—o0,~], p € B(0,7), and (y, s) € Uk,
a+p-(x—y)<v forall z € R" such that (x,s) € E.
Accordingly, if a € (—o0, ], p € B(0,7), and (y, s) € U, then we have
(3.9) a+p-(x—y)<wv(xz,s) forall x € R" such that (z,s) & U..

We recall here a standard fact that if (x,t) € R*™! and (p,q, X) € J?Vug(z,t),
then fory:a:—i-%p and s =t + %q,
k
uk(z,t) = w(y, s) = 5 (o =yl + |t = s)

and
(p.a, X) € J2 u(y, s).

We refer to [CIL] for the definition of J%* and J%’i, and basic properties of inf- and
supconvolutions uy and vg. Similarly, if (z,t) € R™*! and (p,q, X) € J> wg(z,t), then

fory:x—%pands:t—%q,

k
vk(x,t) = vy, 8) + 5 (Jo =yl + [t = 5°)

and
(psa, X) € J270(y, 5)-
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We remark that, as is well-known, u; and —vj are locally Lipschitz continuous and

semiconvex in R"*!. In fact, regarding the semiconvexity, the functions
k k
uk(a:,t)+§(|w|2+t2) and —vk(:c,t)+5(|x|2+t2)

are convex on R™"t1,

Next, for each k € N let (&4, #1) € Q satisfy

(ug — v) (Ex, tr) > 0 —

=

Choose points (g, 5x) € Q and (2, 7x) € Q, with k£ € N, so that

. P k. . . PO
(3.10) ur(Ex, ) = w(Gr, 81) = 5 (|2% = k12 + [t — 8)%),

. 2 .. k. . . P
(3.11) ’Uk(ZEk,tk) :’U(Zk,T'k) + 5(‘:616 — Zk‘2 + |tk — ’r‘k|2).

Then we have

for all £ € N.

e

u(Jr, 88) — V(Zky i) > (ug — vi) (Eg, tr) > 0 —

We may assume that (&y,%x) — (&, %) along a subsequence for some (z,%) € Q as k — oo.
In view of (3.6) and (3.7), we see that, along the same subsequence, (§x, §x) — (&, 1)
and (%, %) — (2,%) as k — oo. Since u, —v € USC(Q, R U {—oc}), we see from the

above inequality that
(3.12) (u — v)(&,1) >0,
i.e., (Z,%) € P. This together with assumption (1) implies that

(3.13) lim v(2g,7t) =0 and  lim wu(g, $k) = 6.

k— o0 k— o0

Now we want to “strictly” maximize functions which are small perturbations of the
function uy — vy over ).

We introduce a sequence {dx}ren C (0,6/2) such that for all p,q € B(0,1) and
X eS8 if —kI < X <kI and |p — q| < d, then

(3.14) l9(p, X) — g(g, X)| < g-
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By perturbed optimization techniques (see, e.g., [EL, Corollary 3.8]), for each k € N
there is a point (ag, br) € R™ X R satisfying |ax| + |bx| < dx such that the function

Dy (z,t) := ug(x,t) —vg(z,t) — ag - ¢ — byt

attains a strict maximum over Q at a point (z,tx) € Q.

By choosing |ax| + |bi| small enough, we may assume that (ug — vi) (g, tg) > 60 — &
for all k € N. Recalling (3.12) and (3.8), we may further assume that (zg,tx) € Us. for
all k € N.

Now, for each k € N there is a function 1, € C?(R™) such that

Yr(z) >0 for all x # zy, Y (zx) =0,

Y (x) is strictly convex on R",
@y (x,t) + ¢ () attains a strict maximum over Q at (xy, tx),

[9nlloo + 1 D%klloc + [D*kllo < O,

where the sup-norms in the above inequality are taken over .
By Jensen’s maximum principle (see, e.g., [CIL, Lemmas A.2 and A.3)]), there are
(ag,br) € R™ x R and (Zg, ;) € Q such that

’U,k(.’IT, t) — ’Uk(.fl?, t) + 'gbk(.’li') — (G,k + dk) ‘T — (bk + i)k)t

attains a maximum over Q at (Zy, {x), ux and vg are twice differentiable at (Z, ), and
|ax| + [bx| < Ok

Here we may choose (@, by, Zx, tx.) as close to (0,0, zx,tx) as we wish. Thus we may
assume that (Ty,tx) € Uz and (ug — vk )(ZTk, tx) > 0 — % for all k£ € N.

By the elementary maximum principle, we have
Pk := Dug(Zk, tx) = Dog(ZTk, tx) — DYr(Tr) + ar + ax,

Gk = Uk t(Tky tr) = Vit (Zk, k) + bk + b,
X = D2uk(ik, {k) < D2’Uk(£l_7k,t_k) — D2¢k(a?k).

Note that —kI < X, < D?v(Z, tx) < kI.
For each k € N select (y, sx) € Qand (zx,7%) € Q so that (3.10) and (3.11) hold with

(&, k), (Gk, 8k), and (2, P) replaced by (Zx,tk), (Uk, k), and (2, k), respectively.
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We will show a contradiction for large k. Since (Zg,tx) € Use, in view of (3.6)
and (3.7), restricting our attention to large k, we may assume that (yg, sx) € U. and
(2zg,7k) € Uk.

Accordingly, we have

@ < xT(u, Pk Yks 5)9(Pry Xi) — 6,

Gk — b, — b >x~ (v, pr, + Dx(Tk) — ak, — @k, 2k, Tk)
- g(pk + Dog (k) — ag — ax, Xi, + D*¢i(2x))-

If X+(uapkayk78k) = 07 then
Qe +6 <0 < qx — by — by.

Since |bg| + |bx| < 20 < 8, this is not the case. Therefore we have x* (u, Pk, Y&, sx) = 1,
which yields

(3.15) u(z, sk) > u(yk, sk) + vk - (x —y) for z € Q, .

From this we have

k

(3.16) wu(z,sk) — §(|yk — Zk|? + |5k — t]?) > uk(Tr, tk) + ok - (x —yr)  for z € Q.

We wish to show that for sufficiently large k,
(3.17) X~ (v, pk + DYx(Zx) — ag — ag, 21, 7x) = 1.

