NON-LOCAL HAMILTON-JACOBI EQUATIONS ARISING IN
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ABSTRACT. We investigate a class of non-local Hamilton-Jacobi equations aris-
ing in dislocation dynamics. The class of Hamilton-Jacobi equations treated
here is a variation of those studied by [8], and the new feature lies in the sin-
gularity at the origin of the kernel functions which describe non-local effects.
For the class of Hamilton-Jacobi equations, we establish some stability prop-
erties of (viscosity) solutions, comparison theorems between subsolutions and
supersolutions and existence theorems of solutions.

1. INTRODUCTION

Let p€ RY and 0 < T < 0o. Set Qr = RY x (0, T'). We consider the functional
differential equation of the Hamilton-Jacobi type

(1.1) up = (c(x,t) + Mp[u(-, D)](2))|p + Du(z, t)]  in Qr,

where u : RY x [0, 00) — R is the unknown function, u; := Ou/dt, Du :=
(Ou/0z1,...,0u/0zy) and ¢ € C(RY x [0,00)) is a given function. Moreover, the
operator M, is formally given by

M) = [ TE(B@la+2) - ola) +p-2) ~p-2)dz,

where J is a measurable function on RY and E is the function on R given by
E(r) = |r] + 3. Here |r] denotes the greatest integer less than or equal to r € R.

This type of non-local Hamilton-Jacobi equations have been introduced by
Forcadel-Tmbert—Monneau [8] as model equations in the level-set approach to dislo-
cation dynamics. They have studied not only the well-posedness of the initial value
problem for such Hamilton-Jacobi equations but also its homogenization. We refer
to [8] for the connections of (1.1) to dislocation dynamics as well as the solvability
and homogenization of (1.1). See also [1, 6] and the references therein for related
topics.

In this article we investigate the solvability of the initial value problem for (1.1),
with the kernel J having a stronger singularity at the origin, in the framework of
viscosity solutions and establish some stability properties of solutions of (1.1), com-
parison theorems between subsolutions and supersolutions of (1.1) and existence
theorems of solutions of the initial value problem for (1.1). We refer to [2, 3, 9, 11]
for some results on the well-posedness of general functional-differential equations.
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The notion of solution here is defined through those of subsolution and superso-
lution. It is convenient for us to divide (1.1) into two inequalities.

(1.2) wi(,) < (e(w,t) + M [ul,O)]()lp + Dula,t)| in Qr,
(1.3) wi(,t) > (ee,t) + M [u(-, )] (@)|p + Dulz,t)] in Qr,

where, for bounded measurable functions ¢ : RY — R,

M [g)(a) s =limsup | B (é(r +2) — o), 2)J(2)dz,
=0+ J]z>5

0—0+

M, [9](x) : = lim inf/ \>5(E; (p(x + 2) — o), 2)J(2)dz,

+ R L
Ep (T,Z).—E (7"+pZ)—pZ,

E (r,z):=EJr+p-z)—p-z
Here and later, given a function f, we denote by f* (resp., f.) the upper (resp.,
lower) semicontinuous envelope of f. Note that E* = F and that E*(r) = —E.(—r)
for all » € R. Note also that |Epi(r, z)—r| < 3 forallr € R.

To make the meaning of (1.2) and (1.3) precise, we introduce our assumptions
on c and J:

(cl) ce BUC(Q,) forany 0 <7 < T,
(c2) for any 7 € (0, T'), there is a constant L, > 0 such that

le(x,t) — c(y,t)| < Ly|lz —y| forall z,y € RY and t € [0, 7],

(J1) J is nonnegative and measurable on RV,

(J2) J(—2) = J(2) for all z € RV \ {0},

(J3) J € LY(RN \ B(0,1)),

(J4) there are constants § < N + 1 and Cy > 0 such that

Co
] <
(Z) - |z|5

for all z € B(0,1) \ {0}.

Note that if 8/ > 3, then |z < |z|=# for all z € B(0,1)\ {0}. Hence we may
and do assume throughout the paper that § > N in condition (J4).

A new feature of this article is that condition (J4) allows J to have a singularity,
stronger than the one studied in [8], at the origin. Indeed, the main issue here
is how to deal with singularities of J at the origin in order to establish stability
properties of solutions of (1.1) and comparison and existence results for solutions
of the initial value problem for (1.1).

We see that, under assumptions (J3) and (J4), if ¢ is bounded measurable, then
the values M [¢](x) are well-defined although they may be foo.

The precise meaning of the above inequalities (1.2) and (1.3) are as follows.
Henceforth we deal only with solutions of (1.1), (1.2) or (1.3) which are bounded
on RY x (0,7) for any 0 < 7 < T. We denote by B(Qr) the space of functions on
Q7 which are bounded on @, for any 0 < 7 < T. A function u € B(Qr) is called
a (viscosity) solution or subsolution of (1.2) or (viscosity) subsolution of (1.1) if
whenever (z,t,¢) € RY x (0,T) x C?>(Qr) and u* — ¢ attains a local maximum at
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(z,t), we have
(1.4)

bu(a 1) < (c(z,t) + M [u*(-, 1))(x))|p + Do(, t)] if p+ Dop(z, t) # 0,
R if p+ Do(x, t) = 0.

It will be shown (see Lemma 2.1 below) that if p+D¢(z, t) # 0, then M,f [u*(-, t)](z) <
oo in the above inequality.

Similarly, a function w on Qr is called a (viscosity) solution or supersolution of
(1.3) or (viscosity) supersolution of (1.1) if whenever (z,t,¢) € Q7 x C?(Qr) and
U, — ¢ attains a local minimum at (z,t), we have
(1.5)

bz 8) > { (c(a,t) + My [u.(, )](x))|p + Do(x, )| if p+ Dé(z, t) #0,

if p+ Do(x, t) = 0.

Here we also remark (see Remark 2.1 below) that, under (J3) and (J4), if p +
D¢(x,t) # 0, then M [u.(-,t)](z) > —o0.

Finally, a function u € B(Qr) is called a (wviscosity) solution of (1.1) if it is both
a solution of (1.2) and of (1.3).

We will be also concerned with PDE of the form

up + f(2,1) = (c(2,t) + Mplu(, )](2)) [p + Du| in Qr,

where f € C(Qr) is a given function. For this, the above notion of solution,
subsolution and supersolution can be easily adapted.

We denote by ST = ST(Qr) (resp., S~ =S8 (Qr) or S = S(Qr)) the set of all
solutions of (1.3) (resp., (1.2) or (1.1)). By definition, we have S*(Qr) C B(Qr)
and S(Qr) C B(Qr).

The above definition of viscosity solutions differs slightly from that of [7] where
subsolutions (resp., supersolutions) are assumed to be upper (resp., lower) semi-
continuous.

Condition (J4) can be considerably relaxed in one dimension. By modifying the
notion of solutions, subsolutions and supersolutions by imposing an extra condition
on test functions and taking advantage of the simple geometry of the space R, we
will show that the Cauchy problem for (1.1) is well-posed in one dimension without
the restriction, 5 < N 4 1. See (J4') for the replacement of (J4) in one dimension.

The paper is organized as follows. Sections 2-5 are concerned with the well-
posedness of (1.1) in general dimension. In Section 2 we establish a couple of
estimates on the operators Mpi [u] under some semi-convexity or semi-concavity
assumptions on u. In Section 3, we establish some stability properties of solutions
of (1.1), (1.2) or (1.3) as well as the Perron method. Section 4 is devoted to
the proof of comparison theorems for solutions. In Section 5 we apply results
obtained in the previous sections to prove an existence and uniqueness theorem for
the initial value problem for (1.1). Section 6 is focused on the well-posedness of the
initial value problem for (1.1) in one dimension. We modify the notion of solution,
subsolution and supersolution and establish stability properties, comparison and
existence theorems for solutions of (1.1) in one dimension.

Notation: for a, b € R we write a V b := max{a, b} and a A b := min{a, b}. For
any real-valued function f on X, we write || f]lco = || fllco.x = supx | f|-
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2. BASIC ESTIMATES ON OPERATORS Mjﬂ

In this section, we give some estimates on operators M;[. Let p € RY be a fixed
vector.

Lemma 2.1. Let u be a bounded measurable function on RN . Let z,q € RV,
r >0, A>0 and C; > 0. Assume that 0 < |p+q| < A and

u(z + 2) <u(z) +q-2z+Cilz]*  for all z € B(0,r).

Then there are constants p > 0, depending only on r, A and Cy, and C > 0,
depending only on Cy, C1, B and N, such that for any 0 < § < p A (7|p+q‘),

2C
C

1) M) < Do

p

SN0 4 /l - J(2)Ef (u(z + z) — u(z), 2)dz.

Remark 2.2. An assertion analogous to Lemma 2.1 holds true for M. It is the
proposition same as Lemma 2.1, except that the assumption that v(z+2) > v(x)+
q-z— C1]z|? for all z € RN replace the corresponding assumption in Lemma 2.1
and the inequality

L(SN‘H_B +/ J(2)E, (v(z + 2) — v(z), 2)dz.
|z]>6&

Mo 0= =y

p

replaces inequality (2.1) of Lemma 2.1. To see this, we just need to apply Lemma
2.1 to u = —v, with —p and —q in place of p and ¢, respectively. Other propositions
in this section stated only for M; have their analogues valid for M.

