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Abstract. We establish general representation formulas for solutions of
Hamilton-Jacobi equations with convex Hamiltonians. In order to treat rep-
resentation formulas on general domains, we introduce a notion of ideal bound-
ary similar to the Martin boundary [Ma] in potential theory. We apply such
representation formulas to investigate maximal solutions, in certain classes of
functions, of Hamilton-Jacobi equations. Part of the results in this paper has
been announced in [Mi].
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1. Introduction and preliminaries
Let Ω be an open connected subset of Rn and H : Ω×Rn → R be a given function.

We consider the Hamilton-Jacobi equation

H(x,Du) = 0 in Ω. (1.1)

In this paper we establish a couple of general representation formulas for solutions of
(1.1), introduce an ideal boundary associated with (1.1) which is analogous to Martin
boundaries in potential theory (see [Ma]), and, as applicatons of our representation
formulas, study maximal solutions of (1.1) having data prescribed on the Aubry set.

Our starting point was to study the formula for solutions of eikonal equations given
in P.-L. Lions [Li], which is stated as follows: let H(x, p) = |p| − f(x), where f ∈
C(Ω), f ≥ 0 in Ω, and f vanishes at a finite number of distinct points x1, ..., xN .
Assume that Ω is bounded and regular enough. Using the notation dH which will be
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defined later in this section, for any α1, ..., αN ∈ R, if |αi − αj | ≤ dH(xi, xj) and
|αi| ≤ dH(x, xi) for all i, j = 1, 2, ..., N and x ∈ ∂Ω, then the function u defined by
u(x) = min{αi + dH(x, xi), dH(x, y) | i = 1, ..., N, y ∈ ∂Ω} is continuous on Ω and is a
(unique) viscosity solution of (1.1) which satisfies u = 0 on ∂Ω and u(xi) = αi for all i.

While investigating the formula, we learned that weak KAM theory (see for instance
[F1, F2, FSi]), developed in the last decade, is partly concerned with representation
formulas for viscosity solutions of Hamilton-Jacobi equations. A typical representation
formula obtained there is stated as follows: if Ω is (replaced by) the torus Rn/Zn or
n-dimensional smooth compact manifold and if H is a convex and coercive Hamiltonian,
then any viscosity solution u of (1.1) can be represented as u(x) = min{u(y)+dH(x, y) |
y ∈ AΩ} for all x ∈ Ω, where AΩ is the Aubry set associated with (1.1), which will be
explained later in this section. We remark that the zeros of f of eikonal equations in
the result mentioned above comprise the Aubry set.

Our representation formulas are more general than those mentioned above in the
sense that the domain Ω may not be either smooth or bounded. The notion of ideal
boundary is useful in this generality, which we develop here. Generally speaking, an
important feature in representation formulas for solutions is to give us an intuition on
the structure of solutions. We employ our representation results, to study maximal
viscosity solutions of (1.1) which take the prescribed values on the Aubry set and the
state constraint problem for (1.1). We are aware of the work [AGW] in which optimal
control problems or Hamilton-Jacobi equations are treated in the viewpoint of ideal
boundaries and max-plus algebra, but our approach is different from [AGW] and it is
not obvious if the results in [AGW] cover some of our main results.

The study of representation of solutions of Hamilton-Jacobi equations has indeed
a long history. As is well-known now, value functions in optimal control and differ-
etial games are (viscosity) solutions of the corresponding dynamic programming (or
Bellman-Isaacs) equations, which means that solutions of Hamilton-Jacobi equations of
the Bellman-Isaacs type can be represented as the value functions of the corresponding
optimal control or differetial games. We refer the reader to [BC, FSo, Li] for general
overviews on optimal control, differential games and Hamilton-Jacobi equations, and
also to [EI, I2] and the references therein for representation formulas for solutions of
Hamilton-Jacobi equations. For the evolution equation of the form ∂u/∂t+H(Dxu) = 0
under certain convexity conditions, such representation formulas in simple forms for so-
lutions u = u(x, t) have been known since [H, K, La, O] and are called as Hopf-Lax
formulas or Hopf-Lax-Oleinik formulas. For recent developments in this direction, we
refer the reader to [ABI] and the references therein.

Some of results in this paper can be extended to Hamilton-Jacobi equations of the
form H(x, u, Du) = 0, where H(x, u, p) is assumed to be nondecreasing in the variable
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u. We shall return to this point in a future work.
Before we proceed our discussions, we give the plan of this paper. In the rest of this

section we give our main assumptions on H, the definitions of dH and the Aubry set
AΩ, and a collection of standard propositions on viscosity solutions which are needed
in this paper. In Section 2 we establish our basic representation formula for viscosity
solutions of (1.1). In Section 3, under a regularity assumption on Ω we give a simple
formula for solutions of the Dirichlet problem for (1.1). Section 4 is devoted to defining
an ideal boundary which is appropriate to (1.1). In Section 5 we give a definition of
“boundary value” of the Dirichlet type on the ideal boundary for solutions of (1.1). We
study maximal solutions of (1.1) having prescribed data on the Aubry set in Section 6
and the state constraint problem for (1.1) in Section 7. In the appendix we prove the
uniform continuity of the functions u on Ω with bounded gradients Du under a mild
regularity condition on Ω.

Part of the results in this paper has been announced in [Mi].
Now, let SH (resp., S+

H or S−H) denote the space of continuous viscosity solutions
(resp., viscosity supersolutions or viscosity subsolutions) of (1.1). If necessary, we write
SH(Ω) and S±H(Ω) for SH and S±H , respectively, in order to refer the domain Ω under
consideration. We note that u + c ∈ SH (resp., u + c ∈ S±H) for all (u, c) ∈ SH × R
(resp., (u, c) ∈ S±H ×R).

We will make the following assumptions.
(A1) H ∈ C(Ω×Rn).
(A2) For each x ∈ Ω the function: p 7→ H(x, p) is convex on Rn.
(A3) For each compact subset K ⊂ Ω, there exists a constant RK > 0 such that

H(x, p) > 0 for all (x, p) ∈ K × (Rn \B(0, RK)).
(A4) S−H(Ω) 6= ∅.

When the Hamiltonian H satisfies (A3) (resp., (A2)), we say that H is coercive (resp.,
convex). The coercivity assumption (A3) is adapted in this paper to guarantee that any
family of viscosity subsolutions of (1.1) is equi-Lipschitz continuous on compact subsets
of Ω. Indeed, by strengthening the continuity of H(x, p) in x (for instance, assuming
that |H(x, p)−H(y, p)| ≤ C|x− y|(|p|+ 1) for all x, y ∈ Ω, p ∈ Rn and some constant
C > 0), we may replace (A3) by a weaker condition on H which guarantees the local
equi-continuity of any family of viscosity subsolutions of (1.1).

We recall some of standard propositions on viscosity solutions. For general references
on these results and their proofs, we refer the reader to [B, BCD, CIL].

Proposition 1.1. Assume that (A1) and (A3) hold. For each compact K ⊂ Ω there is
a constant CK > 0 depending only on K and H such that |v(x)− v(y)| ≤ CK |x− y| for
all v ∈ S−H and x, y ∈ K.
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In the above assertion, if K is convex, then we may choose RK from (A3) as a
Lipschitz constant CK for v ∈ S−H .

Proposition 1.2. Assume that (A1) holds. Let S ⊂ S−H (resp., S ⊂ S+
H) and set

u(x) = sup{v(x) | v ∈ S} (resp., u(x) = inf{v(x) | v ∈ S}) for x ∈ Ω. Suppose that
u ∈ C(Ω). Then u ∈ S−H (resp., u ∈ S+

H).

Proposition 1.3. Assume that (A1)–(A3) hold. Let S ⊂ S−H and set u(x) = inf{v(x) |
v ∈ S} for x ∈ Ω. Assume that u(x) ∈ R for some x ∈ Ω. Then u ∈ S−H . If, in
addition, S ⊂ SH , then u ∈ SH .