To this end, fix any y € R™ so that (y, ) € Ue and y # z,. Since we are considering

only large k, in view of (3.6) and (3.7), we may assume that

(Y + Yk — 2k 5%) = (U5 ) | < |(Wks 1) — (Zks B) |+ [Tk, Th) — (2o 7i)| <6

and hence

(y + yk — 2k, sk) € S

We may assume as well that

‘(y + T — Zkaik) - (y,”'k)‘ = ‘(fkazk) - (Zk7rk)| <g,
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and hence

(y+ Tk — 2k, tr) € Q.

We insert z = y + yx — 2x, into (3.16), to get

k _
- 5(\3% —ykl® + [tk — sk|?)

< up(y + g — 2k, tk)-

uk(Zk, te) + pr - (Y — 21) <u(y + yx — 2k, Sk)

Since (Zg, tx) is a maximum point of
uk(a:, t) — ’Uk(.’li, t) -+ 'gbk(l') — (ak + ak) - — (bk + i)k)t
over Q and (y + Ty — 2x, ) € Q, we have

Uk (Y + Tk — 2, th) — V(Y + Tk — 2k, th) + V(Y + Th — 2)
— (ak +ax) - (y + 2k — 21) — (b, + be )
< up (T, tr) — Ok(Zk, tk) + i (Tx) — (ar + ax) - T — (b + br)Ex.
Furthermore, using the strict convexity of 1y, we have
Ok (Y + Tk — 2k, tr) = 0k (Th, tr) + uk(y + Tk — 25y tr) — ur (T, tr)
+ k(Y + Tk — 2) — Yr(@x) — (ak + ax) - (y — 2k)
>k (T, ) + (P — a — ak) - (Y — 2&) + (Y + 2k — 21) — Yr(2k)
> Uk (T, tk) + Pk — ak — ag + DYx(Tr)) - (Y — 21)-
Therefore, we get
v(y, k) + g (J2k — Zi|* + |7k — t]?) > vi(y + %k — 2k, Lr)
> Uk (T, tk) + (Pk — ar — ax + Dog(T)) - (v — 2k)
=v(zk, k) + g (|2k — Zk|* + |7 — ti]?)
+ (px — ak — ax, + DYp(zx)) - (¥ — 2x),
and hence,
(3.18) v(y,re) > v(zk, k) + (P — ax — @ + DY(Zk)) - (y — 2k)-

To complete the proof of (3.17), it remains to show that (3.18) holds for all y € R™
with (y,7x) & Uk.
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For this, we show first that p — 0 as kK — 0o. To see this, we go back to (3.15) and
observe that if pg # 0, then, setting x = yx + ppx/|pk|, with sufficiently small p > 0, we

have

Dk
plpk| < U(Z/k + Pm, Sk) — u(Yk, Sk)-

In view of (3.13), since u € USC(Q), we get in the limit as k — oo,

plimsup |px| < w(z + pe,t) — u(z, 1)

k— o0

for some (2, ) € P and some e € S"~! := {x € R™ | |z| = 1}. Therefore, by assumption
(2), we have

plimsup [px| < o(p) as p 0.

k— o0

Hence, we get
kh—g:lopk =0
Thus we may assume that |px| < 1 and |py — ar — ax + DYg(Zx)| < min{y, 1}.
By (3.13), we know that v(zg,7x) — 0 as k — oo. Hence, we may assume as well
that v(zx, %) < 7. Now, (3.9) ensures that (3.18) holds for all y € R™ with (y, ) & U..
This shows that (3.17) holds.

Now, we get

9Pk + DYx(Tr) — ag — @k, X + D*Px(Z)) < g — br — b < g(pr, Xi) — bx — br — 0.
This and (3.14) give us a desired contradiction. |

3.3. Distance between two evolving sets

In this subsection we study continuity properties of the distance between two evolv-
ing sets.

Let u € USC(RY x [0,00)) and v € LSC(RY x [0,00)) be respectively a viscosity
subsolution and a viscosity supersolution of (L) in RY x (0, c0).

Fix A € R and set

K ={(z,t) € RN x[0,00) | v(z,t) < A},
W ={(z,t) e RN x[0,00) | u(z,t) < A},
K,={z](zt)e K} and W,={z|(2,t)eW} forte]|0,00).

27



For notational simplicity we consider the case when A = 0, but the results in this
subsection are valid for general .

Assume that
(3.19) K and W are bounded subsets of RY x [0,00) and that K # 0.

We define the function d : [0, 00) — [0, o0] by
d(t) = dist (K, W¢),

where W¢ = RN \ W,.

Theorem 3.4. (a) There is a constant T > 0 such that d(t) < oo for allt € [0, 7] and
d(t) = oo for allt € (1,00). (b) d € LSC([0,7]). (c) d is left continuous in (0, 7].

Proof.  Since v is lower semicontinuous, K is closed in R x [0,00) and hence K is
compact. Since u is upper semicontinuous, W is a relatively open subset of RY x [0, co).

Accordingly, for any t € [0,00), K; is a compact subset of RN and W¢ is a non-
empty closed subset of RY. Therefore, for any t € [0,00), as far as K; # (), there is a
point (2}, 2?) € Ky x W¢ such that

dist (K;, WE) = |2f — 22|.
We claim that for any 0 < < s < oo, we have
K D K.
Indeed, noting that v satisfies
v, >0 in RY x (0,00)
in the viscosity sense, we see that for all z € RY and 0 < ¢t < 5 < 00,
v(z,t) <wv(z,s).

This immediately implies that K; D K, for 0 <t < s < o0.

Since K is compact, there is a 7 € (0, 00) such that

K,#0 and K;=0 forallte (r,00).

28



From this, we get immediately

d(t){<oo for ¢t € [0, 7],

= 00 for t € (1,00).