Proof. We set v = p+ ¢, choose an orthonormal basis {f1, fa, ..., fn} of R so that
fn = |v|~ v, and define the orthogonal matrix F by

fi
f2
F= .
In
and observe that for any z € RV,
2F=z1fi+tzfo+-+2nfN.
We have
(2.2) u(x + 2F) —u(x) +p-2F < (p+q) - 2F + C1|2F|?
=v-(z1fi+-+z2nvfn)+ C’1|ZF|2
=[v|zy + Cy|z* for all z € B(0,r).
Observe that if |z]| < % and zy < —%M\Q, where z = (2/, zy) € RV 71 x R,
then
(23)  lelan + Cilaf? <~ + ey 1+ Gulaf? < Jawl (@112l - ) <o
Set
1

1+2(A+Cl)}’
and note that p < 1 and Ap+ C1p? < 1.

p = min {7“,
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Nextlet 0 <y < d < pA (2@1) For any z € B(0,6), we have |v|zy +C1|2]? < 1
and moreover, by (2.3)
1 2C
—= if 2y < —L|2/|?
* 2 2 |’U|
(2.4) E*(Jv|zn + C1]2]?) <

— otherwise.

b

Using (2.2) and (2.4), we calculate that
/ J(2)E* (u(z + z) —u(z) + p- z)dz
7<|z|<8
:/ J(zF)E*(uw(z 4 2F) —u(z) + p- 2F)dz
7<|z|<8

< / J(zF)E* (|v]zn + Chl2P)dz
7<|=|<6

1

< 7( J(2F)dz — J(zF)dz),
2 U+ U-
where
20
Ut i={zeRY |y <|2[ <4, 2n > _|T\1|Z/‘2}’
20
U™ = {z €RY |y <|2| <6, 2y < leIZ’\Q}-
Setting
20
o = {2 € B |7.<Jo <5, Jo] < 201 12P)

and using the symmetry property of J, we observe that

/U+ J(2F)dz — / J(zF)dz = /_ e J(2F)dz — / J(zF)dz = / J(2F)dz,

Uo
to find that

1
z +ux Z)—u\x A Z = z Z.
quﬂWA(+) (2), 2)d 2ANFM

Now, recalling that 0 < 1, we observe that if |zy| < %|z'|2 and v < |z| <4, then

2C
P <P R <P el < (14 )1

and |2'] < J. Setting
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we note that Uy C {z € RN | v < |2/| <6, |2n] < 291]2'|?} and compute that

[v]

1
/ J(2)Ef (u(x + 2) — u(z), z)dz < 7/ J(zF)dz < % |2'|7Pdz
v<|2|<8 2 Ju, 2 Ju,
20y 2

ot ¥ 2C,C
:CO/ dz’/ 12| Pday < =2 1/ |2'|2=Pdz
v<|2'|<8 0 |v] v<|2'|<8

v o]

|v] (N+1-5) ’
where oy is a positive constant depending only on N. Finally, we note
200010’]\/ —
MF[u](z) < —t— e §NF1=F —|—/ J(2)Ef (u(z + 2) — u(x), 2)dz,
P [o|(N +1—0) 2|6 v ( )
to conclude the proof. O

Lemma 2.3. Let u be a bounded measurable function on RN . Letx, g € RN, r >0
and Cy; > 0. Assume that p+ q # 0 and u(z + 2) < u(x) + q - 2 + C1|z]? for all
z € B(0,7). Then there are constants p > 0, depending only on r and Cq, and
C > 0, depending only on Cy, C1, B and N, such that if |p + q| < p, then

M [u](x) < Clp+ gN-"? +/ J(2)Ef (u(z + z) — u(x), z)dz.
|Z|>\;§7g1q|

Proof. By Lemma 2.1 with A = 1, there are constants p; > 0, depending only

on 7 and Cy, and Cy > 0, depending only on Cy, Ci, § and N, such that if

0<d<p1 A (%) and |p + ¢g| < 1, then

25) M) < -2

75N+1*5+/ J(2)Ef (u(z + 2) — u(x), 2)dz.
< tdl |z|>6()p(( ) —u(x), 2)

We set p = (2C1p1) A1, so that p <1 and 32— < p1. Now, assume that [p+q| < p.
Then we have [p+¢| <1 and ¢ := % < p1. Hence, by (2.5), we get

M [u)(z) < Ca (\IH—QI)NH—ﬁ n /z>gc+q J(2)E} (u(z + 2) — u(x), z)dz

“lp+gl\ 2C4
el [ IR (e ) - o), 2)ds
(20, )N 18 21> gl ' T
1
which was to be shown. O

Lemma 2.4. Let u be a bounded measurable function on RN. Let x,q € RV,
r>0,0< A< A<ooand Cy > 0. Assume that A < [p+q| < A and u(x + z) <
w(x) +q-z+ C1|z|? for all = € B(0,r). Then there are constants p > 0, depending
only onr, A\, A, Cy and C1, and C > 0, depending only on Cy, C1, A\, 8 and N,
such that for any 0 < 6 < p,

M [u](z) < C§NF1I=P +/ J(2)Ef (u(z + z) — u(z) 2)d=.

|z|>6
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Proof. According to Lemma 2.1, there are constants p; > 0, depending only on
r, A, and C7, and Cy > 0, depending only on Cy, C7, 8 and N, such that if

0<5§p1/\<%>7then

(2.6) MFu)(z) < Cs

_75N+1_ﬁ+/ J(2)EF (u(z + 2) — u(z), 2)dz.
D+ 4 s (2)Ey (u(z + 2) — u(x), 2)

Setting p = p1 A (ﬁ) and noting that p < p; A (@gf‘» we find from (2.6) that
for any 0 < 9§ < p,

M [u)(x) S&(SNH—ﬁ +/ J(2)E} (u(z + 2z) — u(x), 2)dz
lp+ 4l |2]>5
g%éz\m—ﬁ + / J(z)E;'(u(x +2) —u(z), z)dz.
|z|>6
The proof is complete. O

Lemma 2.5. Let u be a bounded measurable function on RN . Let z,q € RV,
r>0,A>0,C, >0 and Cy > 0. Assume that 0 < [p+q| < A, |u(z)| < Cq for all
z € RN and

u(z + 2) <u(x) +q-2+Cilz|>  for all z € B(0,r).

Then there is a modulus w, depending only onr, A, 3, Co, C1, Ca, || ]| 11 @3\ B(0,1))
and N, such that
M, [u)(2)lp + g| < w(lp+ ).

Proof. By Lemma 2.3, there are numbers p > 0, depending only on r and C7, and
C3 > 0, depending only on Cy, C1, § and N, such that if 0 < |p+ ¢| < p, then

27)  MF[ul(x) < Cslp+q/V % + / ey JOB 0l +2) — (o), 2

We may assume, by replacing p by a smaller positive number if needed, that p < A
and 5&- < L.
Assume that 0 < |p + ¢q| < p. We compute that

/ e TV (0o +2) —u(z), 2)dz < (203 + 1) / J(2)dz

|z

1
<20y + 1) (Cooty [ V7Pt + Il caonre)
20,

Cooly (lp+a\"’
§(2CQ+1)(B_ ¥ (5 + 1l 50,0,

where o’y is a constant depending only on N and B(0,1)¢ := RY \ B(0,1). Com-
bining this with (2.7), we get

MFu](z)lp+ql <Cs (Ip+ NP + o+ a1 L1 (B0,1)e))
<Cy (14 " M| 21(B0,1ye)) Ip+ |V T7,

where Cy > 0 is a constant depending only on Cy, C1, 3, Co and N.
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By Lemma 2.4, there are constants 0 < § < 1, depending only on r, p, A, Cy and
(4, and C5 > 0, depending only on Cy, C1, p, 8 and N, such that if p < |[p+4q| < A,
then

(2.8) M [u)(z) < CsoNFT1-8 4 /| . J(2)Ef (u(z + 2) — u(z), z)dz.

Assume that p < |p+ ¢q| < A. As before, we compute that

/| . J(2)Ef (u(z + z) — u(z), z)dz

1
< (202 +1) (Cotfﬁv/ tN1=0dt + ||J||L1(B(o,1)c)>
5

!
Coo'y

§(2C2+1)(6_N

5N—B + ||J||L1(B(O,1)C)) .
Hence, using (2.8), we get

M [u](z)lp + gl < Celp + 4

for some constant Cg > 0 which depends only on r, C;, with i = 1,2,3, 8, A and
N.

By replacing Cy and Cg by larger numbers if necessary, we may assume that
Cy (14 0" N1 (B0,1)e)) PV TP = Cop.
Then we define the function w € C([0,00)) by setting
w(t) = {C4 (127N moayn) N7 fort < p,
Cegt for t > p.

This function w is a modulus having all the required properties. [l

3. STABILITY PROPERTIES AND THE PERRON METHOD

In this section we establish some stability properties of solutions of (1.2) or (1.3)
as well as the Perron method. Analogous stability properties are valid for solutions
of (1.3), but we do not give here the details and leave it to the reader to supply
them.

Lemma 3.1. Let § > 0, {p,} C RN, {z,} € RN and {u,} € USCRY). Let
p, v € RY and u € USC(RY). Assume that {u,} is uniformly bounded on RY and
that (P, Tn, un(x,)) — (p, , u(x)) as n — co. Moreover assume that

(3.1) klim sup{un(y) |y € B(z, k™), n >k} <wu(z) forall z € RV,

Then

lim sup/ J(2) Ef (un(zn 4 2) — tn(zn), 2)dz
|z|>8

n— oo

z +’LLI‘ Z)—ulxr z Z.
s/z>5J<>Ep<< T 2) — u(z), 2)d



NON-LOCAL HAMILTON-JACOBI EQUATIONS ARISING IN DISLOCATION DYNAMICS 9
Proof. Set
I, :/ J(2) Ef (un(zn 4 2) — un(2n), 2)dz,
|z|>6

fn(z) :E;_n (un(xn + Z) - Un(.’ll‘n), Z) for z € RY.
)

Choose a constant C' > 0 so that |u,(z)| < C for all (z,n) € RN x N, and note that
J(2)|fu(2)] < (20 +1)J(2) for all (z,n) € (RV\ {0}) x N. By the Fatou lemma,
we find that

limsup I, < / J(z)limsup f,(z)dz.
n—oo |z|>6 n—oo
Since E* is upper semicontinuous and non-decreasing in R, we see that for any
z e RV,
limsup f,,(z) < E*(limsup uy, (z, + 2) —u(z) +p-2) —p- 2.

Using (3.1), we see that
lim sup u, (2, + 2) < u(x +2) for all z € RY.
Hence, we get
limsup f,(2) < Ej(u(z + 2) —u(x), 2) forall z € RV,
n—oo
Thus we obtain
limsup I,, < / J(2) Ey(u(x + 2) — u(z), z)dz,
|z|>8

n—oo

which completes the proof. O

Theorem 3.2. Let Sy be a non-empty set of solutions of (1.2). Assume that the
family Sy is uniformly bounded on Q. for any 0 < 7 < T. Define the function
u € B(Qr) by u(zx, t) = sup{v(z, t) | v € So}. Then u is a solution of (1.2).

Proof. Let (&, t) € Qr and ¢ € C?(Qr), and assume that u* — ¢ attains a strict
maximum at (#,#). By the definition of u*, there are sequences {(z,,t,)} C
B((%,t),2r), where r > 0 is chosen so that B((%,t),2r) C Qr, and {v,} C Sy such
that vy, (2, t,) — u*(&,t) and (z,,t,) — (&,1) as n — co. By the definition of u,
we have v} <u* in Q.

For any n € Nlet (y,, s,) € B((#,%),2r) be a maximum point, over B((%,1), 2r),
of the function v} — . Observe that

(" — )(@.1) = lminf(v, — 9) (. ta) < i inf (v — 0) (9. 50)

< limsup(vy, = ©)(Yn, sn) < limsup(u* — 9)(yn, sn) < (u* =) (2,1).

