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61 Introduction

In this paper we investigate state-constraint problems in optimal control and the cor-
responding Hamilton-Jacobi-Bellman equations in real Hilbert spaces.

State-constraint problems are natural and important subjects in optimal control and
they have been studied extensively in finite dimensional spaces where the states are gov-
erned by ordinary differential equations (see, e.g., [4, 19, 5, 14]) and for problems with
specific partial differential equations as their state equations.
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However, there are only a few references concerning the general theory of state-
constraint problems and the corresponding Hamilton-Jacobi-Bellman equations in infinite
dimensional spaces. See, e.g., [16].

Our purpose here is to develop this theory a little further, so that the resulting the-
ory covers state-constraint problems in infinite dimensional Hilbert spaces with bounded
continuous dynamics. Because of the boundedness of the dynamics, the class of control
problems does not cover optimal control of systems governed by partial differential equa-
tions and the level of art in this paper is thus like in the papers [7, 8]. The reader who is
interested in optimal control of systems governed by partial differential equations should
consult [9, 10, 11, 21].

Our approach is based on the theory of viscosity solutions of Hamilton-Jacobi-Bellman
equations and the line of arguments adapted here lies between those of [14] and [19, 5].

The paper is organized as follows. In Section 2 we establish a general comparison
theorem for viscosity solutions of Hamilton-Jacobi equations with a kind of Neumann
type boundary conditions. For the proof, we use the method developed in [14], which
relies on the existence of a certain kind of test functions. The construction of such test
functions in infinite dimensions differs from that in finite dimensions because the standard
mollification techniques are not available in infinite dimensions. We use instead the sup-inf
or inf-sup convolutions as in [17]. In Section 3 we study state-constraint problems with
infinite horizon, and establish the uniform continuity of the corresponding value functions
and characterize the value functions as unique viscosity solutions of the state-constraint
problem for the associated Hamilton-Jacobi-Bellman equations. In Section 4 we study
finite horizon problems and establish the uniform continuity of the value functions and
their characterization as state-constraint problems of the corresponding Hamilton-Jacobi-
Bellman equations.

82 A comparison theorem

In this section we will establish a general comparison theorem for solutions of Hamilton-
Jacobi equations. Our arguments which will follow depends largely on this comparison
theorem.

Let © be an open subset of H and I' a relatively open subset of 9. By |z| and (x, y) we
denote the norm of @ € H and the inner product of x,y € H, respectively. Set [ = 9Q\T.
Let H be a real continuous function on  x R x H and ¢ a continuous map of Q into H.

We shall consider viscosity solutions of

H(x,u )) <0 in{
(2.1) { _(<§(;1;() N Du( () ); K onTl,

and those of

(2.2) H(z,u(z),Du(x))>6 inQUT,
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where I and 6 are given positive constants. Hereafter Du(x) denotes, when it is un-
derstood in the classical sense, the Fréchet derivative of u at x, which is regarded as an
element of H via the Riesz theorem.

The boundary condition in (2.1) is understood here in the strong sense of the terminol-
ogy of [6]. To be precise, let us give the definition of viscosity solution of (2.1): a function
u:QUT — R is called a viscosity solution of (2.1) if it is locally bounded and satisfies
H(z,u*(x),p) <0 for all z € Q and p € DT u*(x) and —(£(z),p) < K for all z € T and
p € DVtu*(z). Here the upper semicontinuous envelope u* of u is defined by

u*(z) = lim sup{u(y) |y € QUT, |y —2|<r} (z€QUT).

™\,0

We refer the reader to [4, 6] for the definition of viscosity solution of (2.2) together with a
general scope of the theory of viscosity solutions.
We assume:

(2.3) |H(x,r,p) — H(y,r,p)| < w(lz —yl(lp| +1)) (z,y,p € H, r € R);

(2.4) H(x,r,p) is nondecreasing in r € R for each (x,p) € H X H;

(25) |H($,T,p)—H($,T,Q)|§L|p—q| (:L‘,p,qE'H, TER)

Here w is a continuous real-valued function on [0, 00), with w(0) = 0, and L is a positive
constant.
For each ¢ > 0 we write

I'.={zel| dist(a,I) > ¢},

and assume:

(2.6) for each e > 0 there is a constant 6 > 0 such that
Bz +t£(2),6t) CQ (z€T., € B(2,6)NQ, 0<t<§);

(2.7) ¢ is bounded Lipschitz continuous on Q.