Next, we prove assertion (b). Let t € [0, 7] and {tx}xen C [0, 7] be such that t — ¢
as k — oo.
Set
v = likrgilgf d(tg)-

We may assume by selecting a subsequence of {t;} that

v = lim d(tg).

k—o0

For each k € N we choose a point (z;,2;) € Ky, x W so that
d(tk) = |25 — 2

Since (z,i,tk) € K, K is compact and W is bounded, we may assume by selecting a
subsequence of {(zi,22)} that {(2},22)} converges to a point (z',2?) € R?N. Since K

and W€ is closed, we have
(z',t) e K and (2%,t) € W<

That is,
e Ky and 22 € WE

By the definition of d, we have
d(t) < |2' = 2%| = lim |z — 23| = lim d(tg) = 7,
k—o0 k—o0

which proves the required semicontinuity.
To prove (c), we show that there is an increasing continuous function w : [0,00) —

[0, 00) satisfying w(0) = 0 for which
(3.20) d(t+s) > d(t) —w(s) forallt,se][0,00).

The first step is to show that for each € > 0 there exists § = §(e) > 0 such that
(3.21) if z € RN and dist (z, W) > ¢ then z € W, for all s € [t,t+ 0).
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Indeed, by translation, it is enough to show that for any e > 0, if dist (0, W§) > ¢,

then
eN

0 € m Wy,  with 5::W'
s€[0,0)

In the proof below we use the Gauss curvature flow of balls contained in Wy at ¢ = 0.

A

t

|z|'\I +Nt<e

Set
o(z,t) = |2|N + Nt =V for all (z,t) € RY x [0,00).

Note that
vi(z,t) = %im G(Dy(¢,t), D*p(¢,t))  for all (z,t) € RN x (0,00).
—z

Since ot (u,p, z,t) < 1 for all (p,2,t) € RN x (0,00), we see that u is a viscosity

subsolution of
ug(z,t) = G(Du(z,t), D*u(z,t)) in RY x (0, 00).

We may assume that
0 for (z,t) € We¢,

u(zt) = { —eN for (2,t) e W.
Observe that
(u—¢)(2,0) <0 forall z€ RV,
(u—)(z,t) <0 for all (z,t) € RN x [4,00),
(u—¢)(z,t) <0 for all (z,t) € B(0,¢)° x [0, 00).

Suppose that
sup(u — @) > 0.
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Choose A > 0 small enough so that the function u(z,t) — ¢(z,t) — At attains a positive
maximum over RV x [0,00) at a point (2,%) € B(0,¢) x (0,6). Then we have

¢i(2,8) + X < lim G(Dy(z, 1), D*¢(2,1)).

z2—Z

(The function ¢ is not admissible, but if Dp(2,#) = 0, by testing ¢ from above by a
collection of admissible test functions one may deduce the above inequality.) This is a
contradiction, which proves that u < ¢ in R¥ x [0, 00). Since ¢(0,s) < 0 for s € [0, ),
we conclude that u(0,s) < 0 for s € [0,0), which guarantees that 0 € Wy for s € [0, ).
This proves (3.21).

Now, we show (3.20) for w(s) = (Ns)~. Let ¢,s € [0,00). In view of assertion
(a), if d(t) = oo, then d(t + s) = oo and (3.20) holds. If d(t) — w(s) < 0, then it is
clear that (3.20) holds. It remains to examine the case when 0 < d(t) — w(s) < oo.
Choose any 0 < r < d(t) — w(s). Let z € RY satisfy dist(z, K;) < r. Then we have
dist (z, W) > d(t) — r > w(s) and hence

2z € Wiy, for7€[0,w(s)V/N]=10,s].

Therefore, we have
diSt (Kt, Wtc+s) Z 'I",

which implies that d(t 4+ s) > d(t) — w(s).
Finally, assertion (c) follows from (b) and (3.20). H

3.4. Completion of proof of Theorem 2.6

This subsection is totally devoted to the proof of Theorem 2.6.

Let v € USC(RY x [0,7T)) and v € LSC(RY x [0,T)) be a viscosity subsolution and
a viscosity supersolution of (L) in RY x (0,T), respectively, where T € (0, co].

Assume that v satisfies (A) and that u(z,0) < v(2,0) for all z € RN,

We want to show that u < v on RY x (0,7T). By adding positive constants to v, we
need to show that if u(z,0) < v(z,0) for all z € R™, then u < v on RY x (0,T).

We thus assume that u(z,0) < v(2,0) for all z € RY, and will show that u < v on
RY x (0,T).

Note that the inequality u < v on RN x (0,T) is equivalent to the inclusion

(3.22) {(z,t) e RN x (0,T) | v(z,t) <A} C {(2z,t) € RN x (0,T) | u(z,t) < A}
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for all A € R.
To show (3.22), we fix A € R and replace u and v by u — A and v — A, respectively.
We need to show that

(3.23) {(z,t) e RN x (0,T) | v(z,t) <0} C {(2,t) € RN x (0,T) | u(z,t) < 0}.

By relabeling u and v (see Proposition 2.5) if necessary, we may assume that u takes
only two values —1, 0 and v takes only values 0, 1.
Fix any 0 < Ty < T and define u;, v; : RN x [0,00) = R by

u(z,t) for 0 <t <Ti,
-1 for T7 <t < o0,

ui(z,t) = {

and
{v(z,t) for 0 <t <Ti,

1 for Ty <t < o0.

It is easy to check that u; and v are, respectively, a viscosity subsolution and a viscosity
supersolution of (L) in RY x (0,0c0). Note as well that, since v satisfies (A), the set
{(z,t) € RN x [0,00) | v1(w,t) < 0} is compact.

We choose R > 0 so that

{ze R" | v(2,0) <0} C B(0,R).
Recall that the function
w(z,t) = [z|V + Nt — (R+ 1)V
is a viscosity subsolution of (L) in R¥ x (0, 00). If we define uy : RN x [0,00) — R by
u2(z,t) = max{u(z,t), wi(z,t)},

where
0 if ||V + Nt > (R+ 1)V,

1) =
i (21) {—1 if 2N + Nt < (R+ 1)V,

then uy € USC(RYN x [0,00)), ug is a viscosity subsolution of (L) in RN x (0,00) by
Proposition 2.4, (a), us(z,0) < v1(z,0) for all z € RN. Note that the set

{(z,t) € RN x [0,00) | ua(z,t) < 0}
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is bounded.

To show (3.23) it is enough to prove that for any 77 € (0,7),
[(2,8) € RV x [0,00) | 01(2,) < 0} € {(21) € RN x [0,50) | us(2, ) < 0}.