*

>

This shows that v*(y,,s,) — u*(2,%) and (u* — ©)(Yn,5,) — (u
n — oco. It is now easy to deduce that (y,,s,) — (£,f) as n — oc.
Passing to a subsequence if necessary, we may assume that (y,,s,) € B((2,1),7)

for all n. Since v,, € S~, we have

(3.2) @t (Yns 5n) < (c(Yn,sn) + My [ (-5 50)](Yn)|P + Dp(Yn, )|
if p+ Do(yn, $n) # 0, and

(3.3) @t(Ynysn) <0 if p+ Dp(yn, sn) = 0.

—¢)(@,t) as
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We now separate into two cases.

Case 1: p+ Dp(i,t) = 0. In view of Lemma 2.5, there is a modulus w, which
depends on [ D¢l o p((2.5).0) 10%¢llco,5((2.i).2r) 20 V]l so &3 i, i, DUt DOt OB
n, such that

M w3 (-, $2)](n) 1P + Do(yn, 5n)| < w(|p + Do(yn, sn)|)  for all n.
We combine this with (3.2) and (3.3) and send n — oo, to see that ¢;(%,7) < 0.

Case 2: p+Dp(#,t) # 0. By selecting a subsequence if necessary, we may assume
that [p + D@(Yn, $n)| > A for all n and for some constant A > 0. By the definition
of u, we see that for all z € RV,

Jim sup{vi(y, sn) [0 >k, y € Blw, k7))
< klim sup{u*(y, sn) | n >k, y € B(x, k_l)} <u*(x,t).
—00

We now apply Lemma 2.4, to find that there are constants pg > 0 and C > 0 such
that for any 0 < d < pg,

47,k N+1— + (% *
MP [vn<'7 Sn)](yn) S 06 g + ~/| |>6 J(’Z>Ep (Un(y’ﬂ + Z) - vn(yn)7 Z)dZ
We next apply Lemma 3.1, to get for any ¢ € (0, po],

lim sup M;[vfb(~, $n)](yn)

n—oo
< CoN+1-P +/ JEEH W@+ 2.8) — u*(3,7), 2)d=.
|z|>6
From this, we easily get
limsup M [v7, (-, )] (yn) < M [u (-, £)](2),

and hence conclude from (3.2) that
pu(@, 1) < (c(@,8) + Mplu™ (-, D)](2))Ip + Dep(a, ).

Thus, u* is a solution of (1.2) O

Theorem 3.3. Let {u,} be a sequence of solutions of (1.2). Assume that the
collection {un} is uniformly bounded on Q, for any 0 < 7 < T. Define u € B(Qr)
by

u(, 1) = Jim sup{un(y,s) | (v,5) € B((r,1), k), n > k).

Then u is a solution of (1.2).

Proof. We begin by noting that u € USC(Qr). Let (&, ) € Qr and ¢ € C?*(Qr),
and assume that u — ¢ attains a strict maximum at (#,7). By the definition of u,
there are sequences {n;} C N, diverging to infinity, and {(xx,tx)} C B((@,1),2r),
where r > 0 is chosen so that B((2,%),2r) C Qr, such that uy,, (vx,tx) — u(@,1)
and (xy,t,) — (,1) as k — oco.

Set vy, = u,, for k € N. For any k € N let (yx, s) € B((2,1),2r) be a maximum
point, over B((%,%),2r), of v; — p. We observe that

(3-4) (w=9)(@,) = lim (vx = @) (@, tx) < liminf (o} = @) (. s1).
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Let (2,t) € B((2,),r) be an accumulation point of the sequence {(yx, s)} and let
{(yx;, sk,)} be one of its subsequences converging to (z,t). By the definition of u,
we see that

(3.5) limsup(vg, — ) (Yr;, sk,;) = Hmsup vy (yx;, sk;) — @@, 1) < u(z,t) — p(z,1).

j—o0 k—o0

This together with (3.4) guarantees that (v,t) = (#,¢). That is, the sequence
{(yx, 1)} converges to (Z,%). Again, by the definition of u, we see that

lim sup (v — ) (Y, sx) < (u— @) (&, ).

k—o0

It is now clear that v} (yk, si) — u(#,t) as k — oo.
The rest of the proof parallels the argument in the proof of Theorem 3.2 where it
is divided into two cases, and we omit here the details. The proof is complete. [J

To formulate the Perron method, we fix p € RY and let f € S, (Qr) N LSC(Qr)
and g € S (Qr) N USC(Qr). Assume that f < gin Qr. Set
(3.6) u(z,t) = sup{v(z,t) |v € S, (Qr), f<v<g in Qr}.
Note that v € B(Qr).
Theorem 3.4. The function u given by (3.6) is a solution of (1.1).

Proof. First of all, we note by Theorem 3.3 that u* € S~.

We next show that u, € ST. Let (2,%) € Q7 and ¢ € C?(Qr). Assume that
u, — ¢ attains a strict minimum at (#,#), with minimum value zero. We need to
show that the inequality

(3.7)
. {(C(i,f) + My fu (- D)(@)Ip+ De(2, 1)) if p+ Dep(, 1) # 0,
¢t<xat) > . PR
0 if p+Dp(z,t)=0
holds.

It is clear by the definition of w that f < u < g in @p. Consequently we have
f < u, < g. in Qr. Consider the case where u,(#,t) = g.(&,t). Then, since
u. < g« in Qr, it follows that g, — ¢ attains a minimum at (&,7). By the viscosity
property of g, we have

(3.8)
on(6.) > {(o(fc,f) + M, [9.(, DI@)lp+ D@, D)l if p+ Dol 1) #0,

0 if p+ Do(#, ) = 0.
But, since g, > u, and g(2,1) = u.(#,1), we see that if p + Do(&, t) # 0, then
M (g2 (- D)](@) > My ua (-, 1)](2),

from which together with (3.8) we conclude that (3.7) holds.

Next we assume that u.(2,f) < g.(#,). We find by the semicontinuity of g.
that g.(z,t) > p(z,t) + ¢ in a compact neighborhood W (C Q) of (&, ) for some
constant € € (01). Furthermore, we may assume by modifying ¢ except near the
point (2, £ ), if necessary, that w.(z,t) > ¢(z,t) + 1 for all (x,t) € Q7 \ W.

Define

un:u\/(go—l—%) in Qr.
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Note that (un)«(2,%) = @(2,%) + 1/n > u.(2,t) and therefore u, £ wu. Since
p+e < gin Qp, we see that f < u,, < g for sufficiently large n, say, n > k, for
some k € N.

In what follows we are concerned only with u,, with n € N satisfying n > k.
Since u,, £ u, by the definition (maximality) of u, we find that (u,)* ¢ S~. Thus,
for each n there are a point (z,,t,) € Qr and a function ¢,, € C?(Qr) such that
(zn,t,) is a maximum point of w) — v, and the inequality

(c(nstn) + M [us (- t0)](20) [P + Gnl if p+gqn #0,
ifp+g,=0
holds. Here and later we write a,, = ¥p ¢(2n,t,) and g, = Dy (zn,tn).
Set @n(z,t) = p(x,t) + % for (z,t) € Qr and
Vo i=A{(z,t) € Qr [ pn(z,t) > u™(x,1)}.

Note that V,, is an open subset of Q7 and u,, = ¢, on V.
We claim that (2,,t,) € V,,. Indeed, if this were not the case, then we would
have

(3.9) ap >

@n(xm t’n) S U*((En, tn)u
and therefore
(Un)*<$n, tn) =u" (xn; tn) V (pn(xna tn) =u" (-Tn7 tn)
Now, since u} > u* in Qr, we see that (z,,t,) is a maximum point of u* — 1.

Hence we have

(3.10) an < {

Since (un)*(Tn, tn) = u*(@n, ty) and v} > u* in Qr, we find that
M;[U*(vtn)}(xn) < M;[“Z(»tn)](xn)
From this and (3.10) we obtain

o < (C(xn;tn) + M;[u2(7tn)]($n))|p + Qn| if p+gn #0,
"o if p+gn =0,

(C(Z‘n,tn) + M;[U*(atn)](xn)ﬂp + qn‘ if p+gqn # 0,
0 if p+g,=0.

which contradicts (3.9). Thus we conclude that (x,,,t,) € V,,.
As noted above, V,, is an open subset of Q7 and u,, = ¢, on V,,. Therefore, we
have
an = @t(Tn,tn) and ¢, = Do(xn,t,).
Noting that if p + g, # 0, then M} [u} (-, t,)][(xn) > M, [(un)«(,tn)](2n), from
(3.9) we get

(3.11) ap > { (c(@n, tn) + M;[(un)*(,tn)](xn)”p + qn| if p+ gn #£0,

ifp+¢q, =0.

Since (2, tn) € Vp, we have (un )« (Tn, tn) = @n(@n, tn), while (u,)« > ©n on Qr
by the definition of w,. Therefore, (uy)« — ¢, attains a minimum at (z,,t,) with
minimum value 0. Since (up). — @n > Ux — @ — % > 0 outside the set W C Qr, we
find that (z,,t,) € W. Recall that u. > ¢ and hence u, < (up)x < ux + % in Qr.
From this we see that (un)«(z,t) — u«(x,t) uniformly for (z,t) € Qr as n — oo.
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Since (&, ) is a strict minimum of u, — ¢, we easily deduce that (z,, t,) — (£, t)
as n — 00.
We now divide our consideration into the following two cases.

Case 1: #{n | p+ g, = 0} < co. We may assume by replacing k by a larger
integer if necessary that p+ ¢, # 0 for all n. Using the facts that (u,). — ¢ attains
a minimum at (z,,,), (Zn, tn) — (&, ) as n — 0o and (uy,)s — u. uniformly on
Qr as n — oo, we apply Lemmas 2.4 and 3.1 if [p + Dp(Z,%)| > 0 or Lemma 2.5
otherwise, to obtain

liminf M, [(un)« (-, tn)](20n) [P + gl

N {M;[u*(-f)](fﬁ) lp+ Do, t)]  ifp+ De(d, 1) #0,

0 if p+ Dp(2, ) = 0.
Combining this and (3.11), we conclude that (3.7) is valid.

Case 2: #{n|p+ g, =0} = oco. We may choose a sequence {n;} C N diverging
to infinity so that p + ¢,, = 0 for all j € N. An immediate consequence is that
p+ Dyp(#,t) = 0. From (3.11), we have a,, = @s(2n,,ts;) > 0 for all j. Sending
j — oo, we obtain (&, £) > 0, which shows that (3.7) is valid. The proof is
complete. (]

4. COMPARISON THEOREMS
Throughout this section we let p € RV be an arbitrary vector.

Theorem 4.1. Let 0 < T < oo. Let u and v be solutions of (1.2) and of (1.3),
respectively. Assume that u and —v are upper semicontinuous and bounded on
RN x [0, T) and that

1iI(I)1+sup{u(a:,t) —u(y,s) | (z,t),(y,s) eRN x [0, T), |t —y|VtVvs<r}<O.