The following comment may be useful to see that Proposition 1.3 is a consequence
of Proposition 1.2: by the theory of semicontinuous viscosity solutions due to Barron-
Jensen (see [BJ, B, I3, BCD]), we have v ∈ S−H if and only if H(x, p) ≤ 0 for any x ∈ Ω
and p ∈ D−v(x), and therefore, v ∈ S−H if and only if v ∈ S+

−H .
For any u ∈ C(Ω) and y ∈ Ω, D+u(y) (resp., D−u(y)) denotes the superdifferential

(resp., subdifferential) of u at y. Let B(a, r) stand for the closed ball of radius r and
with center at a ∈ Rn.

In what follows we always assume that (A1)–(A4) hold. Following [FSi] with small
variations, we will introduce the Aubry set for the Hamiltonian H. We define the
function dH : Ω× Ω → R by

dH(x, y) = sup{v(x)− v(y) | v ∈ S−H}.

To see that dH is well-defined, we set S = {v − v(y) | v ∈ S−H} and note that, due to
(A4) and Proposition 1.1, S is a nonempty, locally equi-Lipschitz continuous family of
functions on Ω. Note also that φ(y) = 0 for all φ ∈ S and Ω is connected. Therefore,
thanks to the Ascoli-Arzela theorem, S is precompact in C(Ω). Thus, the function dH

is a continuous function on Ω×Ω and satisfies dH(x, x) = 0 for all x ∈ Ω. Furthermore,
by definition, we have u(x)− u(y) ≤ dH(x, y) for all u ∈ S−H and x, y ∈ Ω.

Now, we fix any y ∈ Ω and set u(x) = dH(x, y) for x ∈ Ω. We see by Propositions
1.1 and 1.2 that u is locally Lipschitz continuous on Ω and u ∈ S−H . We argue as
in the proof of Perron’s method for viscosity solutions (see [B, BCD, CIL]), to find
that u ∈ SH(Ω \ {y}). Next, we note by the definition of dH that u(x) − u(y) =
u(x) − u(z) + u(z) − u(y) ≤ dH(x, z) + dH(x, z) for all u ∈ S−H and x, y, z ∈ Ω, to
conclude that dH(x, y) ≤ dH(x, z) + dH(z, y) for all x, y, z ∈ Ω. In particular, we see
that dH is locally Lipschitz continuous on Ω × Ω. The following theorem summarizes
these observations.

Theorem 1.4. (a) dH(x, x) = 0 for all x ∈ Ω and dH is locally Lipschitz continuous on
Ω×Ω. (b) u(x)−u(y) ≤ dH(x, y) for all u ∈ S−H and x, y ∈ Ω. (c) dH(·, y) ∈ S−H(Ω) for
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all y ∈ Ω. (d) dH(·, y) ∈ SH(Ω \ {y}) for all y ∈ Ω. (e) dH(x, y) ≤ dH(x, z)+ dH(z, y)
for all x, y, z ∈ Ω.

Now, we define the (projected) Aubry set AΩ for the Hamiltonian H by

AΩ = {y ∈ Ω | dH(·, y) ∈ SH(Ω)}.

We note that AΩ is a closed subset of Ω. Indeed, let {yj}j∈N ⊂ AΩ be a sequence
converging to y ∈ Ω. By the continuity of dH (Theorem 1.4, (a)) and the stability of
the viscosity property under uniform convergence, we see that dH(·, y) ∈ SH(Ω) and
conclude that y ∈ AΩ and that AΩ is a closed subset of Ω. We write Ω0 = Ω \ AΩ in
what follows. Notice that it may happen that Ω0 = ∅.
Theorem 1.5. Let K ⊂ Ω0 be a compact set and u ∈ C(K). Set U = intK. Assume
that u ≤ v on ∂K and that u ∈ S−H(U) and v ∈ S+

H(U). Then u ≤ v in K.

Outline of proof. Since K ∩ AΩ = ∅, for each z ∈ K we may choose a constant
rz > 0 and a function ϕz ∈ C1(Ω) such that B(z, rz) ⊂ Ω0, H(x,Dϕz(x)) < 0 for
all x ∈ B(z, rz), ϕz(z) > 0 = dH(z, z), and ϕz(x) < dH(x, z) for all x ∈ Ω \ B(z, rz).
For each z ∈ K, we set ψz(x) = max{dH(x, z), ϕz(x)} for x ∈ Ω and observe that
ψz ∈ S−H(Ω) and that H(x,Dψz(x)) < 0 in a neighborhood Vz of z in the classical sense.
By the compactness of K, there is a finite sequence {zj}J

j=1 such that K ⊂ ⋃J
j=1 Vzj .

We define the function ψ ∈ C(Ω) by ψ(x) = 1
J

∑J
j=1 ψzj (x) and observe by convexity

(A2) that ψ ∈ S−H+δ(V ) for some neighborhood V of K and some constant δ > 0.
Regularizing ψ by mollification, if necessary, we may assume that ψ ∈ C1(V ). In view
of Proposition 1.1, we may apply the classical comparison result (see e.g. [I1]), to
conclude that u ≤ v in K.

The convexity and covering arguments in the above proof are already classical in
weak KAM theory, which we refer to the proofs of Theorem 3.3 or Proposition 6.1 in
[FSi].

We give a variational formula for the function dH . We write L for the the Lagrangian
of H, i.e., the function on Ω×Rn defined by

L(x, ξ) = sup{ξ · p−H(x, p) | p ∈ Rn},

where ξ · p stands for the Euclidean inner product of ξ, p ∈ Rn. Let C(x, t; y, 0) denote
the set of all absolutely continuous functions γ : [0, t] → Ω such that γ(t) = x and
γ(0) = y.

Proposition 1.6. Let x, y ∈ Ω. Then

dH(x, y) = inf
{∫ t

0

L(γ(s), γ̇(s)) ds
∣∣∣ t > 0, γ ∈ C(x, t; y, 0)

}
.
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For a proof we refer the reader to [I4, L, BCD]. Finally, we refer the reader to [FSi,
F1, F2, I4] and the references therein for general properties of Aubry sets, weak KAM
theory, and related topics.

2. A representation formula
We begin with

Lemma 2.1. Let {(yj , cj)}j∈N ⊂ Ω0×R and φ ∈ C(Ω). Assume that dH(·, yj)+cj → φ

in C(Ω) as j →∞. Then the following three conditions are equivalent:
(a) φ 6∈ SH .
(b) φ = dH(·, y) + c for some (y, c) ∈ Ω0 ×R.
(c) {yj}j∈N has a subsequence converging to a point in Ω0.

Proof. We first prove that (c) implies (b). For this, we assume that there is a subse-
quence {yjk

}k∈N of {yj} converging to a point y0 ∈ Ω0. By Theorem 1.4, (a), the func-
tion dH is continuous on Ω×Ω. Therefore, we have limk→∞ cjk

= limk→∞(dH(y0, yjk
)+

cjk
) = φ(y0) and moreover φ(x) = limk→∞(dH(x, yjk

) + cjk
) = dH(x, y0) + φ(y0) for all

x ∈ Ω. Thus we see that (c) implies (b). Next, we see immediately from the definition
of Ω0 and AΩ that (b) implies (a).

Lastly, we prove that (a) implies (c). We suppose that (c) does not hold, and show
that (a) does not hold, i.e., φ ∈ SH . There are three possible cases. The first case is
when |yj | → ∞ as j → ∞. Fix any open bounded subset U of Ω such that U ⊂ Ω.
If j ∈ N is large enough, then yj ∈ Ω0 \ U and hence dH(·, yj) + cj ∈ SH(U). By the
stability of the viscosity property under uniform convergence, we see that φ ∈ SH(U).
Because of the arbitrariness of the choice of U , we find that φ ∈ SH(Ω). In other cases,
there is a subsequence of {yj} converging a point y0 ∈ ∂Ω0. Note that ∂Ω0 ⊂ AΩ ∪ ∂Ω.
The second case is when y0 ∈ ∂Ω. The argument for the first case applies to this case,
to conclude that φ ∈ SH . The third case is when y ∈ AΩ. By the continuity of dH , we
find that φ = dH(·, y0) + c for some c ∈ R and hence φ ∈ SH . Thus we always have
φ ∈ SH .

We set D0 = {dH(·, y) + c | (y, c) ∈ Ω0 ×R} and B0 = D0 ∩ SH , where D0 denotes
the closure of D0 in C(Ω), i.e., in the topology of locally uniform convergence on Ω.