Hence, replacing v and v by us and v; respectively if necessary, we may assume that
T = oo and that

(3.24) {(z,t) e RN x [0,00) | v(z,t) < 0} is a compact set,
(3.25) {z € RN x[0,00) | u(2,t) < 0} is a bounded set.

We set
K ={(z,t) € R" x [0,00) | v(z,t) < 0},

W ={(zt) € RN x[0,00) | u(z,t) < 0}.
Note that K is compact and W is relatively open in RN x [0, c0).
We use the notation: K; = {z € R | (2,t) € K} and W; = {2 € RN | (2,t) € W}
for t € [0,00). Define

d(t) = dist (K¢, W) for t € [0, 00).
Since Ky C Wy, we have
d(0) > 0,

and it is enough to show that, in order to prove (3.23),
d(t) > d(0) forallt € (0,00).

We prove this by arguing by contradiction. We thus suppose that for some ty, €
(0, 00),
d(to) < d(0).

In view of Theorem 3.4, we may choose a t; € (0,%g) so that

d(0)> d(t;) and  min d(t) >0,
te[O,tl]

and choose 1 € C%([0,%1]) so that
YP'(t) > 0 for all t € [0, 4],

d + v attains a minimum over [0, ¢1] at some 7 € (0,#1).
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Next we show that for (z1,22) € R2V, if

(3.26) ek, 2Z2eWS and |2t -2% =d(7),
then
(3.27) H(2* - 24, 2%) c WE

To do so, we fix (z!,22) € R?Y so that (3.26) is satisfied.
Define ¢ € C2(R¥N x [0,t]) by

p(z,t) =z — 2" + ¥(t).

Noting that K; D K, for 0 < t < s and therefore 2! € K; for all t € [0, 7], we see that
for any t € [0, 7] and z € W¢,

p(2,1) = d(t) + ¢(?).

We may assume by relabeling u again that

0 if (z,t) e We,

u(z:1) = { M if(zt) eW,

where M > 0 is a constant to be chosen later.
Let (2,t) € RN x [0,7]. If 2 € W¢, then

(u—@)(z,1) < =(d+ ) () < —=(d +¥)(7).

If z € Wy, then



We select M so that

M > sup d.
[Oatl]

Then we have

(u—@)(z,t) < =(d+9)(t) < —=(d +¥)(7).

Observing that

(u =) (2%, 7) = =2 = 2'[ = p(7) = —(d + ¢)(7).

we see that u — ¢ attains a maximum over RN x [0,#] at (22, 7).

Modifying the definition of ¢ outside a neighborhood of (22,7) appropriately, we
may assume that ¢ is an admissible function (see section 2 or [IS]). Thus we conclude
that

0 <¢'(1) < o™ (u,p, 2% 7)G(p, X),
where
22— 2t 1 (21 = 2%) ® (2! — 22)

- 22 — 21| - |21 — 22 |21 — 22|3

This ensures that

which shows that H(p, 22) C W, proving (3.27).

By translation and rotation in RN, we may assume that
zZ!=0 and 2*=—d(7)en,
where ey denotes the unit vector of RY with unity as its N-th entry. (3.27) now reads
R" x (—o0,—d(7)] C WS or equivalently W, C R" x (—d(7), 00).
From this, since d(7) > 0, by the definition of d(7), we see that
(3.28) K, C R" x [0, 00).
Define Q C R™ x [0,00) by

Q = {(z,t) € R" x [0,00) | (2,0,t) € W}.
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and u~ : Q — R by
u (z,t) =inf{a € R | {z} X [a,0] x {t} C W}.
Define as well u™ : R™ x [0,00) — R U {co} by
ut(z,t) =inf{y € R | (z,y,t) € K}.

It is clear that u=(z,t) < 0 for all (z,t) € (. Note as well that (0,7) € Q,
ut(0,7) =0, and u~ (0,7) = —d(7). In particular, u*(0,7) — u=(0,7) = d(7).

By Theorems 3.1 and 3.2, we know that u~ € USC(Q) and ut € LSC(R™ x
[0,00), R U {oc0}). More importantly, u~ is a viscosity subsolution of (G) in intQ
and u* is a viscosity supersolution of (G) in R™ x (0, 00).

We extend the definition of u~ to Q by setting

u (z,t) =0 for (z,t) € 0Q \ Q.

Since v~ (z,t) < 0 for all (z,t) € @ and u~ € USC(Q), we see immediately that

u— € USC(Q).
Since (z,u~(z,t)) € W¢ for (x,t) € Q and (z,u*(x,t)) € Ky, if ut(x,t) € R, for
(x,t) € R™ x [0,00), we have

lut(z,t) —u (z,t)] > dt) ifut(z,t) R

for all (z,t) € Q.
We intend to apply Lemma 3.3 to functions 4t and ™~ + d(7) + ¢, with sufficiently
small ¢ > 0, to get a contradiction. To this end, we recall (3.28) and observe that

ut(x,7) > 0 for all z € R™. Therefore, we have

u (z,7) <0< ut(z,7) forall z € R" satisfying (z,7) € Q,
and furthermore,

(ut —u7)(z,7) > d(r) for all z € R™ satisfying (x,7) € Q.

Noting that the function u* — u~ is lower semicontinuous on @, we find a constant
o € [0,7) such that

(ut —u7)(z,t) >0 forall (z,t) € QN (R" x [o,7]),
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which guarantees that
(ut —u7)(z,t) >d(t) forall (z,t) € QN (R" x [o,7]).

Since K is compact and u™(z,7) > 0 for all z € R™, we may assume by reselecting

o if necessary that
(3.29) ut(x,t) > —d(r) for all (z,t) € R" x [0, 7).
We modify the definition of u*(z,t) for ¢ > 7 by setting
ut(z,t) =00 fort>rT.
The new function u* is again lower semicontinuous in R™ x [0, 00) and it is a viscosity

supersolution of (G) in R™ x (0,00). Also, we have for all (z,t) € Q,

d(t) if te€o,7],
oo if t>T.

(= w)at) > |

We set 2 = QN (R™ X [0,00)). It is clear that €2 is a bounded, relatively open subset
of R™ x [0, 00). Note furthermore that u* — u~ attains its minimum d(7) over Q at the
point (0,7). We claim that

(3.30) (ut —u7)(z,t) >d(r) for all (z,t) € 0.