Then u < v on RN x [0, T).

We show first the following theorem and then apply it to prove the theorem
above.

Theorem 4.2. Assume in addition to the hypotheses of Theorem 4.1 that u and v
are defined on Qr, that u and —v are bounded and upper semicontinuous on Qp
and that u(x,t), —v(x,t) are semi-conver in x on RN wuniformly in t € [0, T), that
is, there exists a constant C1 > 0 such that for any t € [0, T] the functions

u(z,t) + Cilz)* and —wv(x,t) 4+ Cplz|?
are conver in x on RN. Then u < v on RN x [0, T).

Proof. We suppose that supg~ (0,7 (u—v) > 0 and will get a contradiction.
Fix a constant Cy > 0 so that |u(z,t)| V |[v(z,t)| < Cy for all (z,t) € Qp. Let
€ > 0 and set
€

ug(x,t) = u(fl;,t) — m

for (z,t) € Qr.
Observe that wu. is a subsolution of

5 = (c+ My[u(- 1)](2))lp + Du| in Qr,

et (T 4 £2)?
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and that if € > 0 is sufficiently small, then

supg_ (ue —v) >0,
1
ue(z,t) —v(y, s) <20y — % < 0 for all (z,t), (y,s) € RN x [T — &2, T).

We fix such a small € > 0 and we write u for u. in what follows. We fix a v > 0 so

that v < W and that for all (z,¢,y,s) € @;, if either

e —y|Vtvs<~y or |r—yl V(T —-t)V(T-s)<n,

then

(4.1) u(z,t) —v(y,s) < 0.

Note that u is a solution of

(4.2) w47 < (4 Myfu(D](@))lp + Dul in Qr,
We set

w(x,t) =u(x,t) +p-x and o(z,t) =v(x,t) +p-x for (z,t) € Qp.
In view of (4.1), replacing v > 0 by a smaller number if necessary, we may assume
that for any (z,t,y,s) € @TZ, if either
lx —y|Vivs<~y or |r—yl V(T —-t)V(T-s)<n,
then
(4.3) a(z,t) — 0(y, s) < 0.
Let o > 1 be a large constant to be specified later on. We define the function
=P, on @7? by
®(x,t,y,s) = a(zx,t) — oy, s) — alz —y|* — alt — s
We set 0 =0, := Sup ® and note that
¢ > sup(a — ) = sup(u — v) > 0.
Qr Qr
Observe that if ®(z,t,y,s) > 0, then
20, = —p- (z —y) +alz —y[* + alt — s
2 2
Fix a constant Ry > 0 so that RZ > 4C5 + |p|?, and note that for any (x,t,y,s) €
ar,
(4.4) (Vale—y) v (Valt—s) < Ry if D(z,t,5,5) > 0.

In particular, we have

0= SUP{q)(f,tayaS) | (x7t7y78) € QT2, \/&‘Z‘ - y| < RO}
We denote by R, the set of those » > 0 which satisfy

(lz =yl +t —s*) > (lz —yl* +t = s*).

0 = sup{®(z,t,y,5) | (x,,,5) € Qu, alw —y| <7},
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and set A, = inf R,. Since v/aRy € Ry, we have 0 < A\, < \/aRy. Observe that if
Ao > 0and A\, > 7 >0, then

0> sup{®(z,1,y,5) | (2,t,9,5) € @, alz —y| <1}
and that if » > A\, then

—2
0 = sup{®a(z,t,y,5) | (2,t,y,5) € Qp, alx —y| < r}.
We divide our consideration into two cases.

Case 1: liminf, ..o Ay = 0. Let n > 0 be a constant to be fixed later. We
choose an o > 1 so that A\, < 7. By the definition of \,, there is a sequence

{(l‘n, tn7yn7 Sn)} C @'12“ such that
1
©(@nstusynssa) > 0(1— =) and  ale, —yu| <7

Since ®(Lp,tn, Yn, Sn) = 0, by (4.4) we have |z, — yn| V [tn — sn| < Ro//a. We
may assume, by selecting « large enough if needed, that Ro/v/a < v/2. By (4.3),
we see that

(4.5) tn,sne(%,T—%) for all n € N.

By Ataking a subsequence if necessary, we may assume that (t,,s,) — (,3) for
some t,§ € [v/2, T — /2] as n — co. We choose a maximum point (&,,7,) of the
function

(z,t) — a(x,t) — 2a]x —yu|* —alt —sp|* —alt =t on Q.

We have

D(Tp, by Yny Sn) — @ (|xn — yn|2 + |tn —f|2)

< @(€ns s Y $0) — @ ([n = yal® + I — %)

<O —a (g —yul® +1m —1).
Hence, we get

o (|§n — Ynl? + |70 — f|2) <0 — (2, tn, Yn, Sn) + @ (|xn — Ynl? + |tn — f|2) ,
(s by Yy 5n) < P&y Ty Uns Sn) + @ (|20 — Ynl® + [tn — 7)),

and consequently

limsup a([&, — yn|* + [ — £]°) <

n—oo

2
m
’
[e%

"
liminf ®(&,, 7, Yn, Sn) > 0 — —.

n—o0 «

Reselecting « large enough if necessary, we may assume that 7%/« < 6/2, so that

liminf ®(&,, T, Yn, Sn) > =

n—oo 2

We may choose an ng € N so that if n > ng, then
2 P dap?
a(l&n —ynl” +|mn —t]7) < e and  D(&,, T, Yn, Sn) >

| D

In what follows we are concerned only with those n € N which satisfy n > ng. Note
that a|&, — yn| < 21 and «|r, —t] < 2n.
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Once again, reselecting « large enough if needed, we may assume that 2n/a <
~v/2, and we have 0 < 7,, < T by (4.5). Now, setting
o(x,t) = —p- 2+ 2alz —yu|* + alt — s, +alt — > for (z,t) € Qp
and noting that u is a solution of (4.2) in Qr, we get
(46)  @u(&n )+ < (clénr ) + My [u(, 7))(60)) [P + Dp(én, 7))
if Dp(&,, ) # 0, and otherwise
(4.7) G1(€n ) +7 < 0.
Note that for any z € RV,
(1= @) (En + 2 7) < (10— 9)(Ens 7o)
and hence
W +2,Tn) = u(€n, Tn) < (= + 4(En — yn)) - 2 + 20z,
By Lemma 2.5, there is a modulus w, independent of n, such that
M [u(-7)](6n) [P+ Dp(n, )| < w(dalés — ynl) if p+ Dp(én,7a) # 0.
This together with (4.6) and (4.7) yields
@t (Ens ™) + 7 < w(daln — ynl)-
Hence,
v < w(8n) —2a(t — s,) — 4a(r, —t) < w(8n) + 8y — 2a(t — s,).
Sending n — oo, we get
(4.8) v < w(8n) 4+ 80+ 25 —1).
Choosing a minimum point of the function
(y,5) — Dy, ) + 20lwn — yl2 + altn — s/ + als — 52 on Gy

and repeating an argument similar to the above, we get

0> —w(8n) — 8n+2a(s — 1)
Subtracting this from (4.8), we obtain

v < 2w(8n) + 167,

which gives a contradiction by selecting n > 0 small enough.

Case 2: liminf, ., A, > 0. By the semi-convexity and boundedness assump-
tions on u and —wv, we find a constant L > 0 such that for all z,y € R" and
t €0, T,

Also, by the semi-convexity of u in the variable z , we have
u(z 4 z,t) —u(x,t) > q-z — Ci|z|> for all (¢, 2) € Dy u(x,t) x RY

and for all (z,t) € Qp, where D] u(z,t) denotes the subdifferential of the function
u(+,t) at x. Similarly, we have

(4.10) v(z 4 2,t) —v(x,t) < q-z+Ci|z|? for all (¢,2) € Dfv(z,t) x RY
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and for all (x,t) € Q, where D v(z,t) denotes the superdifferential of the function
v(-,t) at . Here we note also by the semi-convexity assumption on v and —v that
Dy u(x,t) # 0 and D v(x,t) # 0 for all (x,t) € Q.

Now, we choose a constant A9 > 0 so that liminf,_,. Ao > Mg and also a
constant ag > 1 so that A\, > Ao for all a > «g.

Let § € (0, 1). We consider the function ¥ = ¥, 5 on @7? by
\If(.’b, tv Y, S) = (I)a(il,', t» Y, 8) - 6|$|2
For each o > 1 we may choose d,, € (0, 1) so that Sup 2 Uos>0forany 0 <6<
T

0. It is clear that the function ¥ attains a maximum at some point of @ﬁ For
each ¢ € (0, 6,) we fix such a maximum point (&, %, 7, §) which, of course, depends
on « and ¢. Noting that ® > U, we see from (4.5) and (4.4) as before that if
0 <6 <8, and Ry/y/a < /2, then £,5 € (0,T). Replacing ag by a larger number
if necessary, we may assume that Ry/v/a < /2 for a > «p. Henceforth we deal
only with those a and ¢ satisfying a > ap and 0 < § < J,, so that A, > Ag and
t,8€(0, 7).

We may assume by replacing d, € (0, 1) by a smaller number if necessary that
al@ — g| > Ao. Indeed, if this were not the case, we could choose a sequence
{0;} € (0, 1) converging to zero such that a|z; — y;| < Ao for all j € N, where
(zj,tj,yj,8;) denotes the point (#,%,7,3) corresponding to § = §;. Observe that

(I)(‘rjvtjvijsj)zsilgqla,éj — 0 as j — 0o,
T

which implies that A, < A\g. But, this contradicts our choice of ag.
A limiting argument parallel to the above shows that

(4.11) 613&5@\2 =0.

We observe as usual in viscosity solutions theory that
(4.12) (—p +2a(2 — 9) + 262, 2a(t — 3)) € D u(, t),
(4.13) (—p +2a(& — 9), 20(t — 8) € D™ w(3, 3),

and furthermore, we see by the semi-convexity of w, —v in the variable z that
u and v are differentiable, as functions of x, at (2, ¢) and (j, 3), respectively.
Here DT f(z,t) denotes the sub- and superdifferential of the function f at (,t),
respectively.

The above inclusions together with (4.9) yield

(4.14) 12a(& — g) + 20| V |2a(2 — §)| < L.