Proposition 2.2. We have B0 = D0 \ D0.

Proof. Since SH ∩ D0 = ∅, it is clear that B0 ⊂ D0 \ D0. On the other hand, if
φ ∈ D0 \ D0, then, by Lemma 2.1, we have φ ∈ SH . Therefore, D0 \ D0 ⊂ B0.

We set B = B0 ∪ {dH(·, y) | y ∈ AΩ}. Note that B ⊂ SH . We are now in position to
state one of our main results.
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Theorem 2.3. Let u ∈ SH . Then

u(x) = inf{φ(x) + sup
Ω

(u− φ) | φ ∈ B} for all x ∈ Ω. (2.1)

We remark here that it may happen that supΩ(u−φ) = ∞ for some φ ∈ B in formula
(2.1).

Proof. Let v denote the function given by the right hand side of (2.1), and we first
observe that u(x) ≤ v(x) for all x ∈ Ω.

Next, we show that the reversed inequality u ≥ v holds. We choose a sequence
{Ωj}j∈N of bounded open subsets of Ω0 such that Ωj ⊂ Ωj+1 for all j ∈ N, and⋃

j∈N Ωj = Ω0. We define the functions vj ∈ C(Ω), with j ∈ N, by

vj(x) = inf{dH(x, y) + u(y) | y ∈ ∂Ωj}.
In view of Theorem 1.4, (d) and Proposition 1.3, we see that vj ∈ SH(Ω \∂Ωj)∩S−H(Ω)
for all j ∈ N. By the definition of dH , we have u(x) ≤ dH(x, y) + u(y) for all x, y ∈ Ω
and hence u(x) ≤ vj(x) for all x ∈ Ω and j ∈ N. It is clear by the definition of vj that
vj(x) ≤ u(x) for all x ∈ ∂Ωj and j ∈ N. Consequently, we have u = vj on ∂Ωj for all
j ∈ N. Using Theorem 1.5, we see that vj = u in Ωj for all j ∈ N.

Now, we fix any y ∈ Ω. Consider first the case when y ∈ Ω0. We may assume by
reselecting {Ωj} if necessary that y ∈ Ω1. By the above observation, we may choose
a sequence {yj}j∈N ⊂ Ω0 such that yj ∈ ∂Ωj and u(y) = u(yj) + dH(y, yj) for all
j ∈ N. Proposition 1.1 assures that the sequence {dH(·, yj) + u(yj)} is locally equi-
Lipschitz continuous on compact subsets of Ω. Thus, noting that all the members
of this sequence have the value u(y) at y and that Ω is connected, we see that the
sequence is precompact in C(Ω). Therefore we may assume by replacing the sequence
by its subsequence if necessary that it converges in C(Ω) to a function φ ∈ C(Ω). By
Lemma 2.1, we have φ ∈ SH and moreover φ ∈ B0. It is clear that φ(y) = u(y). Since
u(x) ≤ u(yj) + dH(x, yj) for all x ∈ Ω and j ∈ N, we have u(x) ≤ φ(x) for all x ∈ Ω.
Accordingly, we have u(y) = φ(y) = φ(y) + supΩ(u−φ) and conclude that u(y) ≥ v(y).

We next consider the case when y ∈ AΩ. We have dH(·, y) ∈ B and dH(y, y) +
supΩ(u− dH(·, y)) = u(y). From these we get u(y) ≥ v(y), and we finish the proof.

3. The Dirichlet problem
In this section we are concerned with the Dirichlet problem for (1.1).
We assume throughout this section that Ω is bounded and the following condition

is satisfied.
(A5) The function dH is uniformly continuous on Ω× Ω.

Condition (A5) guarantees that dH can be extended uniquely to a function on the
closure Ω× Ω by continuity. We may thus assume that dH ∈ C(Ω× Ω).
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We pause for a while to discuss condition (A5). To this end, we introduce a coercivity
condition on H.

(A3′) There exists an R > 0 such that H(x, p) > 0 for all (x, p) ∈ Ω× (Rn \B(0, R)).

This ensures that for any u ∈ S−H , we have |Du| ≤ R in Ω in the viscosity sense.
This inequality in the viscosity sense is equivalent to the fact that u is locally Lipschitz
continuous in Ω and |Du| ≤ R a.e. in Ω. A remark here is that a sufficient condition for
(A5) to hold is the condition that there is a modulus ω such that for any function u ∈
C(Ω) such that |Du| ≤ R in Ω in the viscosity sense, we have |u(x)−u(y)| ≤ ω(|x− y|)
for all x, y ∈ Ω. Indeed, under this hypothesis, we have

|dH(x, y)| ≤ ω(|x− y|) for all x, y ∈ Ω,

and moreover, by the triangle inequality applied twice,

dH(x, y)− dH(x′, y′) ≤ dH(x, x′) + dH(x′, y′) + dH(y′, y)− dH(x′, y′)

≤ω(|x− x′|) + ω(|y − y′|) for all x, y, x′, y′ ∈ Ω,

which shows the uniform continuity of dH on Ω × Ω. Here and henceforth we call a
function ω ∈ C([0,∞)) a modulus if it is nondecreasing and vanishes at the origin 0.

A typical case where (A5) holds is given as follows. In addition to the boundedness
of Ω and the coercivity (A3′) on H, let us assume that ∂Ω is locally represented as the
graph of a continuous function, i.e,

(A6) for each z ∈ ∂Ω there are neighborhoods U and V of z, a C1-diffeomorphism
Φ : U → V , and a function b ∈ C(Rn−1) such that

Φ(Ω ∩ U) = {(x′, xn) ∈ Rn−1 ×R | xn > b(x′)} ∩ V.

Indeed, it is not hard to check (see Proposition A.1 in the appendix for the details)
that the functions dH(·, y), with y ∈ Ω, are uniformly continuous on Ω with a common
modulus of continuity ω, and consequently, condition (A5) holds.

We now return to our main theme.

Theorem 3.1. Let u ∈ SH(Ω). Then u can be extended uniquely to a function on Ω
by continuity and satisfies as a continuous function on Ω

u(x) = min{dH(x, y) + u(y) | y ∈ AΩ ∪ ∂Ω0} for all x ∈ Ω. (3.1)

Proof. Let ω be a modulus of continuity of dH . Noting that u(x)− u(y) ≤ dH(x, y) =
dH(x, y)− dH(y, y) ≤ ω(|x− y|) for all x, y ∈ Ω, we find that u is uniformly continuous
on Ω and hence it can be extended uniquely to a function on Ω by continuity.

It is easy to see that D0 = {dH(·, y) + c | (y, c) ∈ Ω0 × R}, and therefore, by
Proposition 2.2, that B0 = {dH(·, y)+c | (y, c) ∈ ∂Ω0×R}. Since u(x)−u(y) ≤ dH(x, y)
for all x, y ∈ Ω, we see that supΩ(u− dH(·, y)) = u(y) for all y ∈ Ω. Theorem 2.3 now
ensures that (3.1) holds.
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Next, we assume that
AΩ = ∅ (3.2)

and let g ∈ C(∂Ω). We consider the Dirichlet problem

H(x,Du) = 0 in Ω, (3.3)

u = g on ∂Ω. (3.4)

If u ∈ C(Ω) is a solution of (3.3) and (3.4), i.e., u ∈ SH and it satisfies (3.4)
pointwise, then we have

g(x)− g(y) = u(x)− u(y) ≤ dH(x, y) for all x, y ∈ ∂Ω.

This is a necessary condition for the solvability of (3.3) and (3.4). Indeed, we have

Theorem 3.2. Assume that (3.2) holds and that g ∈ C(∂Ω) satisfies

g(x)− g(y) ≤ dH(x, y) for all x, y ∈ ∂Ω. (3.5)

Then the function u on Ω defined by

u(x) = min{g(y) + dH(x, y) | y ∈ ∂Ω} (3.6)

is continuous and satisfies (3.3) in the viscosity sense and (3.4) pointwise.

We note in view of Theorems 3.1 and 3.2 and (3.2) that the function u given by
(3.6) is a unique solution of (3.3) and (3.4). We refer the reader to Theorem 5.3, vi) of
[Li] for a classical result similar to the above.