To see this, let (z,t) € 02. We have

dt) >d(r) ift<rm,
00 > d(T) ift>r.

(0 = w)at) 2 {

We may thus assume that ¢ = 7. Suppose that (ut — u~)(z,7) = d(7). Then, since
u™ (z,7) = 0, setting ¢! = (z,d(7),7) and (% = (,0,7), we have

C(teK,, CeWs and |¢*— (% =d(7).
Since (3.26) yields (3.27), we get
We D H(p,¢?) D R" x (—00,0)
for p = —en. In particular, we have
d(7)

(Oa _T) € W‘r'
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However, since 0 € K, we have

We thus get a contradiction, proving that (u™ — u™)(z,7) > d(7). Thus we see that
(3.30) holds.
Setting

E ={(z,t) e R" X [0,0) | (z,y,t) € K for some y € R},
which is a compact set, it is clear that
ut(z,t) =00 for (z,t) € (R™ x [0,0)) \ E.

Let (z,t) € E\ Q. If t > 7, then we have u™*(z,t) = co. If t < 7 and if we suppose
that u™(z,t) < d(t), then, since |u™(z,t)| < d(t) by (3.29) and (z,u*(z,t)) € K;, we
have (z,0) € W; and hence (z,t) € €2, which contradicts our choice of (z,t), This shows
that if ¢ < 7, then u™(z,t) > d(t) > d(1) > 0.

Now let (z,t) € £ be a minimum point of u™ —u~ over 2. We know that ¢ = 7 and
(ut —u)(z,7) = d(7). Again, since (3.26) implies (3.27), we have

H(—en,z) C WE,

where z = (z,u™ (z,7)), which guarantees that v~ (z,7) = —d(7) and u*(z,7) = 0.
Moreover, noting that (z,u"(z,7)) € K, and (z,u” (z,7)) € WS, and that the open
ball of RV with radius d(7) centered at (z,u™(z, 7)) does not intersect with W, we see
that as R" 3 £ — 0,

u (x4 &7) <u (z,7)+ O(¢).

The final step is just to apply Theorem 3.3 to the viscosity subsolution v~ +d(7)+¢
of (G) in Q and the viscosity supersolution u™ of (G) in R"™ x (0, 00), where € > 0 is

chosen so that u™ > u™ 4 d(7) + € on dQ, to obtain a contradiction,

u (0,7) +d(1) + e <ut(0,7) = u(0,7) + d(7). |

4. Stability of viscosity solutions
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In this section we prove Proposition 2.4 as well as Proposition 4.1 below.

Proposition 4.1. Let Q = RY x (0,T), with T € (0,00]. (a) Let {ug}ren C USC(Q)
and u € USC(Q). Assume that ug(&) \ u(§) for all £ € Q as k — oo and that ug are
viscosity subsolutions of (L) in Q. Then u is a viscosity subsolution of (L) in Q. (b)
Let {ug}ren C LSC(Q) and u € LSC(Q). Assume that ug(§) 7 u(§) for all & € Q
as k — oo, that uy, are viscosity supersolutions of (L) in Q, and that all the uy satisfy

condition (A). Then u is a viscosity supersolution of (L) in 2.

We need the following lemmas for the proof of Propositions 2.4, 2.5, and 4.1 and
Theorem 2.7. Let Q = RN x (0,7T), with T € (0, 00).

Lemma 4.2. Let {vg}ren C USC(Q2), u € USC(Q), & = (2,t) € Q, & = (2k, k) € Q,
pr € RN, and p € RN\ {0}. Assume that vy, < u in Q, and that & — €, vg(Ex) — u(€)
and pr, — p as k — oo, and that o (u,p, &) = 0. Then o™ (vg, px, &) = 0 for sufficiently
large k.

Proof. Since o (u,p,&) = 0, there is a point y € H(p,z) such that u(y,t) < u(§).
Since u € USC(f?), there is a neighborhood U of (y,t) and a constant ¢ > 0 such
that u(n) < u(§) — 2¢ for all n € U. Since vg({x) — w(§), we may assume that
u(€) < vg(&k) + . Then u(n) < vi(€x) — € for all n € U. Since vy < u, we have
vg(n) < k(&) — € for all n € U. By continuity, U N H (pg, &) # O and, accordingly, we
have o (vg, p, &) = 0 for sufficiently large k € N. 1

Lemma 4.3. Let {ug}ren C USC(Q), u € USC(Q), & = (2,t) € Q, & = (2x, k) € Q,
pr € RY, and p € RN \ {0}. Assume that ug(n) \, u(n) for alln € Q as k — oo and
that & — &, ug(&x) — u(€), and px — p as k — oo, and that o¥ (u,p, &) = 0. Then
o (uk, pr, £k) = 0 for sufficiently large k.

Proof.  As in the previous proof, there is a compact neighborhood U of (y,t) and a
constant € > 0 such that u(n) < vg(&x) — 2¢ for all n € U. Hence, (vi(n) — vk (k) +
2¢)+ \( 0 for all n € U as k — oo and therefore, in view of Dini’s lemma, we see that
(ve(n) — ve(&k) + 2¢)4+ ¢ 0 uniformly for n € U as k — oo. Thus, we may assume
further that vg(n) < vk (&) —e€ for all n € U and sufficiently large £ € N. By continuity,
U N H(pg,zx) # 0 for large k € N. Thus, we have o~ (vk, px, &) = 0 for large k € N.
i

Lemma 4.4. Let ¢ € C?>(RN*Y). Assume that ¢(0) = 0, Dp(0) # 0, where D denotes
the gradient in the first N variables as usual, and G(Dp(0), D*¢(0)) > 0. Then there are
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a neighborhood U of 0 in RN and a constant € > 0 such that for all (z,t) € U x (—¢,¢),
if p(z,t) € (—¢,¢€), then

(¢, t) > @(z,t)  for all { € H(Dg(z,t),z) NU.

Proof. By rotation, we may assume that Dg(0) = (0, ...,0, —|D¢(0)|). By the implicit
function theorem, there are a neighborhood V of 0 in R™, a positive constant ¢, and a

function g € C?(V x (—¢,¢)?) such that for any z € V and (y,t,\) € (—¢,¢)3,
o(z,y,t) =X ifand only if y=g(z,t,N).