Next, by the inequality ®(& 4z, t, §+z, §) < ®(a, t, §, 8) for z € RV, we find that
w(@ 4z, 1) —u(d, t) <o+ 2, 8) —v(g, 8) + 208 - 2+ 6|z]> for all z € RV,

Combining this with (4.10) and (4.13), we get

(4.15) w@ 4z, t) —u(d, )< q -2+ (0+C)|z|* forall z € RY,

where ¢ := —p + 2a(& — §) + 20&. Similarly, we get

(4.16) (G + 2, 8) —v(5,8) > q-2— (6§ +C1)|z|* forall z€ RV,

where ¢ := —p + 2a(& — §).
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In view of (4.11), we may assume by replacing d, by a smaller number if needed
that 20|Z| < Ag. Since a|Z — §| > Ao, we have

A
(alz — ) A la(i - §) + 63 > 2.

This together with (4.14) yields
(4.17) Xo < (202 — g]) A |2a(2 — §) + 262 < L.

Hence, using (4.15) and (4.16), we deduce by Lemma 2.4 that there are constants
0 < po < 1 and C3 > 0, independent of our choice of o and §, such that for any
0< p < Po,

(4.18) M [u(-,1)](%) gcgpN+1ﬁ+/||> J(2)ES (u(@ + 2,t) — u(d, ), 2)dz,

(419) M [o(-,3)](3) = — CapN 17 + / J(2)E; (0( + 2,3) — v(§, 8), 2)dz.

|z[>p

Now, since u and v are solutions of (4.2) and of (1.3), respectively, using (4.17)
again, we have

(4.20) 20(t — 8) + v <2(c(&, 1) + M [u(-, £)](2))|a(E — §) + 02|
and
(4.21) 20(f — 8) 22(c(9,8) + M, [v(-, 8)](9)) (@ — §)].

Next we note that for any z € RV,

w(@+ 2, t) —v(@+2,8) <u(@, t)—v@, 8 +p- (& —g) +0|z+ 2> — ol — §|*

Therefore, for any z € RV, if §|# 4 2|? < a|& — 9|2, then we have

w(d +z,t) —u(d, i) <v(@+2,8) —v(@,38) +p- (& —19),

and moreover

Ef (u(@+z,1) —u(d, i), z2) <E, (v(&+2,8) —v(),8) +p- (2 —19), 2).
Now, let 0 < p < pp, 0 < v < p/2 and R > 1. By virtue of (4.11), we

may assume by replacing J, by a smaller number that 85(|2]2 + R?) < A\2/a and
d|Z| < v. Accordingly, thanks to (4.17), we have

)\2
S|z + 22 < 26(]]* + R?) < ﬁ <alz —g* forany z € B(0, R).

In view of (4.4), we may assume by replacing oy by a larger number if necessary
that |2 — ¢| + |f — 8| < v. Note that &, and o indeed depend also on R and v and
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on v, respectively. Thus, we get

[>p
DET (w(id + 2, t) —u(d, 1), 2)dz
_(/f7<z<R+/Z>R>J( VB, (u(E + 2, 1) (@, t), 2)d
S/ J(2)E; (v(& + 2,8) —v(g,8) +p- (2 —19), 2)dz
p<|z|<R

< / J(2)E, (v(@ +2,8) —v(9,8), & —§+ 2)dz
p<|z|<R

+ (2Cy + 1)/ J(z)dz + |p||z — 7 J(z)dz
|z|>R p<|z|<R

< / T — &+ 9)Ey (0(§ + v,8) — 03, ), y)dy
p<|y—z+y|<R

+ (205 +1) / J(2)dz + [plv / J(2)dz.
|z|>R p<|z|<R

Setting

Iy)=J@—-2+y), fly)=E,(wG+y,3)—v,3),y),
A={yeRY |p<|j—2+yl <R}, B={yeR"|p<lyl <R}

for the moment, we observe that

/A J(G -2 +y)E, (v(g+y,5) —0(7,5), y)dy
- /B T By (0§ +9,8) — v(i, 8), y)dy

/ 1(9) f(y)dy — / () (y)dy
A

B

- / (I(y) — J() F(y)dy + / 1(y)f(y)dy — / J(9)/ (y)dy
ANB A\B B\A
< (261 +1) / I(y) — J(y)ldy + (2C5 + 1) / (1) + 17(5))dy
B (A\B)U(B\A)
< (205 + 1)/ T — &+ 2) — J(2)]d=
p<|z|<R

+(202+1)(/p

+/ )1 =&+ 2)| + 1J(=) )z,
R—v<|z|<R+v

—v<|z|<pty
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Finally, noting by (4.19) that

/ J(2)E; (0@ + 2.8) — v(d, ), 2)dz
p<|z|<R

< /Z>pJ(z)Ep(v(Z? +2,8) — 0(5, 8), 2)dz + (205 + 1) /M ()

< M [o( 8)](3) + CspN 10 + (205 + 1) / ECLE

and using (4.18), we obtain

(4.22) M [u(-,1)](2) < 2C3pN 170 + M [v(-, $)](9) + e(p, v, R),
where
e(p,v, R) :=(2C5 + 1){2 /WR J(2)dz + L /p<Z<R \J(h + 2) — J(2)|dz

+ sup (/ —|—/ )(\J(h+z)|+|J(z)|)dz}
heB(0,v) p—v<|z|<p+v R—v<|z|<R+v

+ \p|u/ J(2)d=.
p<|z|<R

}%1_{1100 VIE&- e(p,v,R) =0 for fixed p > 0.

Subtracting (4.21) from (4.20), we get
v <2 (c(@, £) + M [u(-, £)](2)) |a(@ — ) + 62|
—2(c(g, 8) + My [o(, 3)](8)) |l — 9)].

Hence, using (4.22) and (4.18) and recalling that (|& — 9| + |t — 3|) V (§|2]) < v, we
obtain

(4.23) % <{le(@, 1) — e, 3)| + M [u(-, )](@) — My (-, $)](§) (@ — )|

+ (le(@, )] + M [u(-, 1)](2))]2]
<(we(|@ — 9| + [ — 8]) +2C3p" TP +e(p, v, R)) L

+ ||c|\oo+03pN+1-ﬁ+(202+1)/

|z[>p

Note that

J(z)dz)u
S(wc(l/) + CBPN-H_B +e(p, v, R))L

+ (lleloe + 3177 4 (205 + 1)/

|z[>p

J(z)dz) v,

where w. denotes the modulus of continuity of the function c.
We now fix p € (0, po] so that 2CLpN+1=8 < /4, then R large enough so that

. v
| L, R)L < —,
Jim e(p,v, R)L < 2
and finally v small enough so that

e(p,v, R)L < %7

we)L+ (lelle + Cap™ 177+ (200 4 1) |

|z|>p

J(z)dz)y < %,
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to conclude from (4.23) that v < 0, which is a contradiction. The proof is complete.
O

Remark 4.3. One of main difficulties arises in the proof of Theorem 4.2 due to the
discontinuity of the function E. For this, we used an idea from [6, Theorem 5.2]
and [8, Theorem 4.4].

Proof of Theorem 4.1. Define the sup- and infconvolutions of v and v as follows:

2 Kt
T —y|“e
w(a.0)i= sup (u(t) =+ o) - I,
yEJRN €
. |x_y|2€Kt
,t) := inf A —p(z—y) + —= ,
ve(,t) i, (v(y )—p-(z—y) 5

where 0 < ¢ < 1 and K := 2||Dc| p(g,)- It is a standard exercise to check that u®
and v are solutions of (1.2) and of (1.3), respectively. Moreover, we have:

2 2
p P
oo < Ml + 25, oo < oo + 2,

ut(z,t) \yu(z,t) and ve(z,t) /v(z,t) ase— 0.

Note that the functions
|z[2eK?

2 Kt
i (ont) 4 jafe

2¢e

are convex in z for any ¢ € [0, T]. Furthermore, for any v > 0 there are constants
K., >0 and § > 0 such that u(&,t) —v(n,s) < v+ K,|¢ —n|? for all £,n € RY and
t,s € [0, ]. Using this and noting that

and —v.(z,t) +

|£ - 77|2 S 3(|£ - $|2 + |£L’ - y|2 + |77 - y|2) for all xay,gan S ]Ra
we see that if K, + % < 6%7 then

UE(I’,t) - Us(yv 5)

=& ly—nf
< sw (94— al 4 lplle =l - EEEE - I g ppio
¢ nerRN < <

2

'Y|p‘2 ( 1 1 ) 2 ‘I y|
- §,§7€leN < 2 v 2’}/ 6¢e |€ 77| ‘pHx y| 2e

|z —y|?
2e

2
lp
<7+J%~HMM*M+

for all 2,y € RY, t,5 € [0, 4].
Hence, if ¢ is sufficiently small, then we have

lim sup{us (z,6) = ve(y,5) | (2.0), (4, ) € Qs o =yl VIV s <1}
T —

lp|*
<~(1 ——)
cofi
We apply Theorem 4.2 to the functions u®(xz,t) — (1 + [p|?/2) and v., to find that
uf(x,t) < we(z,t) +v(1+|p|?/2) for all (x,t) € Q7. Sending ¢ — 0 and then v — 0
guarantees that u(z,t) < v(z,t) for all (z,t) € Qr. O

The above proof is easily modified to show the following theorem.
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Theorem 4.4. Under the hypotheses of Theorem 4.1, there is a modulus w such
that
u(x,t) —v(y,t) <w(z —yl) foralz,yc RN, tc0,T).

Proof. Let v and v, be the sup- and infconvolutions as in the proof of Theorem
4.1. According to the proof of Theorem 4.1, for each v > 0 we can choose an
e =¢€(vy) > 0 so that

uf (x,t) —v(2,t) <y forall (z,t) € RN x [0, T),

which yields
oKT
(4.24) u(z,t) —o(y,t) < v+ 2—€|x —y|? forall x,y e RN, t €0, 7).

Setting
KT

. €
wo(r) = 0<le£1 (fy + 25(7)T2> forr >0

and observing that wo(0) = 0 and wy € USC([0, o)), we find that there is a
modulus w such that wy(r) < w(r) for all » > 0. We note by (4.24) that

u(z,t) —v(y,t) <w(jz—y|) forallz,y e RN tel0, T),
to complete the proof. O

5. AN EXISTENCE AND UNIQUENESS THEOREM
As usual we fix p € RV arbitrarily throughout this section.

Theorem 5.1. Let ug € BUC(RY). There exists a unique solution u € C(Q,) of
(1.1) for which u(-,0) = uy on RY and u € BUC(Qy) for any 0 < T < oco.

Proof. Uniqueness of a solution u € BUC(Q) for every 0 < T' < oo of the initial
value problem for (1.1) follows from Theorem 4.1.

In view of the uniqueness result, it is enough to show that for each 0 < T < oo,
there is a solution u € BUC(RY x [0, T")) of (1.1) satisfying u(-,0) = uy.