Proof. The family {g(y)+dH(·, y) | y ∈ ∂Ω} is uniformly bounded and equi-continuous
on Ω. Therefore, u is a continuous function on Ω. It follows from Proposition 1.3 that
u ∈ SH . It is clear by the definition of u that u(x) ≤ g(x) for all x ∈ ∂Ω. On the other
hand, by (3.5) we have g(x) ≤ u(x) for all x ∈ ∂Ω. Thus we see that u satisfies (3.4)
pointwise.

Without assumption (3.2), in view of Theorem 3.1, a natural boundary-interior value
problem is as follows. Let g ∈ C(AΩ ∪ ∂Ω0) and consider the problem

H(x, Du) = 0 in Ω, (3.7)

u = g on AΩ ∪ ∂Ω0. (3.8)

Theorem 3.3. Let g satisfy

g(x)− g(y) ≤ dH(x, y) for all x, y ∈ AΩ ∪ ∂Ω0. (3.9)
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Then the function u on Ω given by

u(x) = min{g(y) + dH(x, y) | y ∈ AΩ ∪ ∂Ω0}
is continuous and is a unique solution of (3.7) and (3.8).

In the above theorem we mean by a solution of (3.7) and (3.8) a function u ∈ SH

which satisfies (3.8) pointwise. The proof of the above theorem is similar to that of
the previous theorem, and we omit giving it here. The above theorem generalizes the
representation formula mentioned in the introduction (Proposition 5.4 of [Li]). See also
Theorem 6.7 of [FSi] for a previous result on the torus.

4. Ideal boundary
In this section we give a couple of observations analogous to those in the theory of

Martin boundaries (see [Ma]) in potential theory. We will be concerned with an ideal
boundary of Ω0 rather than those of Ω. The quotient set B0/R will be interpreted as
our ideal boundary of Ω0 as we will see in what follows.

In view of the fact that our equation H(x, Du(x)) = 0 depends on u only
through the gradient Du, it is natural to introduce the quotient space C(Ω)/R. Let
π : C(Ω) → C(Ω)/R denote the projection defined by φ 7→ {φ + c | c ∈ R}. Let ρ

be a standard distance on C(Ω) and ρπ the distance on C(Ω)/R induced by ρ, i.e.,
ρπ(ξ, η) := inf{ρ(φ, ψ) | φ ∈ ξ, ψ ∈ η}. For instance, we may choose ρ to be the one
defined by

ρ(φ, ψ) =
∑

k∈N

1
2k

supUk
|φ− ψ|

1 + supUk
|φ− ψ| ,

where the sequence {Uk}k∈N ⊂ Ω is chosen so that each Uk is a bounded open subset
of Ω, Uk ⊂ Uk+1 for all k ∈ N, and

⋃
k∈N Uk = Ω. We define the mapping dπ :

Ω → C(Ω)/R by setting dπ(y) = π(dH(·, y)). It follows from Theorem 1.4, (a) that
dπ : (Ω, ρE) → (C(Ω)/R, ρπ) is continuous, where ρE denotes the Euclidean distance
on Rn, i.e., ρE(x, y) = |x− y| for x, y ∈ Rn.

Lemma 4.1. Let y, z ∈ Ω. Then the following three conditions are equivalent:
(a) dπ(y) = dπ(z). (b) dH(y, z) + dH(z, y) = 0. (c) dH(·, y) = dH(·, z) + dH(z, y).

Proof. Assume that dπ(y) = dπ(z). We may choose a constant c ∈ R such that
dH(x, y)−dH(x, z) = c for all x ∈ Ω. This implies that dH(z, y) = c and dH(y, z) = −c,
from which dH(y, z) + dH(z, y) = 0. Next, we assume that dH(y, z) + dH(z, y) = 0.
Then, for any x ∈ Ω, applying the triangle inequality twice, we get

dH(x, y) ≤ dH(x, z) + dH(z, y) ≤ dH(x, y) + dH(y, z) + dH(z, y) = dH(x, y),

which shows that for any x ∈ Ω, dH(x, y) = dH(x, z) + dH(z, y). Finally, if dH(x, y) =
dH(x, z) + dH(z, y) for all x ∈ Ω, then we get immediately dπ(y) = dπ(z).
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Lemma 4.2. The mapping dπ : Ω0 → C(Ω)/R is injective.

Proof. Let y, z ∈ Ω0 be such that y 6= z. We argue by contradiction and therefore
suppose that dπ(y) = dπ(z). By Lemma 4.1, we have dH(·, y) = dH(·, z) + dH(z, y). In
view of Theorem 1.4, (d), we see that dH(·, y) ∈ SH(Ω\{y}) and dH(·, z) ∈ SH(Ω\{z}).
Therefore, we have dH(·, y) = dH(·, z)+dH(z, y) ∈ SH(Ω\{y})∩SH(Ω\{z}) = SH(Ω),
which implies that y, z ∈ AΩ. This contradiction proves that dπ(y) 6= dπ(z).

Let us introduce the distance ρ0 on Ω0 by setting ρ0(x, y) = ρπ(dπ(x), dπ(y)).

Proposition 4.3. The bijection: x 7→ x is a homeomorphism from (Ω0, ρE) to
(Ω0, ρ0).

Proof. Let {xj}j∈N ⊂ Ω0 and x0 ∈ Ω0. Observe first that if ρE(xj , x0) → 0 as j →∞,
then, by Theorem 1.4, (a), we have

ρ0(xj , x0) ≤ ρ(dH(·, xj), dH(·, x0)) → 0 as j →∞.

Next, assume that ρ0(xj , x0) → 0 as j → ∞, from which we see that ρ(dH(·, xj) +
cj , dH(·, x0)) → 0 as j →∞ for some sequence {cj} ⊂ R. We suppose that ρE(xj , x0) 6→
0 as j → ∞. By passing to a subsequence, we may assume that ρE(xj , x0) ≥ δ for all
j ∈ N and some constant δ > 0, which assures that dH(·, xj) ∈ SH(Ω ∩ intB(x0, δ))
for all j ∈ N. By the stability of the viscosity property, we see that dH(·, x0) ∈
SH(Ω ∩ intB(x0, δ)) and therefore x0 ∈ AΩ, which is a contradiction. Thus we must
have ρE(xj , x0) → 0 as j →∞, and we finish the proof.

Let (Ω̂0, ρ0) denote the completion of (Ω0, ρ0). Let D0/R denote the closure of
D0/R in the complete metric space (C(Ω)/R, ρπ). It follows from Lemma 4.2 and the
definition of ρ0 that dπ : (Ω0, ρ0) → (D0/R, ρπ) is isometric. Therefore, dπ can be
extended uniquely to an isometric homeomorphism dπ : (Ω̂0, ρ0) → (D0/R, ρπ).

Proposition 4.4. The set (Ω̂0, ρ0) is compact.

Proof. Since dπ : (Ω̂0, ρ0) → (D0/R, ρπ) is isometric, it is enough to show that D0/R is
compact. We pick a point z ∈ Ω and observe by Proposition 1.1 and the connectedness
of Ω that the family Dz := {dH(·, y)− dH(z, y) | y ∈ Ω0} is precompact in C(Ω), which
guarantees that D0/R is compact.

Proposition 4.5. Ω0 is an open subset of Ω̂0.

Proof. Since dπ : (Ω̂0, ρ0) → (D0/R, ρπ) is isometric, it is enough to show that D0/R
is an open subset of (D0/R, ρπ). Recalling that B0 = D0 \ D0 by Proposition 2.2, we
need only to show that for each x ∈ Ω0,

inf{ρπ(dπ(x), π(φ)) | φ ∈ B0} > 0.
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But, if this is not the case, we find a point x0 ∈ Ω0 and sequences {φj}j∈N ⊂ B0 and
{cj}j∈N ⊂ R such that ρ(dH(·, x0), φj + cj) → 0 as j →∞, and, by the stability of the
viscosity property, we deduce that dH(·, x0) ∈ SH , which is a contradiction. The proof
is complete.