Theorem 2.1. Under assumptions (2.3)(2.7), ifu : @ — R and v : Q@ — R are a
bounded viscosity solution of (2.1) and a bounded viscosity solution of (2.2), respectively,

and if

(2.8) h{% sup{u(z) —v(y) | v,y € Q, |z —y| <r, dist(x,I) <r} <0,



then B
li{r(l) sup{u(z) —o(y) |z, y € Q, |z —y| <r} <0.

Lemma 2.2. Assume that (2.6) and (2.7) hold. Then for each ¢ > 0 there is a bounded
function b € C1(Q) such that D1 is bounded and Lipschitz continuous on Q and such that

(£(x),Dip(x)) > 1 (x €T.).

Lemma 2.3. Under assumptions (2.6) and (2.7), for each ¢ > 0 there are a function
w e CH(Q x Q) and constants r € (0,1) and C > 0 such that

((2), Dyw(z,y)) < Cle —y|* (z €T, y€ QN B(a,r))
and for all .,y € €,

7z —y|* <w(z,y) < Cle —y|*
|Dw(z,y)| < Cle —yl;
|Dyw(z,y) + Daw(a,y)| < Cla —yl*.

In the above and henceforth Dyw and Dsw denote the first and second components of
the Fréchet derivative Dw, respectively. More precisely, Diw = Py Dw and Dyw = Py Dw,
with P; and P, denoting the projections H X ‘H 3 (p,q) — p and H x H > (p,q) — ¢,
respectively.

Lemma 2.4. Let O be an open subset of H. Letn: O — H and g : O — R be uniformly
continuous. Let v : O — R be a Lipschitz continuous function. Then the following two
inequalities are equivalent:

(n(x),p) < g(x) (x€0, peDFo(x));

(n(z),p) < g(z) (v €0, p€ D v(a)).

We refer for the proof of this lemma to [13].

Proof of Lemma 2.2. In view of Kirszbraun’s theorem (see, e.g., [18]), we may assume that
€ is defined on H and is a bounded Lipschitz continuous function on H. Fix a constant
M > 0 so that

[E(x)l < M, [6(x) = E(y)| < Mz —y| (z,y € H).
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Fix € > 0 and select 6 > 0 so that
Bz +t£(2),6t) CQ (z€T., x€ B(2,6)NQ, 0<t<§).

For v > 0 set
N, ={zeH| dist (z,['.) <~}.

For z € H let X(t) = X(¢;2) denote the solution of
X(t)=¢X@t) (t>0),  X(0)=a,
where X (t) denotes the derivative dX/dt evaluated at ¢. Observe that
IX(4) — 2| < Mt (t>0),
and .
X () — [ + t(2)]| < M/O 1X(s) — elds < M (t > 0).

We may assume that 6 < 1 and M > 1. Fix any x € N, and choose z € I', so that
|z — z| < 7. Let t > 0. Observe that if

) ot
M(Mt+~) < 1 and ’yﬁz,

then
ot
X(t) — [2 (]| < X (k) — [o 0600 7+ DMyt < M(Mt 4 7)t 7 < 2,
le, X(t;2) € B(z +t£(2),06t/2).
Now fix v > 0 and 7 > 0 so that

ot

M(Mt+~) < and ygz.

o

Note that 7 < ¢ and v < 1/4. Then we have

)
X(r;z)€e B (Z + 7€(2), %) .
Since B(z + 7(2),67) C Q, we see that B(X(7;2),67/2) C Q and hence X(7;2) & N..
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Define the Lipschitz continuous function ¢ on H by

((z) = (1 ~ 2 st (x,T€)>+ |

v

Define the function v : H — R by

o)== [ ot

It is easily seen that v is bounded and Lipschitz continuous on H.
Noting that X(7;2) ¢ N, for + € N.,, we see that there is a constant o € (0,7) such
that

((X(t;2))=0 (€N, o <t<rT).

Using the dynamic programming principle, wee see that v is a viscosity solution of

—{&(z), Dv(z)) +¢(x) =0 (z € N,).

Next we regularize the function v by using the inf-sup convolutions (see [17]). Let
0 < p < wv. Define w: H — R by

() =(")y(0) = jaf, (w0l + 5ol — o)

yeEH

1 1
= inf sup [ v(z)— — |y — 2] + —|z —y|* ).
int sup (o12) = ol = o+ ol ol

According to [17], w is a CH! function on H.
Let x € H and p € DTv”(2). As a well-known property of inf-convolutions, we have

p € D7 v(x + vp).