We fix any 0 < T < oo. Let wy denote the modulus of continuity of ug. We
define the function ¢ € C*®(R) by ¢(r) = r2/(1 + r?). Note that the function ¢
and all its derivatives are bounded on R. Noting that wy is bounded on [0, c0), we

see that for each ¢ > 0 there is a constant A. > 0 such that wo(r) < e+ A.¢(r) for
all 7 > 0. If we set 1(x) = ¢(|z|) for € RY, then ¢ € C°(RY) and ¢ and all its
derivatives are bounded on RY. For any fixed (,y) € (0, 1) x RY, we set

[H(@) = 5 (wse,y) = uoly) £ (e + Aco(|z —yl)  for o € RY.

Thanks to Lemma 2.5, for each € € (0, 1) there is a constant B, > 0 such that for
all (z,t) € Qr,

(c(a,t) + MS[f)(x)) [p+ DfF(x)| < B if p+Df*(x) #0,
(c(a,t) + My [f7](x)) [p+ Df~(x)| > =Be if p+Df (x) #0.
Now, we define the functions F*(-;¢,9) on Q, with (,y) € (0, 1) x RN, by
FE(x,t) = FE(x,t;e,y) == f5(x,t;e,y) £ B t.

It follows from the above observations that functions F*(:;e,y) and F~(-;¢,y) are,
respectively, solutions of (1.3) and of (1.2) in Q7. It is obvious that

F~(z,t;e,y) S ug(z) < Ft(z,t;e,y) forall (z,t) € Qp,
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. F~(2,0;e,2) + ¢ = ug(x) = F™(2,0;¢,2) —¢ for all z € RV,
Next, we define the functions g* on Q, by
g*(a,t) =inf{F*(z,t;6,9) | (e,9) € (0, 1) x RV},
9™ (x,t) =sup{F~ (z,t;2,9) | (¢,y) € (0, 1) x RN}

It follows that g™ and g~ are a sub- and supersolution of (1.1), respectively, and
that ¢~ (z,t) < up(z) < gt (z,t) for all (z,t) € Qp, g~ (2,0) = ug(x) = g*(z,0)
for all z € RN and g*, —g~ € USC(Q). By Theorem 3.4 there is a solution u of
(1.1) such that ¢~ (x,t) < u(wz,t) < g™ (x,t) for all (z,t) € Qr. Note that for all
r,y€RY t€[0,T)and¢) € (0, 1),

fu(, £) — uo(y)] < & + Ach(|z — y|) + B- .

In particular, we find that lim; o, u(z,t) = uo(z) uniformly for x € RY and that
u is bounded on @Qr. By Theorem 4.1, we see that uv* < w, in Qp and hence
u € C(Qr). Because of the uniform convergence of u(x,t) to ug(z) as t — 0+, we
may extend u to a continuous function on RV x [0, T) by setting u(x,0) = ug(x)
for all z € RY. We next apply Theorem 4.4 to u, to find a modulus w such that

u(z,t) —u(y,t) <w(lz —y|) forall z,y e RN t€[0,T).

It remains to show that the family of functions u(x,-), with x € RY | is equi-
continuous on [0, 7). This can be done by adapting the above construction of g*.
Indeed, following the above argument with w in place of wy, we easily see that for
each ¢ € (0, 1) there is a constant C. > 0 such that

lu(z,t) —u(z,s)| < e+ Coft —s| forallz € RN, s,t €0, T),

which guarantees the desired equi-continuity. The proof is complete. ([

6. ONE-DIMENSIONAL CASE

In this section we always assume that N = 1 and show that the requirement,
B < N +1,in (J4) can be removed if N = 1. In what follows we replace condition
(J4) by the following.

(J4') There are constants § > 1 and Cy > 0 such that

J(z) < f'(; for all z € [~1, 0) U (0, 1].
We assume throughout this section that (c1)—(c2), (J1)-(J3) and (J4’) hold. We
fix p € R arbitrarily. In this section we use the notation: B(z,r) =[x —r, z + r]
and ¢, (z,t) = Do(x,t).

In order to accommodate the higher singularity of the kernel J at the origin,
we introduce “admissible test functions” following for instance [10] and modify the
definition of sub-, super- and solutions of (1.1).

Let 8 > 1 be the constant from (J4'). We denote by F3(Qr) the space of
functions ¢ € C?(Qr) such that for each (y,s) € Qr, where ¢, vanishes, there
exist constants ¢ > 0 and C' > 0 such that for all (z,t) € B((y, s),9),

|62, t) — d(y, 8) — ¢y, 5)(t = 5)| < Clw =y + [t — /).
It is clear that the function ¢(z,t) := alr — y|[?*t! +(t), with any a € R, y € R
and ¢ € C2((0,T)), belongs to Fz(Qr).
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We next define F3,(Qr) as the space of all functions ¢(z,t) — pr on Qr, with
¢ € F3(Qr). We note that for any ¢ € C?(Qr), we have ¢ € F,(Qr) if and only
if for each (y,s) € Qr satisfying ¢, (y,s) + p = 0 there are constants 6 > 0 and
C > 0 such that for all (z,t) € B((y, s),9),

(6.1)  |o(x,t) +plz —y) — ¢y, 5) — ¢u(y, s)(t — 5)| < Cllw —y["* + |t = ).

We say in this section that u € B(Qr) is a (viscosity) subsolution (resp., superso-
lution) of (1.1) if whenever (z,t, ¢) € Qr X Fp,(Qr) and u* —¢ (resp., u, —¢) has a
local maximum (resp., minimum) at (x,t), inequality (1.4) (resp., (1.5)) holds. As
before, we call a subsolution (resp., supersolution) of (1.1) a solution of (1.2) (resp.,
of (1.3)) as well. A function u € B(Qr) is called a solution of (1.1) if it is both a
subsolution and supersolution of (1.1). Remark that if u € B(Qr) is a subsolution
(resp., supersolution, solution) of (1.1) in the sense of the previous sections, then
it is a subsolution (resp., supersolution, solution) of (1.1) in the current sense.

We set f(x) = |2|?*! for € R and observe that if |y — x| < \f’(x)\%, then we
have

1f' (@) = B+ D)=’ |f"()] =8B+ Dy"

O . ()] P o
<5(5+1)) =yl < |z[+ |y |§<5+1> +|f'(2)|7,

and

that is,

Pl Calr@l, win o= a1+ (7))

By the Taylor theorem, we find that for all z € R and z € B(, |f’(x)\%),
_1
|[f@+2) = f(z) = f'(2)2] < Cplf'(2)]'77.

Next fix y € R and set g(x) = f(z —y) — pz for € R. Tt follows from the above
inequality that for any = € R and z € B(z, |¢/(x) +p|%),

(6.2) l9(z + 2) — g() — ¢'(2)2| < Cplg’ (x) + p|*

The above observation will be useful in our stability arguments.

1
522,

Lemma 6.1. Let u be a bounded measurable function on R. Let g, x € R, r > 0
and C1 > 0. Assume that 0 < |p+q| <1 and

u(z+2) < u(x)+q~z+C1\p+q|1_%22 for all z € B(0,r A |p+q|%).
Then there is a constant 0 < p < 1, depending only on Ci, such that for any
1
0<6<rA(plp+4q|?),

+ +
M [u](z) < /|z|>(§ J(2)E, (u(z + 2) — u(z), 2)dz.
Proof. We follow the proof of Lemma 2.1. We set v = p + ¢ and note that

u(z+z) —u(x) +pz <vz+ Cl\v|1_71*z2 for all z € B(0, r A |v\%).

Hence, if v > 0, then

o
u(w+2) —u(@) +pz <0 forall ze (—r A U2 0),
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and if v < 0, then

1
vl B
u(x + z) — u(x) + pz < 0 for all z € (0, 7‘/\'&1 )-

We set
1

T 20 1
and note as before that p < 1 and that if |z| < p, then

p

vz—|—C’1|v|17%z2 <p+Cip* < 1.

Fix any 0 < § <7 A (p|v\%). If v > 0, then we get

L for —d<2z<0,
E*(u(z + 2) — u(z) + pz) < 12
= for 0 < z < 6.
2
If v < 0, then
1 for —§ <2z <0,

E*(u(z + 2) — u(z) + pz) < 1
—5 for 0 < z <.

Consequently, we obtain

M, [u](x) :liargglip </e<z|<5 + /Z>6)J(Z)Ep+(u(x +2) —u(z),2)dz

S/ J(2)Ef (u(z + z) — u(x), 2)dz,
|z|>6
which completes the proof. [l

The following is a one-dimensional version of Lemma 2.1. Its proof parallels that
of Lemma 2.1, once the one-dimensionality is taken into account as in the previous
proof. We omit here giving the proof.

Lemma 6.2. Let u be a bounded measurable function on R. Let ¢,z € R, r > 0,
A >0 and Cy > 0. Assume that 0 < [p+q| < A and

uw(z +2) <u(z)+q- 2+ C122 for all z € B(0, 7).
Then there is a constant p > 0, depending only on Ci, r, A, such that for any

P+l

+ +
M, [u](z) < /|Z|>(S J(2)E, (u(z + 2) — u(z), 2)dz.
Lemma 6.3. Let u be a bounded measurable function on R. Let q, x € R, r > 0,
C1 >0 and Cy > 0. Assume that 0 < |p+q| <1, |u(z)| < Cq for all z € R and

u(x+2) <ulx)+q-z+Cilp+ q|17%z2 for all z € B(0, 7 A|p+ q|%).
Then there is a constant C > 0, depending only on r, ||J||L1(1,00), B, Co, C1 and
Cs, such that

M [u](z) [p+ql < Clp+q|7.
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Proof. Let p € (0, 1) be the constant from Lemma 6.1. Setting & =r A (plp+ q|%),
we have

M, [u](z) < / J(2)E} (u(z + z) — u(x), z)dx
|z|>6

B (/5<|z|<1 " /|z>1 >J(Z)E;r(u<x +2) ~ulz), 2)de

1
< (205 +1) (200/ 27 Pdz + 2\|J|\L1<1,oo>)
§

00(51_’8
6—1

<2(205 4 1) ( + IIJLl(l,oo)> :

Hence,

M [u)(z) [p+ql < Cs(lp+4ql7 +Ip+4ql) < (Cs+1)p+q|7,

where C3 > 0 is a constant depending only on 7, ||J|[11(1,00), 3, Co, C1 and Cs.
This proves our claim. (]

We state stability, comparison and existence results in one dimension, which are
parallel to the corresponding results in general dimensions.

Theorem 6.4. Let Sy be a non-empty set of solutions of (1.2). Assume that the
family Sy is uniformly bounded on Q. for any 0 < 7 < T. Define the function
u € B(Qr) by u(x, t) = sup{v(z, t) | v € So}. Then the envelope u* is a solution
of (1.2).