We set ∆0 = Ω̂0\Ω0. This set ∆0 is the ideal boundary of Ω0 which we are concerned
with in this paper. According to Propositions 4.4 and 4.5, Ω̂0 is a compactification of
Ω0 and ∆0 is the boundary of the open subset Ω0 of Ω̂0. By the definition of ∆0 and
the fact that B0 = D0 \ D0, for each y ∈ ∆0 there corresponds a φ ∈ B0, unique up to
an additive constant, and conversely for each φ ∈ B0 so does a unique y ∈ ∆0 such that
for any {yj}j∈N ⊂ Ω0, yj → y in Ω̂0 if and only if dH(·, yj) + cj → φ in C(Ω) for some
{cj} ⊂ R as j →∞.

A few remarks are in order: the inclusion “∂Ω0 ⊂ ∆0” holds in the sense that for
each z ∈ ∂Ω0 there exist y ∈ ∆0 and a sequence {yj} ⊂ Ω0 such that yj → y in Ω̂0 and
yj → z in Rn as j →∞. Next, if AΩ 6= ∅ and Ω0 6= ∅, then AΩ and ∆0 have a nonempty
intersection in the sense that dπ(AΩ) ∩ dπ(∆0) 6= ∅. Indeed, since Ω is connected, we
easily deduce that there is a sequence {yj} ⊂ Ω0 such that yj → y in Ω as j → ∞ for
some y ∈ AΩ. It is then clear that π(dH(·, y)) ∈ dπ(AΩ) ∩ dπ(∆0). In what follows we
use the notation ∆A := {y ∈ ∆0 | dπ(y) ∈ dπ(AΩ)}. The following example shows that
the inclusion “AΩ ⊂ ∆0” does not hold in general.

Example 4.1. Let n = 1 and Ω = R. Consider the Hamiltonian H ∈ C(R2) defined
by H(x, p) = (|p| − 1)+ − x+, where r+ denotes the positive part, max{r, 0}, of r ∈ R.
It is easy to see that the function dH is given by

dH(x, y) =
∣∣∣∣
∫ x

y

(1 + t+) dt

∣∣∣∣ .

By checking the viscosity property of dH , it is not hard to see that AΩ = (−∞, 0], that
π(dH(·, y)) 6= π(dH(·, z)) for any y, z ∈ R, with y 6= z, and that dπ(∆0) has only two
elements π(dH(·, 0)) and π(φ), where φ is the function on R given by

φ(x) := −
∫ x

0

(1 + t+) dt = lim
y→∞

(dH(x, y)− dH(0, y)).

Thus we conclude that π(dH(·, y)) 6∈ dπ(∆0) for all y ∈ (−∞, 0) ≡ AΩ \ {0}.

5. The boundary data on the ideal boundary
In this section we intend to define the Dirichlet boundary value in a broad sense on

the ideal boundary for each u ∈ SH . Let y ∈ ∆0. We call it a proper boundary point of
Ω0 if there exists a sequence {yj}j∈N ⊂ Ω0 such that for any φ ∈ dπ(y),

φ(yj) + dH(·, yj) → φ in C(Ω) as j →∞. (5.1)
We see easily that for such a {yj}, we have yj → y in (Ω̂0, ρ0) as j →∞. We denote by
∆∗

0 the set of the proper boundary points of Ω0. We set B∗0 = {φ ∈ B0 | π(φ) ∈ dπ(∆∗
0)}

and B∗ = B∗0 ∪ {dH(·, y) | y ∈ AΩ}.
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Remark. The authors do not know if ∆∗
0 = ∆0 in general.

The following theorem is a (possibly refined) version of Theorem 2.3.

Theorem 5.1. Let u ∈ SH . Then

u(x) = min{φ(x) + sup
Ω

(u− φ) | φ ∈ B∗} for all x ∈ Ω. (5.2)

We formulate the main part of the proof of the above theorem as a lemma.

Lemma 5.2. Let (u, y0) ∈ SH×Ω0. Then there exist a function φ ∈ B0 and a sequence
{yj}j∈N ⊂ Ω0 such that

u(yj) = dH(yj , yk) + u(yk) for all j, k ∈ {0} ∪N satisfying j ≤ k, (5.3)

dH(·, yj) + u(yj) → φ in C(Ω) as j →∞. (5.4)

The following proof is similar to that of Theorem 2.3.

Proof. We choose a sequence {Ωj}j∈N of bounded open subsets of Ω0 such that y0 ∈
Ω1, Ωj ⊂ Ωj+1 for all j ∈ N, and

⋃
j∈N Ωj = Ω0, and define the functions vj ∈ C(Ω),

with j ∈ N, by
vj(x) = inf{dH(x, y) + u(y) | y ∈ ∂Ωj}.

We know by the proof of Theorem 2.3 that vj = u in Ωj for all j ∈ N.
We choose inductively a point yj ∈ ∂Ωj for each j ∈ N so that vj(yj−1) =

dH(yj−1, yj) + u(yj). Since yj−1 ∈ Ωj , we have

u(yj−1) = vj(yj−1) = dH(yj−1, yj) + u(yj) for all j ∈ N. (5.5)

To see that (5.3) holds, let j, k ∈ {0}∪N satisfy j ≤ k. If j = k, then (5.3) is obviously
satisfied. Assume instead that j < k. Using (5.5), we get

u(yj) =
k∑

m=j+1

dH(ym−1, ym) + u(yk) ≥ dH(yj , yk) + u(yk).

On the other hand, we have u(yj) ≤ dH(yj , yk)+u(yk) for all j, k, and we conclude that
(5.3) holds.

Now set φj = dH(·, yj) + u(yj) for j ∈ N and observe that the family {φj}j∈N

is precompact in C(Ω). Thus, passing to a subsequence of {yj} if necessary, we may
assume that {φj} converges in C(Ω) to a function φ ∈ C(Ω) as j →∞.

Noting that {yj} does not have a subsequence converging to a point y ∈ Ω0, we see
by Lemma 2.1 that φ ∈ SH . It is clear that φ ∈ D0. Thus we conclude that φ ∈ B0.
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Remark. The sequence {yj} in the above proof can be regarded as a discrete version
of etremal curve for the solution u (see for instance [I4]).

Outline of proof of Theorem 5.1. Let v denote the function on Ω defined by the
right hand side of (5.2). Clearly we have u(x) ≤ v(x) for all x ∈ Ω. Fix any y0 ∈ Ω
and show that u(y0) ≥ v(y0). As in the proof of Theorem 2.3, if y0 ∈ AΩ, then we have
u(y0) = dH(y0, y0) + supΩ(u − dH(·, y0)) ≥ v(y0). Next assume that y0 ∈ Ω0 and let
φ ∈ B0 and {yj} be as in Lemma 5.2. From (5.3) and (5.4) we see that u(yj) = φ(yj) for
all j ∈ N ∪ {0}. Therefore, by (5.4), we have φ ∈ B∗0 . Since u ≤ dH(·, yj) + u(yj) on Ω
for all j ∈ N, we get u ≤ φ on Ω. Hence we obtain u(y0) = φ(y0) = φ(y0)+ supΩ(u−φ)
and consequently u(y0) ≥ v(y0). The proof is now complete.

Lemma 5.3. Let u ∈ S−H(Ω), y ∈ ∆∗
0, and φ ∈ dπ(y). Then

sup
Ω

(u− φ) = lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r}. (5.6)

Proof. We choose a sequence {yj}j∈N ⊂ Ω0 so that φ(yj) + dH(·, yj) → φ in C(Ω) as
j →∞. Observe that for any x ∈ Ω and j ∈ N,

(u− φ)(x) ≤ u(yj) + dH(x, yj)− φ(x) = (u− φ)(yj) + φ(yj) + dH(x, yj)− φ(x),

and hence

(u− φ)(x) ≤ lim inf
j→∞

(u− φ)(yj) ≤ lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r}.
Consequently we get

sup
Ω

(u− φ) ≤ lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r}.
On the other hand, it is clear that

sup
Ω

(u− φ) ≥ lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r}.
Thus we see that (5.6) is valid.