Replacing V' and € by smaller ones if necessary, we may assume further that for any
r eV and (y,t, ) € (—¢,¢)3,

o(z,y,t) <X ifand only if y > g(z,t,N).

We may assume as well that Do(z,t) # 0 and G(Dp(z,t), D2¢(z,t)) > 0 for all (2,t) €
V x (—&,€)3. This guarantees that for each (¢, \) € (—¢,¢)?, all the principal curvatures
of the hypersurface {z € V | ¢(z,t) = A} at any point are positive and hence that
D2g(z,t,\) > 0 for all (z,t,\) € V x (—¢,¢)%

Fix (£,9,t,A) € V x (—¢,¢)3 so that § = g(&,t, ). Set 2 = (£,§). Observe that

H(Dyp(2,t),2) N (V x (—¢,¢))

= {(x’y) eV x (_6’6) | Yy < Dg(i‘at’)‘) : (33 - i‘) +ga (:E,y) 7é 2}

We may assume that V is a convex subset of R™. Since D?g(z,t,A) > 0in V X (—¢,¢)?,

we see that A A X
{(z,y) € V x(—¢e,¢e) |y < Dg(&,t,\) - (x — &) + 9}

N{(z,y) €V x (—¢e,¢) |y > g(z,t,\)} = {2}
Hence, we get

H(Dp(2,1),2) N (V x (—¢,¢))N{z € RN | p(z,t) < A} = 0.

That is, if z € H(Dp(2,t),z) N (V x (—¢,¢€)), then ¢(z,t) > A, which was to be proven.
i

Lemma 4.5. Let ¢ € C*(Q), {vr}ren C LSC(R), u € LSC(Q), & = (2,t) € Q, and
r > 0. Assume that B(§,r) C Q. Let & = (2zx,tx) € B(&,r) for k € N, and assume that
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u— and v — @, with k € N, attain their minima over B(§,r) at & and &, respectively.
Assume as well that v, > u in Q for all k, that £ — € and v (&) — u(§) as k — oo,
that o= (u, Dp(€),€)G(Dp(€), D*p(€)) > 0, and that u satisfies condition (A). Then
o~ (vk, Dp(&k), k) = 1 for sufficiently large k.
Proof. We set p, = Dp(&) for k € N and p = Dp(£). We may assume that pg # 0 for
all k € N.

Since o~ (u,p,&) = 1, we have u(y,t) > u(§) for all y € H(p, z). Choose a A > u(§)
so that A < u(y,t) for some y € H(p,z). Thanks to condition (A), there is an R > 0
such that for all (y, s) € Q,

u(y,s) > X if |y| > R.
Accordingly, we have for all (y,s) € Q and k € N,
(4.1) vk(y,s) > X if [y| > R.
Since vk (&) — u(€) and u(§) < A, we may assume that
(4.2) vg(&k) < A for all k € N.

Applying Lemma 4.4, we infer that there is a 0 > 0 such that if k is sufficiently large,
then

(4.3) o(y,tk) > (&) for ally € H(pk, 2z1) N B(z,0).

We may assume that B(z,0) x [t —6,t + ] C B({,r) and |t —t| < 0 for all K € N and
that inequality (4.3) holds for all k¥ € N. From (4.3) and the assumption that & is a

minimum point of v, — ¢ over B(&, ), we get
(4.4) v (Y, tg) > vk (&)  for all y € H(pg, zx) N B(z,9).
Now, we argue by contradiction. We thus suppose that

liminf o™ (vg, Pk, &) = 0,
k—o00

and show a contradiction. By this assumption, we may assume by taking a subsequence
that
o (Vk,pk,&k) =0 for all k € N.
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For each k, we may choose a point yx € H (p, 2x) such that

(4.5) Ok (Y tr) < vk (&k)-

Therefore, in view of (4.1) and (4.2), we see that |yx| < R for all £k € N, and we
may assume that y — y for some y € RN as k — oo. By continuity, we deduce
that y € H(p,z). From (4.4) and (4.5), we see that y & B(z,9). Hence, y € H(p, 2).
However, from (4.5), we have
w(€) > lim sup v (yk, tx) > lim sup u(yg, tg) > u(y, t),

k—o0 k—o0
which shows that o~ (u,p,§) = 0, a contradiction. =~ Thus we conclude that
o~ (vk, pk, &) = 1 for sufficiently large k € N. |
Lemma 4.6. Let ¢ € C?(Q), {vi}ken C LSC(Q), u € LSC(Q), & = (2,t) € Q, and
r > 0. Assume that B(&,r) C Q. Let & = (zk,tx) € B(&, 1) for k € N, and assume
that w — ¢ and v, — ¢, with k € N, attain their minima over B(§,r) at £ and &k,
respectively. Assume as well that vi(()  u(C) for all { € Q as k — oo, that & — &
and v (&) — u(€) as k — oo, that o~ (u, Dp(€),€)G(Dp(£), D*p(€)) > 0, and that all
the vy satisfy condition (A). Then o~ (vk, Do(&k), Ek) = 1 for sufficiently large k.
Proof. We set pr = Dp(&) for k € N and p = Dp(£). We may assume that pg # 0
for all £ € N.

Since o~ (u,p,§) = 1, we have u(y,t) > u(§) for all § € H(p, z). By continuity, we
may assume that there is a point y € H(p, z) such that y € H(pg, zx) for all £ € N and
a constant € > 0 such that vy (y,t) > u(§) +¢e. By condition (A), there is an R > 0 such
that for all (y, s) € €,

vi(y,s) >u() +e if [yl > R.

Accordingly, we have for all (y,s) € Q and k € N,

(4.6) v(y,s) > u(€) +¢ if [y > R.
Since vk (€k) — u(€), we may assume that

(4.7) ve (&) < u(é)+e for all k € N.