Proof. Let (&,t) € Qr, r > 0 and ¢ € F5,(Qr), and assume that B((#,%),2r) C
Qr and u* — ¢ attains a strict maximum at (&,#) over B((#,),2r). By the defini-
tion of u*, there are sequences {(2,,t,)} C B((#,1),2r) and {v,} C Sy such that
Vp(Tp,tn) — w*(&,1) and (z,,t,) — (2,%) as n — oo. By the definition of u, we
have v} <u* in Qr.

For any n € Nlet (y,, s,) € B((#,%),2r) be a maximum point, over B((%,1), 2r),
of the function v¥ — ¢. As usual we see that v’ (y,, sn) — w*(&,1) and (yy, sn) —
(#,1) as n — oo. Passing to a subsequence if necessary, we may assume that
(Yn, sn) € B((#,1),r) for all n. Since v, is a subsolution of (1.1), we have

(6.3) ©t(Yn, 5n) < (c(Yn, sn) + M;[U:('v $n)](Yn)) P + 0z (Yn, $1)|
if p+ @u(Yn, sn) # 0, and
(6.4) @t(Yns5n) <0 if p+ ©u(Yn, sn) = 0.

We note that for any z € B(0, r) and n € N,

(6.5) Un(Yn + 25 80) = U3 (Yns $n) < @(Yn + 25 5n) = ©(Yn, 5n).-
We treat the following two cases differently.
Case 1: p+p.(2,) = 0. In view of (6.1) and (6.2), by replacing ¢ by the function
(z,t) — —px + @(&, D)t + C|z — 2P + |t — £]?),
with C' > 0 sufficiently large, we may assume that for all (z,t) € Qr and z €
B(0,|p + u ()| ),

o+ 2,8) — p(x,) < o, 8)z + Cilp + o (2)1 7722
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Accordingly, we have for any n € N and z € B(0, [p + ¢z (yn, 5n)|%),

©(Yn + 2,8n) = ©(Uns $n) < Pz(Yns $n)2 + C1[p + @ (Yn, SN)|17%22-
In this case we have p+ ¢, (Yn, sn) — 0 as n — co. In particular, we may assume
that |p + gpl.(yn,sn)ﬁ < min{1, r} for all n € N. Hence, using (6.5), we have for
any n € Nand z € B(O, |p+<pz(yn,sn)|71f),

_1
U:(y" +z s") - U:L(ynv Sn) < Som(yna Sn)Z + C1|p + Qox(yna 3n)|1 522

By replacing C by a larger number if necessary, we may assume moreover that
|vn (2, sp)| < Cy for all z € R and n € N.

According to Lemma 6.3, there is a constant Cy > 0, which does not depend on
n, such that if |p 4+ @ (Yn, $n)| < 1,

M; [’U’:L(.’ Sn)}(ynﬂp + @w(yna 3n)| < C2|p + Lﬂw(yna 8n)| .
We combine this with (6.3) and (6.4) and send n — oo, to see that o (&,1) < 0.

Case 2: p+ pu(&, t ) # 0. By selecting a subsequence if necessary, we may assume
that [p 4+ @z (Yn, $n)| > A for all n and for some constant A > 0. Note by (6.5) that
there is a constant Cy > 0 such that for all z € B(0,r) and n € N,

=

Uy (Yn + 2,80) = Un (Yns $n) < 02 (Yn,y Sn)2 + C222'

We apply Lemma 6.2, to find that there is a constant p € (0, 1) such that for any
0<d<p,

M v (-, sn)(yn) < / S J(2)Ey (v (yn + 2) — vy, (yn), 2)d2.
z|>
By the definition of u, we see that for all z € R,
klim sup{vi(y, sn) | n >k, y € B(z, k™ 1)}

< Jim sup{u*(y, 2) |0 > b, y € Ble, k™)) < u'(a, ).
We now apply Lemma 3.1, to get for any § € (0, pl,
limsup M, [v7, (-, $0)](yn)

DET(w (3 + 2,£) — u™(2,t), 2)dz.

Thus we get
limsup M, [v7, (-, $0)](yn) < M [u (-, £)](2),

n—oo

and conclude from (6.3) that

o, £) < (e(@,0) + Mylu(, D))(@)lp + pald, D).
That is, u* is a solution of (1.2). O

Theorem 6.5. Let {u,} be a sequence of solutions of (1.2). Assume that the
collection {u,} is uniformly bounded on Q, for any 0 < 7 < T. Define u € B(Qr)
by

u(, 1) = Jim sup{un(y,s) | (v.5) € B((x.1), k), n > k).

Then u is a solution of (1.2).
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Proof. We note that u € USC(Qr). Let (2,%) € Qr and ¢ € F,(Qr), and
assume that u — ¢ attains a strict maximum at (&,#). As in the proof of Theorem
3.3, we can choose sequences {ny} C N, diverging to infinity, and {(x,tx)} C Q1
so that u, (zk,tk) — w(Z,1) and (@, tx) — (2,1) as k — oo, and for any k € N,
the function uj, — ¢ attains a local maximum at (x4, ty).

The rest of the proof parallels the last part of the proof of Theorem 6.4 O

Theorem 6.6. Let f € LSC(Qr) and g € USC(Qr) be a subsolution and super-
solution of (1.1), respectively. Assume that f < g in Q. Set

(6.6)  wu(x,t) =sup{v(z,t) | v is a subsolution of (1.1), f<v<g in Qr}.
Then u is a solution of (1.1).

The proof of Theorem 3.3 is easily adapted to that of the above theorem, and
we leave it to the reader to check the details.

Theorem 6.7. Let 0 < T < co. Let u and v be solutions of (1.2) and of (1.3),
respectively. Assume that u and —v are upper semicontinuous and bounded on
R x [0, T) and that

h%l+ Sup{u($7t) - U(yVS) ‘ (Iat)7 (y,S) eRx [07 T)a |JL' - y| VitVs < T} <O0.

Then u < v on R x [0, T). Moreover there is a modulus w such that
u(z,t) —v(y,t) <w(lz—y|) forallz,y e R,t €0, T).

Outline of proof. We follow the proof of Theorems 4.1 and 4.2 with small variations.
As in the proof of Theorem 4.2, we introduce sup- and infconvolutions of v and
v as follows:

1) oy e yleR
u(z,1) =sup <U(y,t) p-(z—y) B+1)e )
i |z — y| 7 e
el = int (o000 = e o)+ ).

where 0 < e <1 and K := (8 + 1)||Dc| g (q,)- It is easy to check that v and v,
are solutions of (1.2) and of (1.3), respectively. Noting that for any =,y € R and
0<t<T,

Mz —y|™*t B A

r—y| < + ( 2ee Kt "“)
Ipllz — vl EESE 541 Ipl ( )

eyl el

2(8 + 1) 2(8+1)e

B+1
B

+2(|p| + 1)?,

we find that
u®(z,1) < |luflos + 2(Ip| +1)%,

o= sw () -

a“u—yW“>
yEB(z,R)

(B+1)e

for some constant R > 0. Using these observations, we see that u® is bounded on
R x [0, T') and u®(x,t) is semi-convex in z uniformly in ¢ € [0, T). Similarly, we
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find that v, is bounded on R x [0, T') and v.(z,t) is semi-concave in z uniformly in
t € [0, T). Moreover, it is easily seen that for every (z,t) € R x [0, T'),

51~I>I(IJ1+U (z,t) = u(z,t) and EILI[& ve(x,t) = v(x, t)

and that

lim lim sup{u®(z,t) — ve(y,s) | (2.0), (5 5) € Qp, Jo —y|VEV's <7} <0,

e—0+ r—0+

Fix any p > 0 and choose an ¢¢ € (0, 1) such that for all € € (0, &¢),
'lir&_ sup{u®(z,t) — ve(y,s) | (x,t),(y,8) € Qp, |z —y|VEVs<r}<p.

As before, in order to prove the theorem, we need only to show that u® —v. < pu
on R x [0, T') for any € € (0, 9). Thus we may assume by replacing « and v by
u® — p and v, respectively, that the functions u(z,t) and —v(x,t) are semi-convex
in « uniformly in ¢t € [0, T)).

We argue by contradiction and hence suppose that sup o 7)(u —v) > 0. We

may assume that u and v are defined on Q. Moreover, arguing as in the first part
of the proof of Theorem 4.1, we may assume that there is a small constant v > 0

such that for any (z,t,y,s) € @;, if either
lx —y|Vtvs<~y or |r—yl V(T —-t)V(T-s)<n,
then
(6.7) u(z,t) —v(y,s) < 0.
and that u is a solution of
(6.8) ug +y < (¢4 Mp[u(-, )](x))|p + Du|  in Qr,
We set
w(x,t) =u(x,t) +p-x and o(z,t) =v(x,t)+p-x for (z,t) € Qp.

In view of (6.7), replacing v > 0 by a smaller number if necessary, we may assume
that for any (z,t,y,s) € Qﬁ, if either

[t —ylvivs<~y or |z—yl V(T —-t)V(T—-s)<n,
then
(6.9) a(z,t) — o(y,s) <O.

Let a > 1 be a large constant to be selected later and define the function ¢ = ®,,
on Q7 by
O(x,t,y,s) = (@, t) — 5(y, 5) — ale -yl —alt - 5|2
We set 0 =0, := Sup g 2 ® and note that
T

6 > sup(t — v) = sup(u —v) > 0.
Qr Qr
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Choose a constant Cy > 0 so that |u| V |v] < Cy on Qp and observe that if
®(x,t,y,s) >0, then

2Cy > —p- (. —y) + alz —y[P T + aft — s|?

B 1+1 1 B+1 B+1 2
> - B — ——|T — +a(|jx— +|t—s
> 5+1lp| 6+1‘ y| (Jz =yl It —s]?)

1 (67
> —p"tF + < (le —yP T+ |t - s?).

2
Fix a constant Ry > 0 so that Roﬁﬂ A RE > 4Cy + 2|p|1+%, and note that for any
(2,t,9,5) € Qr,
(6.10) (a7 le —l) v (Valt = s|) < Ry if ®(x,t,y,5) > 0.
We define R, C [0, 00) as the set of all » > 0 which satisfy

0 =sup{®(a,t.9,5) | (2,t..5) € Qr, ala —y|* <1},

and set A\, = inf R,. We note that 0 < A\, < oo.
We divide our argument into two cases.

Case 1: liminf,_,. Ao = 0. Let n > 0 be a small constant. We choose an o > 1
so that A, < 7. There is a sequence {(@n, tn, Yn, Sn)} C Q;« such that

1
(I)(Z‘n,tn, Yn, Sn) > 9(1 — E) and 0¢|1‘n — yn‘ﬁ <n.