Let u ∈ SH(Ω) and y ∈ ∆∗
0. The value given by

lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r}
for φ ∈ dπ(y) represents somehow the behavior of u near the proper boundary point y

of Ω0. This value depends on the choice of φ ∈ dπ(y). We introduce the function g(u, y)
on Ω given by

g(u, y)(x) = φ(x) + lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r},
which does not depend on the choice of φ ∈ dπ(y). We remark that the value g(u, y)(x)
can be infinity for all x ∈ Ω and for some (u, y) ∈ SH × ∆∗

0. We regard this function
g(u, y) as the boundary data of u at the proper boundary point y. We set g(u, y) :=
dH(·, y) + u(y) ≡ dH(·, y) + limΩ3x→y(u(x)− dH(x, y)) for (u, y) ∈ SH ×AΩ. Then we
have the following theorem as a corollary of Theorem 5.1 and Lemma 5.3.
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Theorem 5.4. Let u ∈ SH . Then

u(x) = min{g(u, y)(x) | y ∈ ∆∗
0 ∪ AΩ} for x ∈ Ω.

In the definition of proper boundary points, condition (5.1) is assumed to hold for a
sequence {yj}, but not for all the sequences {yj} such that yj → y as j →∞. Example
5.1 below is concerned with this point.

Example 5.1. Let Ω = R2 and let U denote the open disc with radius 1/4 and center
at the origin. Let H(x, p) = |p| − f(x), where f is the function given by

f(x) = max
k∈Z

f0(x− ke1), with f0(x) = dist (x,R2 \ U),

and e1 := (1, 0) ∈ R2. Define the function φ on Ω by φ = 1
2f2. It is not hard to

see that φ is a viscosity solution of H(x,Dφ) = 0 in Ω and that dH(·, y) = φ for all
y ∈ Ω \⋃

k∈Z(ke1 + U) and AΩ = Ω \⋃
k∈Z(ke1 + U). Also, it is easily seen that for

any k ∈ Z,

dH(x, ke1) =

{
φ(0)− φ(x) if x ∈ ke1 + U,

φ(0) + φ(x) otherwise.

For j ∈ N we put yj = ( 1
4 − 1

4j )e1 ∈ U and zj = je1. Then yj , zj ∈ Ω0 := Ω \ AΩ

for all j ∈ N. Observe that dH(·, yj) → dH(·, 1
4e1) = φ and dH(·, zj) → φ(0) + φ

in C(Ω) as j → ∞ and consequently that yj → y and zj → y for the point y ∈ ∆0

which is characterized by φ ∈ dπ(y) as j → ∞. Noting that φ(yj) + dH(·, yj) →
φ( 1

4e1) + dH(·, 1
4e1) = φ in C(Ω) as j → ∞, we see that y ∈ ∆∗

0. However, we have
φ(zj) + dH(·, zj) = φ(0) + dH(·, zj) → 2φ(0) + φ in C(Ω) as j →∞ and 2φ(0) + φ 6= φ.

The next example describes a very typical situation in which the classical Dirichlet
data do not make sense.

Example 5.2. Let Ω = {x ∈ R2 | x2
1 + x2

2 < 1} \ ([0, 1) × {0}) and H(x, p) = |p| − 1.
First of all we note that AΩ = ∅. It is easy to check that the function dH can be
extended uniquely to a continuous function on Ω × Ω \ ((0, 1] × {0}). On the other
hand, for any z ∈ (0, 1]×{0}, we have exactly two different “limits” d±H(·, z) at z of the
functions dH(·, y). Here the functions d±H(·, z) ∈ C(Ω) are defined respectively by

d+
H(x, z) = lim

R×(0,∞)3y→z
dH(x, y),

d−H(x, z) = lim
R×(−∞,0)3y→z

dH(x, y).

For x = (x1, x2) ∈ Ω and y = (y1, 0) ∈ (0, 1] × {0}, we have d+
H(x, y) = |x − y| and

d−H(x, y) = y1 + |x| if x2 ≥ 0 and d+
H(x, y) = y1 + |x| and d−H(x, y) = |x − y| if x2 ≤ 0.

For instance, if we set u = d+
H(·, y) or u = d−H(·, y), with y = (y1, 0) ∈ (0, 1] × {0}, the

15



function u(x) does not have the limit as x → y. Heuristically, each point y ∈ (0, 1]×{0}
corresponds to two points in the ideal boundary ∆0.

We now return to Theorem 3.1, which was obtained as an easy consequence of
Theorem 2.3. Here we intend to prove Theorem 3.1 via Theorem 5.4.

We thus assume that Ω is bounded and (A5) holds. Recall that dH is a continuous
function on Ω× Ω.

Let y ∈ ∆0 and φ ∈ dπ(y). We may choose sequences {yj}j∈N ⊂ Ω0, converging to
y in Ω̂0, and {cj}j∈N ⊂ R so that

dH(·, yj) + cj → φ in C(Ω) as j →∞. (5.7)

Since Ω is bounded, we may assume by passing to a subsequence if necessary that yj → ξ

for some ξ ∈ Ω0 as j → ∞. Then, from (5.7) we find that cj → c for some c ∈ R as
j →∞ and φ = dH(·, ξ) + c , from which we deduce that ξ ∈ ∂Ω0 and, as j →∞,

φ(yj) + dH(·, yj) → φ in C(Ω).

Therefore we have dπ(y) = π(dH(·, ξ)) for some ξ ∈ ∂Ω0 and y ∈ ∆∗
0. Similarly, we infer

that for any ξ ∈ ∂Ω0, there exists a y ∈ ∆0 such that dπ(y) = π(dH(·, ξ)). That is, we
have dπ(∆0) = dπ(∆∗

0) = {π(dH(·, ξ)) | ξ ∈ ∂Ω0}.
Next let u ∈ SH(Ω). We may assume by assumption (A5) that u ∈ C(Ω). We want

to compute g(u, y) for y ∈ ∆∗
0. Fix any y ∈ ∆0 and ξ ∈ ∂Ω0 so that dπ(y) = π(dH(·, ξ)).

We calculate

g(u, y)(x) = dH(x, ξ) + lim
r→+0

sup{u(z)− dH(z, ξ) | z ∈ Ω0, ρ0(z, y) < r}
= dH(x, ξ) + max{u(z)− dH(z, ξ) | z ∈ ∂Ω0, dπ(y) = π(dH(·, z))}.

We note that the function u(z)− dH(z, ξ) of z attains a maximum at z = ξ. Therefore
we get g(u, y) = dH(·, ξ) + u(ξ) − dH(ξ, ξ) = u(ξ) + dH(·, ξ). On the other hand, we
have g(u, y) = u(y) + dH(·, y) for y ∈ AΩ by definition.

We may now apply Theorem 5.4, to conclude that

u(x) = inf{u(y) + dH(x, y) | y ∈ ∂Ω0 ∪ AΩ} for x ∈ Ω,

which is the conclusion of Theorem 3.1.

6. Maximal solutions
In this section, as easy applications of Theorems 2.3 and 5.4, we study maximal

solutions of (1.1) with prescribed data on AΩ. We always assume here that AΩ 6= ∅.
Let g : AΩ → R be a continuous function. Theorem 2.3 suggests that the function

u on Ω given by
u(x) = inf{g(y) + dH(x, y) | y ∈ AΩ} (6.1)
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should be a (unique) maximal solution of (1.1) among those which satisfy u ≤ g on AΩ.
Here, by definition, u ∈ C(Ω) is a maximal solution of (1.1) among those which satisfy
u ≤ g on AΩ if u ∈ SH , u ≤ g on AΩ, and u ≥ v on Ω for all v ∈ SH(Ω) which satisfy
v ≤ g on AΩ. To make (6.1) meaningful, we have to assume that

inf{g(y) + dH(z, y) | y ∈ AΩ} > −∞ for some z ∈ Ω, (6.2)

so that u(z) > −∞ and moreover, thanks to Proposition 1.1, u ∈ C(Ω).

Proposition 6.1. Assume that (6.2) holds. Then the function u defined by (6.1) is a
(unique) maximal solution of (1.1) among those which satisfy u ≤ g on AΩ. Moreover,
if the inequality

g(x) ≤ g(y) + dH(x, y) for all x, y ∈ AΩ, (6.3)

holds, then u = g on AΩ.