Using Lemma 4.4, we see that there is a 6 > 0 such that if & is sufficiently large,
then

(4.8) e(y,tk) > ¢(&) for ally € H(pg,zx) N B(z,6).
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We may assume that B(z,0) x [t —6,t + ] C B({,r) and |ty —t| <0 for all K € N and
that inequality (4.8) holds for all k € N. From (4.8), we get

(4.9) ve(y,te) > vk (&)  for all y € H(pg, zx) N B(z,9).
We argue by contradiction. We thus suppose that

lim inf o~ (vg, px, £k) = 0,
k—oco

and show a contradiction. By this assumption, we may assume by taking a subsequence
that
o (vk, Pk, &k) =0 for all k € N.

For each k, we may choose a point yx € H (pg, 2zk) such that

(4.10) Uk (Yk, t) < vi(&k)-

Therefore, in view of (4.6) and (4.7), we see that |yx| < R for all £ € N, and we may
assume that y;, — ¢ for some § € RN as k — oo. By continuity, we deduce that
9 € H(p,z). From (4.9), we see that § ¢ B(z,6/2). Hence, § € H(p, 2).

By assumption, if m < k, then vy, (yk, tx) < vk(yk, tx). Hence, from (4.10), we have

w(€) > lim sup vg (Y, tx) > limsup lim inf v, (yx, tr)

k—o0 m—oo k—oo

> limsup vy, (9,t) = u(y, t),

m—0o0

which is a contradiction. Thus we conclude that o~ (v, pg, k) = 1 for sufficiently large

k € N, and completes the proof. |

Proof of Proposition 4.1. Let {ur} and u be as in assertion (a) of Proposition 4.1. Let
v € Ap(2) and & € Q. Assume that u — ¢ has a strict maximum at £. Fix a compact
neighborhood V' C Q of £. For each k € N let £ be a maximum point of ug — ¢ over V.

It is a standard observation that as k — oo,

We may assume that & € intV for all £ € N. Since u are viscosity subsolutions
of (L) in €2, we have

0t (&) < ot (ur, Do(&), &) G (Do (éx), D*¢(&k))  for k € N.
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Using Lemma 4.3 and sending k — oo, we get

0t(€) < o (u, Dp(€),€)G(Dy(€), D*¢(8)),

which proves assertion (a).

The proof of assertion (b) parallels the above with Lemma 4.6 in place of Lemma
43. 1
Proof of Proposition 2.4. We start with assertion (a). Let S and u be as in Proposition
2.4, (a). Let ¢ € Ap(2) and & € , and assume that u* — ¢ has a strict maximum at &.
It is then standard to observe that there are sequences {vg}ren C S and {&x}ren C Q2

such that as &k — oo,
€ — & and  vg(&) — ut(€),

and each of vy — ¢ attains a local maximum at ;. Accordingly we have

0t (&) < ot (vk, Do(&r), &) G (Do (&), D*p(&x))  for k € N.

Now, sending k£ — oo and using Lemma 4.2, we see that

e(€) < o7 (u*, Dp(£), )G (Dp(), D*¢(€))-

This proves assertion (a).

The proof of assertion (b) is similar to the above. Lemma 4.5 is now used instead
of Lemma 4.2. We omit the details of the proof.

We turn to assertion (c). Let fi, fa, and u be as in assertion (c).

We argue by contradiction. We thus suppose that u, is not a viscosity supersolution
of (L). Then there would be a function ¢ € Ay(Q) and a point & € Q such that u, — ¢

has a strict minimum at & and

(4.11) ¢1(£) < 07 (ux, De(€),)G(Dp(£). D*p(£)).

Here we may assume that u, (§) = ¢(£).

Since fs is continuous, we have

and hence, since u* is a viscosity subsolution of (L) in € by assertion (a), we see that
u=u* € USC(Q).
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Fix a compact neighborhood V' C €2 of . We claim that
(4.12) for sufficiently small e > 0, the function v, € USC(2) defined by

 (max{u(©), p(€) +) for¢ eV,
"5(5)_{u(§) for € Q\V

is a viscosity subsolution of (L) in €.

We postpone the proof of this claim and, admitting (4.12) for the moment, we first
complete the proof of assertion (c).

To this end, we observe that u(é) < fz(é). Indeed, if this is not the case, then we
have u(é) = fo (é), which implies that f, — ¢ attains its minimum at & and therefore

yields

1(£) > 07 (fo, Dp(£), )G (Do (€), D?¢(€)) > 07 (u, Dp(£),E)G(Dep(é), D?p(é)).

A A

This contradicts (4.11), which shows that u(§) < f2(§). It is now clear that if ¢ > 0 is
sufficiently small, then v, < fy in €. Since v > u > f1 in Q, by the definition of wu,
we should have v, < u in €2. However, by the definition of v., we have v £ u in €2, a
contradiction.

It remains to prove (4.12). For this, we argue by contradiction. Suppose that there is
a sequence €5 \, 0 as k — oo such that for each k € N, v,, is not a viscosity subsolution
of (L) in Q. This ensures that there are sequences {9 }ren C Ao(2) and {&k}ren C Q2

such that for each k € N, v, — 9% has a maximum at & and

Vit (Ek) > 07 (vey, DYi(Ex), &) G (D (&k), D* i (&)  for all k € N.

If ve, (€k) = u(&k), then u — 1) attains its maximum at &, which contradicts the
above inequality. Thus, we must have v, () = ¢(&k) + € > u(€x), which implies that
© — Yy, attains its maximum over V at &. Since & € V for all £ € N, we may assume
that & — n for some n € V as k — oo. We then have ¢(n) > u4(n), which implies that
n = £. Thus we may assume that £ € int V for all £ € N. Therefore, we get

Do(&) = Dy(€x) and  D>p(&) < D>y (éx) for k €N,

and hence,

0t (&) > ot (ve,,, Do(&r), &) G(De(&k), D?p(&))  for all k € N.
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Since (ve, )«(&k) = Ve, (€k) and (v, )« < ve, in 2, we get

0t(&x) > 0 ((vey ) s Dp(Er), &k)G (Do (ék), D*p(&))  for all k € N.

Applying Lemma 4.5, we obtain in the limit as k — oo

01(€) = 07 (us, Dp(£),)G(Dp(€), D*p(€)).

This contradicts (4.11), which shows that (4.12) is valid. |

We have the following proposition, the proof of which can be done in a way parallel
to the proof of Proposition 2.4, (c), but with Lemma 4.2 in place of Lemma 4.5. We
leave the reader to check the details of the proof.