We may assume, by choosing « large enough if needed, that Ry/ QT < ~v/2, so
that |z, — yn| V |tn — sn| < /2 by (6.10) and, by (6.9),

(6.11) tn, Sp € (%,T—%) for all n € N.

By taking a subsequence if necessary, we may assume that (t,,s,) — (,3) for
some t,5 € [y/2, T —v/2] as n — oo. We choose a maximum point (&,,7,) of the
function

(z,t) — a(zx,t) — (a + a%) |z — yn|PTt —alt — s, —alt —£[>  on Qp.
We have
1 R
(I)(xn; tn, Yn, sn) —ak |$n - yn|,8+1 - altn —t ‘2
1 .
< (I)(gna'rn;yn75n) —af |§n - yn|ﬁ+1 - Ol|7—n -1 |2
<0 — a6, — yal™* —alr, — .
Hence, we get
1 R
ar |£n - yn|ﬁ+1 + 04|Tn —t |2 <0 — ‘I’(l“mtmyn, Sn)
+aB |z — )T+ oty — 2,
1 R
(I)(mmtmym Sn) §¢(§H7Tn7yn7 Sn) + O[ﬁ |$n - yn|6+1 + Ol|tn - t |27



NON-LOCAL HAMILTON-JACOBI EQUATIONS ARISING IN DISLOCATION DYNAMICS 31

and consequently

1

. +5
lim sup (a%|£n —yuPt +alm, — |2> < limsupa%|xn —y|PT < %7
n— o0 n—0oo
o UH%
liminf ®(&,,, T, Yn, Sn) > 0 —
n— oo «

Reselecting « large enough if necessary and choosing n € N large enough, we have

1 R 2 1+% 2]
(aﬁ|§n - yn|ﬁ+1 + CY|7'n —1 |2> < L and (I)(fn, Tns Yn, Sn) > 5
(0%

Note that a|¢, — y.|? < 27 and a|r, — ] < (217)%"’2%’.
Once again, reselecting « large enough if needed, we may assume that
2\ b (2n)ites
()l
« o 2
and, by (6.11), we have 0 < 7, < T. Setting
o(x,t)=—p o+ (a+ a%)|x — T Falt — s, +alt =t for (z,t) € Qr

and noting that ¢ € F3,(Qr) and u is a solution of (6.8) in Qr, we get

(6.12) 0t (&ny ) +7 < (C(gnaTn) + M;[U(an)](ﬁn)) P+ @2 (§n, 7o)
if 0. (&, Tn) # 0, and otherwise
(6.13) @t(6n,Tn) +v < 0.

Note that for any z € R,
(u=@)(En + 2,70) < (u— @) (En, ™)

and for any (z,t) € Qr,
P+ pa(z, )] = (
Hence, if |z] < |p+ ¢, (&
u(én + 2, 7n) — ul(§

a?)(B+ Dz = yal” < 28 + V)] — ynl”.
7, then

Q-

)
)

o+
Tn)
n>Tn)

S@I(&’na’rn) 4
+ (04 + a%) (B4 D)B(I&n — ynl + |21)7 72
<0a(&ny )z + Calp + 0 (En, )| 7 22,

where C3 > 0 is a constant depending only on « and 5. By Lemma 6.3, there is a
modulus w, independent of n, such that if 0 < |p + @ (&n, 7n)| < 1, then

M [u, m)](€n) [P+ @2(€ns o)l < w(lp + @2(€n, Ta)l) < w(4(B + 1)n).
This together with (6.12) and (6.13) yields
0t(n, ) +v <w(4(B+1)n) if n is large enough.
Hence, for n sufficiently large, we have
v < wA(B+1)n) — 20(F — s,) + 4(2n)2 75
Sending n — oo, we get

(6.14) Y S wA(B+ 1)) +20(3 — 1) + 4(2n) 3.
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Choosing a minimum point of the function
(y.8) = 0(y,8) + (@ +aF)lzw =y +alty —sI* +als =3 on Qy
and repeating an argument similar to the above, we get
0> —w(4(8+1)n) — 4(2n)7 +20(5 — )
Subtracting this from (6.14), we obtain
¥ < 2w(4(B + 1)) + 8(2n) 2 F 75,
which gives a contradiction by selecting n > 0 small enough.

Case 2: liminf,_ ., Ay > 0. The argument for Case 2 of the proof of Theorem 4.1
applies to get a contradiction only with obvious modifications caused by the term
alr — y[?*! in the definition of ®,. We leave it to the interested reader to check
the details. (]

The same proposition as Theorem 5.1 holds under our current assumptions.

Theorem 6.8. Let uy € BUC(R). Then there is a unique solution u € C(Q) of
(1.1) such that u(-,0) = ug and v € BUC(Qr) for any 0 < T < 0.

Proof. The uniqueness assertion is a direct consequence of Theorem 6.7.

To prove existence of a solution, we will utilize Theorem 6.6. Hence, we have to
build appropriate sub- and supersolutions of (1.1).

Fix any ¢ > 0. Let A > 0 and observe that for any = € R,

C BpF A 2]+
(B+1)As  B+1

—pT =

and hence

14+ 1
I E ey

—pT + A|‘r|ﬁ+1 > 1
(B+1)A7  B+1

We fix A = A(e) > 0 so large that
Blp|"*7
(B+ 1A%’
and consequently,

26 —pr 4+ Alz|PT > e+ z|?*1 for all z € R.

B+1
Let wp be the modulus of continuity of the function ug. By replacing A by a
larger number if necessary, we may assume that

BA B41
wo(r) <e+ ——r for all r > 0.
() <+ 37 >

We have
uo(z) —uo(y) < e —px —y) + Alz — y|P*t1 for all z,y € R.
We choose a constant C7 > 0 so that |ug(z)| < Cy for all x € R. We set
Ui(z,y,€) = (uo(y) + 26 — plz —y) + A(e)Jz — y/"') N C
for (x,y,¢) € R? x (0, 1). Observe that for all (z,y,¢) € R? x (0, 1),
(6.15) 1(z,z,e) = (up(x) +2e) ACy  and  up(z) < Y1(z,y,e),
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and that for each e € (0, 1), the functions ¥4 (-, y, ¢), with y € R, are equi-Lipschitz
continuous on R.

Let (x,y,¢) € R? x (0, 1) be such that 1 (x,y,e) < C;. As observed before,
setting 15 (¢) = A|€ — y|PT1, there exists a constant Cy > 0 such that

ol +2) < () + (@) + Coltf(a)|'TF 2 for all 2 € B(O, [0h(x)|7).
Hence, if |z] < |p+ ¢1)I($,y,5)|%ﬁ, we have

_1
(616) ¢1 (33 + z,Y, 5) S ’(/}1 ({IJ7 Y, 8) + 1/11,;10(95, Y, 5)Z + 02 |p + wl,w(xv Y, E|1 s 22'
On the other hand, since (-, y, €) is semi-concave, there is a constant C3 > 0 such
that

(6.17) V1(x + 2,9,¢) < Pi(x,y,8) + 1 .(z,y,6)z + C3z® for all z € R,

Note here that the constants Cy, C3 can be chosen independently of y € R. Thus,
applying Lemma 6.3 if 0 < |p + 91 4(x,y,€)] < 1 and and Lemma 6.2 if |p +
1,(x,y,€)| > 1, we find a constant Cy > 0, independent of y, such that

Mlj_[wl(aya‘e)](m”p_'_ wl,l(xvyagﬂ < Cy.

Next, let (x,9,¢) € R? x (0, 1) be such that v (x,y,¢) = C; and ¥1(-,y,¢) is
subdifferentiable at x. Clearly, we have ¢ 4(z,y,e) = 0. If p = 0, then we have
P+ Y1.4(z,y,e) = 0. Assume for the moment that p > 0 and observe that

1

5 P2 if0<z< %,
1
E+(¢1(x+zvy’5)—7#1(%3/75)72)S *5*])2’ if *%<Z<O,
1
— for all z € R.
2
Accordingly, we have
1
619 MG @b+ vl <5 [ I
z >ﬁ
< plllLr B ©.1/101)-

Similarly, we have (6.18) also in the case where p < 0. We may assume by replacing
C3 by a larger number if necessary that if p + 1 5(z,y,€) # 0, then

ng_[wl(a:%g)](l‘)'p_'_ ¢1,z($,y,5)| < C’3-

We now set

where the symbol C5(¢) is used to emphasize the dependence of C3 on €, and observe
that for each (y, ), the function (z,t) — ¢(x,t,y, ) is a supersolution of (1.1).

Now, we define the function f+ € USC(Q,.) by

[Tz, t) = inf{p(x,t,y,€) | (y,e) € R x (01)}.

By a proposition valid for supersolutions analogous to Theorem 6.7, we see that
[T is a supersolution of (1.1). Moreover we observe by (6.15) that for all (z,t,¢) €
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Qo % (0, 1),
[T(x,t) <p(z,t,z,6) = 1 (z,2,8) + Cs(e)t = up(x) + 2¢ + Cs(e)t,
fH(,t) Zuo().

Similarly to the above, we can find a function f~ € USC(Q,,) having the proper-
ties: f~ is a subsolution of (1.1) and

up(x) > f~(x,t) > uo(z) — 26 — C3(e)t  for all (z,t,e) € Q, x (0, 1).
Now, applying Theorem 6.6, with f = f~ and g = fT, we see that there is a
solution u, defined on Q,, of (1.1) such that f~(x,t) < u(z,t) < f*(x,t) for all
(7,t) € Q.. It is clear that u(x,0) = ug(x) for all z € R and u is bounded on Q.

for any 0 < T < o0. Since ug is uniformly continuous on R and |u(x,t) — ug(z)| <
2e + C3(e)t for all (x,t,¢) € Q,, we have
rli%l+ sup{u(z,t) —u(y,s) | lx —y|VtVvs<r}=0.
Using Theorem 6.7, we find that u € C(Q.,). Moreover, we see that for each
0 < T < oo there is a modulus wr such that |u(x,t) — u(y,t)| < wr(|lz —y|) for all
(z,y,t) € R? x [0, T7.
Let 0 < 7 < T < oo. Similarly to the construction of f*, we can build functions

+ starting with wp in place of wp, such that f and f= are super- and subsolutions
of (1.1) in R x (7, 00), respectively, and that for all (z,¢,e) € R x [r, o0) x (0, 1)
and for some constant Cr(e) > 0,

< fH(z,t) <ulz,7) + e+ Cr(e),
u(z,1)
> f(z,t) > u(x,7) —e — Cr(e)(t — 7).
It is now obvious that u € BUC(Qy) for any 0 < T < oo. O
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