Of course, uniqueness of such a maximal solution is a direct consequence of the
definition of maximal solutions.

Proof. By Propositions 1.3, we have u ∈ SH(Ω). If v ∈ SH(Ω) satisfies v ≤ g on AΩ,
then, by Theorem 2.3, we get

v(x) ≤ inf{v(y) + dH(x, y) | y ∈ AΩ}
≤ inf{g(y) + dH(x, y) | y ∈ AΩ} = u(x) for all x ∈ Ω.

We thus conclude that u is a maximal solution of (1.1) among those which satisfy u ≤ g

on AΩ. Finally we observe that if (6.3) holds, then

u(x) = inf{g(y) + dH(x, y) | y ∈ AΩ} ≥ g(x) for all x ∈ AΩ,

and therefore u(x) = g(x) for all x ∈ AΩ.

We remark that under assumption (6.2), the function u defined by (6.1) is the
maximal subsolution of (1.1) among those which satisfy u ≤ g on AΩ. To see this, we
need only to recall that v(x) ≤ v(y) + dH(x, y) for all v ∈ S−H and x, y ∈ Ω.

We now treat the case where Ω = Rn. We are concerned with a growth condition
on functions at infinity which selects the maximal solution of (1.1) among those which
satisfy u = g on AΩ. We assume hereafter that g satisfies (6.3).

Theorem 6.2. Let Ω = Rn. Let u ∈ SH(Ω) satisfy u = g on AΩ. Assume that

lim
r→∞

inf{u(y) + dH(z, y) | y ∈ Ω0, |y| ≥ r} = ∞
for some z ∈ Ω. Then u is the maximal solution of (1.1) among those which satisfy
u = g on AΩ.

Proof. In view of Theorem 5.4 and Proposition 6.1, we need only to show that
g(u, y)(x) = ∞ for any x ∈ Ω and y ∈ ∆∗

0 \ ∆A. Fix any x ∈ Ω and y ∈ ∆∗
0 \ ∆A.
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We may choose a sequence {yj}j∈N ⊂ Ω0 so that φ(yj) + dH(x, yj) → φ(x) as j →∞.
Since dπ(y) 6∈ dπ(AΩ), we infer that |yj | → ∞ as j →∞. Thus we have

g(u, y)(x) = φ(x) + lim
r→+0

sup{(u− φ)(ξ) | ξ ∈ Ω0, ρ0(ξ, y) < r}
≥φ(x) + lim sup

j→∞
[u(yj) + dH(x, yj)− φ(yj)− dH(x, yj)]

= φ(x)− φ(x) + lim sup
j→∞

[u(yj) + dH(x, yj)] = ∞,

from which we conclude that u is the maximal solution of (1.1) among those which
satisfy u = g on AΩ.

Next, we treat the case where Ω is bounded and (A5) is satisfied. We may assume
that dH ∈ C(Ω× Ω) and that if u ∈ S−H(Ω), then u ∈ C(Ω).

We assume furthermore that H ∈ C(Ω×Rn). Let Q ⊂ Ω be a locally compact subset
of the compact set Ω. We say by definition that u ∈ C(Q) is a (viscosity) supersolution
of H(x,Du) = 0 in Q or, in other words, a (viscosity) solution of H(x, Du) ≥ 0 in
Q if whenever (ϕ, y) ∈ C1(Q) × Q and u − ϕ attains a minimum over Q at y, then
H(y,Dϕ(y)) ≥ 0. We write u ∈ S+

H(Q) if u is a supersolution of H(x,Du) = 0 in Q.

Lemma 6.3. We have dH(·, y) ∈ S+
H(Ω \ {y}) for all y ∈ Ω.

We remark that the set Ω\{y} is locally compact. The above Lemma is a consequence
of Theorem II.2 of [CL], and we refer to [CL] for the proof.

Proposition 6.4. Let g ∈ C(AΩ) and let u ∈ C(Ω) be the function defined by (6.1).
Then u ∈ S+

H(Ω).

Proof. Since dH(·, y) ∈ SH(Ω) ∩ S+
H(Ω \ {y}) for y ∈ AΩ, we deduce that dH(·, y) ∈

S+
H(Ω). We invoke Proposition 1.2 with Ω replaced by the closed set Ω, which is still

valid, to conclude that u ∈ S+
H(Ω).

The problem of finding a function u ∈ C(Ω) which satisfies u ∈ S−H(Ω) ∩ S+
H(Ω) is

called the state constraint problem in connection with state constraint problems (see
[S]) in optimal control. Proposition 6.4 tells us that the function u given by (6.1) is a
solution of the state constraint problem. The following example shows that there are
solutions of the state constraint problem other than the function u given by (6.1).

Example 6.1. Let n = 1 and Ω = (−π, π). Let H ∈ C([−π, π] ×R) be the function
given by H(x, p) = |p| − | sin x|. Note that the function dH is given by

dH(x, y) =
∣∣∣∣
∫ x

y

| sin t|dt

∣∣∣∣ .

From this we see that AΩ = {0}. Let g : {0} → R be given by g(0) = 0. Then the
function u defined by (6.1) is explicitly written as u(x) = 1− cos x for x ∈ [−π, π]. It is
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easy to check that −u is another solution of the state constraint problem which satisfies
u = g at the origin.

In the above example the behavior of the function H(x, p) near x = ±π is similar to
that at x = 0. In order to get uniqueness of solutions of the state constraint problem,
we have to take care of the boundary points of Ω when we define the Aubry set. This
will be the subject of the next section.

7. The state constraint problem
In this section we continue to discuss the state constraint problem (see [S]). The

state constraint problem is to seek for a solution u of the inclusion u ∈ S−H(Ω)∩S+
H(Ω).

In other words, the problem is to seek for a function u ∈ C(Ω) which satisfies in the
viscosity sense both

H(x,Du) ≤ 0 in Ω and H(x,Du) ≥ 0 on Ω. (7.1)

Throughout this section, we assume as before that Ω is bounded, (A5) holds, and
H ∈ C(Ω ×Rn). We may thus assume that dH ∈ C(Ω × Ω) and we may regard any
u ∈ S−H(Ω) as a continuous function on Ω.

We modify the definition of the Aubry set by introducing

AΩ = {y ∈ Ω | dH(·, y) ∈ S+
H(Ω)}.

By Lemma 6.3, we see that for any y ∈ Ω, y ∈ AΩ if and only if y ∈ AΩ. We infer as in
the case of AΩ that AΩ is a closed subset of Ω.

Let g ∈ C(AΩ) and set

u(x) = inf{g(y) + dH(x, y) | y ∈ AΩ} for x ∈ Ω. (7.2)

If
g(x)− g(y) ≤ dH(x, y) for all x, y ∈ AΩ, (7.3)

then we have u(x) = g(x) for all x ∈ AΩ. By the same reasoning as in the proof of
Proposition 6.4, we get the following.

Proposition 7.1. Let u be the function given by (7.2). Then u ∈ C(Ω) and u ∈
SH(Ω) ∩ S+

H(Ω). That is, u is a solution of the state constraint problem (7.1).

The main result in this section is now stated as follows. We assume in the rest that
H is coercive on Ω, that is, H satisfies condition (A3′), and that Ω satisfies (A6).

Theorem 7.2. Let g ∈ C(AΩ) satisfy (7.3). Then there exists at most one solution u

of (7.1) which satisfies u = g on AΩ.

It is obvious that Theorem 7.2 is a consequence of the following comparison theorem.
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Theorem 7.3. Let u ∈ S−H(Ω) and v ∈ S+
H(Ω). Assume that u ≤ v on AΩ. Then u ≤ v

in Ω.

For the proof of the above theorem, we need the following lemma.

Lemma 7.4. For each compact K ⊂ Ω \ AΩ, there exist a function ψ ∈ C(K) and a
constant δ > 0 such that ψ ∈ S−H+δ( intK).

Proof. Reviewing the proof of Theorem 1.5, we realize that we only need to find func-
tions w ∈ C(Ω) and f ∈ C(Ω) for each y ∈ K such that f ≥ 0 in Ω, f(y) > 0, and
w ∈ S−H+f (Ω).