Proposition 4.7. Let Q@ = RN x (0,T), with T € (0,00]. Let f1, f2 € C(Q) be a
viscosity subsolution and a viscosity supersolution of (L) in §, respectively. Assume
that f1 < fo in Q. Set

u(€) = inf{w(§) | v is a viscosity supersolution of (L) in Q, f1 <wv < fy in Q}.

Then u* is a viscosity subsolution of (L) in Q.

5. Relabeling of level sets

In this section we prove Proposition 2.5, which allows us to relabel level sets by
composing solutions of (L) with non-decreasing functions.
Proof of Proposition 2.5. Let Q = RN x (0,T), where T € (0,00], # € USC(R)
a non-decreasing function, and v € USC(Q2) a viscosity subsolution of (L) in . Set
v=~0ou.

If 0 is smooth and infg 6’ > 0, then, setting 1) = #~!, we may compute formally
vy =0 (u)uy < 0'(u)ot (u, Du, z,t)G(Du, D*u)
=0 (u)o™ (u, 9’ (v)Dv, z,t)G (W' (v)Dv, ' (v)D*v + 9" (v)Dv ® Dv)
=0'(u)y'(v)ot (v, Dv, 2,t)G(Dv, D*v) = 0" (v, Dv, z,t)G(Dv, D*v),
which can be justified by using test functions arguments.

The general case can be treated by approximations of §. We choose a sequence
{Hk}keN C 02(R) such that

iﬁf&fc >0 and, ask — oo, O(r)\0(r) forallreR.
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As explained above, the functions 0 o u are viscosity subsolutions of (L) in 2 and
as k — oo,
O o u(z,t) \yOou(z,t) forall (2,t) € Q.

By Proposition 4.1, we may conclude that 6 o u is a viscosity subsolution of (L) in Q.

The proof in the supersolutions case can be treated in the same way as above. |

6. Existence of viscosity solutions

In this section we give a proof of Theorem 2.7.
Proof of Theorem 2.7. In view of Propositions 2.5 and 4.1 we may assume (see the
outline of proof of Theorem 2.2 for the details) that A is bounded in R™ and satisfies
condition (A). As a result of this assumption, we see that h € BUC(RY).

Recall that the function

w(z,t) == |z|N + Nt for (z,t) € RN x [0, 00)

is a viscosity supersolution of (L). For each € € (0,1) there is a constant B, > 0 such
that
\h(z) = h(¢)| < e+ B.lz—¢|N  forall z,( e RV,

Define the function f € USC(RY x [0, 00)) by
f(z.t) = inf{h(¢) + e+ Bew(z — (1) [ C € RY, £ € (0, 1)}

Observe that for each ¢ € (0,1), the function f is bounded on R™ x [0,6~!] and hence
for some B > 0 and for all (z,t) € RY x [§,671],

f(z,t) =inf{h({) + e+ Bow(z—(,t) | RN, ¢ €(0,1), B. < B}.

Thus we see that f € BUC(RY x [§,671]) for all 6 € (0,1). Furthermore, since h(z) <
f(z,t) < h(z) +e+NB.t for all (z,t) € RN x[0,00) and € € (0,1), and h € BUC(RY),
we see that f € BUC(RY x [0,T]) for all T € (0, 00).

Since h satisfies condition (A), so does the function f.

Note that v(z,t) := h(z) is a viscosity subsolution of (L).

Now, set

u(z,t) = sup{v(z,t) | v is a viscosity subsolution of (L),

h(¢) <w(¢,s) < F(¢,s) for (¢, 5) € RY x [0,00)}
for (z,t) € RN x [0,00).
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Then u € USC(RY x [0,00)) and h(2) < u.(2,t) < u(z,t) < f(z,t) for (2,t) € RN x
[0,00). By Proposition 2.4, u is a viscosity subsolution of (L) and wu, is a viscosity
supersolution of (L). By Theorem 2.6, we see that u < u, in RY x (0, 00), from which

follows that u € C(RY x [0,00)). It is now clear that u has all the required properties.
i

Appendix

We present a lemma which explains the relation between the function G in (L) and
the Gauss curvature of level sets.
Lemma A. ¢ € C?2(RY), ¢(0) = 0, Dp(0) # 0, G(Dp(0), D?p(0)) > 0. Then there
is an € > 0 such that the set M = {z € RN | |z| < &, (%) = 0} is a C? hypersurface,
and for each z € M all the principal curvatures K1, ..., k, at z of the hypersurface with
respect to the normal —Dy(z) are positive and the Gauss curvature Ky ---ky at z is
given by

[De(2)| 7' G(Dep(2), D*¢(2))-

Outline of proof. By the implicit function theorem, if € > 0 is a small constant, then
M = {z € RV | |z] < ¢&,¢(z) = 0} is a C? hypersurface.

Fix 2 € M. We choose an orthonormal basis {f;}¥, such that fy =
—Dyp(2)/|Dp(%2)|. We may assume that M can be represented by the graph of a func-
tion g : U — R in the new coordinate system, where U is a neighborhood of 0 in R™.
That is, if £ = (&1,...,én) € RN and z = &1 f1 + -+ - Enfn, then

z€ M ifand onlyif (&1,...,&n) €U, &nv =g(&1, -, n)-

By translation, we may assume that 2 = 0. With this notation, the principal curva-
tures are the eigenvalues of D2g(0) by definition.
Differentiating

oifi++é&ufn+ 9, .. ) fN) =0

twice, we deduce that
1

D?g(0) = = BT D*p(0) B,
[De(0))|
where E = (f1, ..., fn) is understood as an N x n matrix and ET denotes the transposed

matrix of F.
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Set A = D?p(0) and F = (E, fn). We calculate that

T
F (E 64E (1)) FT = (I - fnfn)AU = N fR) + INFR

From this we see that

A>0 ifandonlyif (I—fnfE)AU = fNfE)+ fnfE >0,

and that

det ETAE = det{(I — fnf5)AU — fnfE) + fNfEY).

Therefore, if G(Dp(0), D?p(0)) > 0, then A > 0, which means that the principal

curvatures K1, ..., k, are all positive and moreover

n

[ 7i = [De(0)|G(De(0), D*4(0)),

=1

which completes the proof. |
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