Let y ∈ K. As we have seen in the proof of Theorem 1.5, we already know that if
y ∈ Ω, then there is such a pair of functions w and f . Assume instead that y ∈ ∂Ω. Set
v = dH(·, y). Since y 6∈ AΩ, we may choose a function ϕ ∈ C1(Ω) such that v−ϕ attains
a strict minimum at y and H(y,Dϕ(y)) < 0. We may assume that v(y) < ϕ(y) and, for
some constant r > 0, we have H(x,Dϕ(x)) < 0 for all x ∈ Ω∩B(0, r) and v(x) > ϕ(x) for
all x ∈ Ω\B(y, r). We define the function w ∈ C(Ω) by setting w(x) = max{v(x), ϕ(x)}
for x ∈ Ω. We observe that w ∈ S−H(Ω ∩ U) for some neighborhood U of B(y, r), by
Proposition 1.2, and that w = v in Ω \ B(y, r) and hence w ∈ S−H(Ω \ B(y, r)), which
guarantees that w ∈ S−H(Ω). Now, since w = ϕ in a neighborhood V , relative to Ω, of y,
we easily find a function f ∈ C(Ω) such that f ≥ 0 in Ω, f(y) > 0, and w ∈ S−H+f (Ω),
which completes the proof.

Proof of Theorem 7.3. Fix any ε > 0. We may choose an open neighborhood V of
AΩ so that u ≤ v + ε on Ω ∩ V . It is enough to show that u ≤ v + ε on Ω \ V .

We follow the line of proof of Theorem 1.5. We set vε = v + ε and K = Ω \
V . By Lemma 7.4, there are a function ψ ∈ C(K) and a constant δ > 0 such that
ψ ∈ S−H+δ( intK). Fix any λ ∈ (0, 1) and set uλ = (1 − λ)u + λψ. We have uλ ∈
S−H+λδ( intK). It is then enough to prove that uλ ≤ vε + λ maxK |ψ| on K.

By abuse of notation, we write u and v for uλ and vε +λ maxK |ψ|, respectively. We
have u ∈ S−H+λδ( intK), v ∈ S+

H(Ω), and u− v ≤ 0 on Ω∩ V , and we wish to show that
maxK(u− v) ≤ 0.

To prove that maxK(u − v) ≤ 0, we argue by contradiction, and thus assume
that maxK(u − v) > 0. If maxK(u − v) > max∂K(u − v), then Theorem 1.5 yields
a contradiction. Therefore we may assume that max∂K(u − v) = maxK(u − v).
Let z ∈ ∂K be a maximum point of u − v. Since u ≤ v on Ω ∩ V , we have
z 6∈ V and hence, z ∈ ∂Ω \ V . We may thus choose a constant r > 0 so that
B(z, r)∩K = B(z, r)∩Ω. By adding a smooth function to u, we may assume that u−v

attains a strict maximum at z over B(z, r) ∩Ω and u ∈ S−H+c(Ω ∩ intB(z, r)) for some
constant c > 0. By (A6), after a C1 change of variables if necessary, we may assume
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that B(z, r) ∩ Ω = B(z, r) ∩ {(x′, xn) ∈ Rn−1 ×R | xn > b(xn)} for some continuous
function b on Rn−1.

Let δ > 0 and set uδ(x) = u(x+δen) for x ∈ −δen+Ω, where en := (0, ..., 0, 1) ∈ Rn.
Replacing r by a smaller positive number if necessary, we may assume that there is a
δ0 > 0 such that if 0 < δ < δ0, then we have B(z, r) ∩ Ω ⊂ −δen + Ω. Henceforth we
assume that 0 < δ < δ0. We may choose a bounded open neighborhood W of B(z, r)∩Ω
such that W ⊂ −δen + Ω. It is easy to see that uδ satisfies H(x + δen, Duδ(x)) ≤ −c

in W in the viscosity sense. Noting that H is uniformly continuous on Ω×B(0, R) for
every R > 0 and that there is an R > 0 such that H(x, p) > 0 if |p| > R, we may
assume by replacing δ0 by a smaller positive number that H(x, Duδ(x)) ≤ −c/2 in W

in the viscosity sense. We may also assume that all the maximum points of uδ − v over
B(z, r) ∩ Ω lie in B(z, r/2) ∩ Ω.

We now just need to follow the standard proof of comparison theorems on viscosity
solutions. Let α > 0 and consider the function Φ(x, y) := uδ(x) − v(y) − α|x − y|2 on
W × (B(z, r)∩Ω). Let (xα, yα) be a maximum point of the function Φ. We may choose
a sequence αj →∞ so that xαj → x for some x ∈ B(z, r)∩Ω, and observe that yαj → x

as j →∞ and that x is a maximum point of uδ − v over B(z, r) ∩Ω, which guarantees
that x ∈ B(z, r/2). Choosing j large enough, we may assume that yαj ∈ intB(z, r) and
xαj ∈ W . Now, by the viscosity property, we get H(xαj , 2αj(xαj − yαj )) ≤ −c/2 and
H(yαj , 2αj(xαj − yαj )) ≥ 0. The former of these inequalities assures that the sequence
{αj(xαj−yαj )} is bounded in Rn and therefore, by sending j →∞ along a subsequence,
we get H(x, p) ≤ −c/2 and H(x, p) ≥ 0 for some p ∈ Rn, which is a contradiction. This
completes the proof.

The above idea of enlarging the domain of definition of subsolutions appears already
in the proof of Theorem III.5 of [CL].
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Appendix
Let R > 0 and U denote the set of all functions u ∈ C(Ω) such that |Du| ≤ R in Ω

in the viscosity sense.

Proposition A.1. Assume that Ω is bounded and that (A6) holds. Then the set U is
uniformly equi-continuous on Ω, i.e., there exists a modulus ω such that |u(x)−u(y)| ≤
ω(|x− y|) for all u ∈ U and x, y ∈ Ω.
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Proof. We fix any z ∈ ∂Ω, and choose r > 0 and b ∈ C(Rn−1) so that, after a C1

change of variables, we have

Ω ∩B(z, r) = {(x′, xn) ∈ Rn | xn > b(x′)} ∩B(z, r).

Here and henceforth, we write x = (x′, xn) for x ∈ Rn, where x′ ∈ Rn−1. Let ωz be
the modulus of continuity of b on the ball B(z′, r) ⊂ Rn−1. We choose a δ ∈ (0, r/2) so
that ωz(δ) < r/4.

Let x, y ∈ Ω ∩ B(z, δ/2), and set ε := |x − y|, ξ := (x′, xn + ωz(ε)), and η :=
(y′, yn + ωz(ε)). Consider the line segments [x, ξ] := {tx + (1 − t)ξ | 0 ≤ t ≤ 1},
[y, η] := {ty + (1 − t)η | 0 ≤ t ≤}, and [ξ, η] := {tξ + (1 − t)η | 0 ≤ t ≤ 1}. Noting
that ξ, η ∈ B(z, r/2), we see easily that [x, ξ] ∪ [y, η] ⊂ Ω and that [ξ, η] ⊂ B(z, r/2).
Observe that for any t ∈ [0, 1],

b(tx′ + (1− t)y′) ≤ min{b(x′) + ωz(ε), b(y′) + ωz(ε)}
< min{xn, yn}+ ωz(ε) ≤ t(xn + ωz(ε)) + (1− t)(yn + ωz(ε)),

which reads b(tξ′ + (1− t)η′) < tξn + (1− t)ηn. We thus conclude that

[x, ξ] ∪ [ξ, η] ∪ [y, η] ⊂ Ω,

and furthermore that

|u(x)− u(y)| ≤ |u(x)− u(ξ)|+ |u(ξ)− u(η)|+ |u(η)− u(y)|
≤R(ε + 2ωz(ε)) = R(|x− y|+ 2ωz(|x− y|)).

By the standard compactness argument, we find an open neighborhood V of ∂Ω,
relative to Ω, and a modulus ω0 such that |u(x)− u(y)| ≤ ω0(|x− y|) for all u ∈ U and
x, y ∈ V . We choose a compact neighborhood W ⊂ Ω of Ω \ V and observe that the
collection U is equi-Lipschitz continuous on W . It is now easy to conclude that U is
uniformly equi-continuous on Ω.
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