Noting that |p| < Lip(v), we choose v so that Lip(v)r < ~v/4. Here and henceforth
Lip (v) denotes the Lipschitz seminorm of v, i.e.,

Jo(@) = vly)|

Lip (v) = sup{ =]

x # y}.
Since v is a viscosity solution of

—({(2), Do(z)) + ((2) =0 (z € Ny),
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we see that

—((z +vp),p) + ((x+vp) <O (z € N3y, p€ DV 0"(2)).
Hence,
—(&(2),p) +¢(2x) < Ly (¢ € N3y, p € DFo¥(2)),
where L := Lip (£)Lip (v)* 4+ Lip(¢) Lip (v). By virtue of Lemma 2.4, we have

—(&(2),p) + ((z) < Lv (v € N3y, p€ D70v"(x)).

Now let x € N,/ and p = Dw(x). Again we have

p € D7v¥(z — pp),

as a well-known property of sup-convolutions. Since |p| < Lip (v) for all p € D™ v¥(a) with
x € H, we see that

—(&(), Dw(x)) +((x) <2Lv (2 € Nyj3).
Choosing v small enough so that 2Lv < 1/2, we see that the function 2w(x) has all

the required properties. [

Proof of Lemma 2.5. As in the previous proof, we assume that £ is a bounded Lipschitz
continuous map of H.
Fix e > 0 and let 6 > 0 be a constant such that

Bz +t£(2),6t) CQ (z€T., x€ B(2,6)NQ, 0<t<§).
Set
O ={z e H|l&(x)] > 5/2}.

Since B(x + §&(x),62) C Q for € T. and hence z ¢ int B(z + 6£(z),62) for = € T,
we see that |£(x)] > 6 for all @ € T'. and therefore that I'. C O. Dividing &(x) by [£(x)]
and multiplying a cut-off function, we can choose a bounded Lipschitz continuous map

n : H — 'H such that
£(x)

)]

Replacing ¢ by a smaller constant if necessary, we may assume that

n(z) (x € O).

(2.9) Bz +tn(x),6t) CQ (z€T., 2€B(2,6)NQ, 0<t<4§).
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In what follows let p and o be two constants satisfying 0 < ¢ < p < 1 which will be
fixed later on. We write

g

I( = tgo B(tel,at) = {(x17x2) € R2 | |$2| S ﬁxl}
and P
L= S Blter, pt) = {(x1,22) € R? | g < 1— ,02:1;1}7

with e; denoting the unit vector (1,0) € R?.
According to [14], there is a convex function v € C(R?) N CH(R? \ {0}) such that

v(tz) = tv(z) for z € R? and t > 0;
v(z) >0 if a #0;
v(ay, —x9) = v(e1,22)  ((21,22) € R?);
(¢.Dv(z)) <0 forall ¢ € K and z € L°.
We define w € C(H x H) by

2

w(z,y) =o(((z —y)n(y), |z —y —((z —y)ny)))"

For each y € 'H define the continuous linear map Q(y) : H — H by

Qly) =1 —n(y) @nly).

With this notation, we have

w(z,y) = v({(z = y)n(y) Q) — y)))*.

Observe that
(2= w).m()” + Q) = v = |z =y + () = Dz = ), n(y)* = =——
to conclude that for some constant e; > 0,
w(a,y) > erle —yl*.
Similarly, we see that for some constant C; > 0,
w(z,y) < Cile —yl*.
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Now fix any z,y € H and choose p,q € H such that (p,¢) € DT w(z,y). We want to
show that for some constant Cy > 0,

lp+q] < Cala —y|*;

(2.10) Pl + lg| < Calz —yl.
We write
z=(x—y)nly)), ==|Q)(x—y)| and z=(z1,2)
By calculus, we have

p=20(2) {Dlv(Z)n(y) 1 Dyo(z) N ) } ,

1Q(y)(z —y)

where Dyv(z) := 0v(z)/0z1 and Dyv(z) := Ov(z)/dz2. Here we understand that the second

term in the braces above vanishes if zo = 0. In this regard, note that Dyv(x1,0) = 0 for
all 1 € R. Thus, choosing a constant C'5 > 0 so that C3 > 2||Dv||o, we get

p| < Cyu(z,y).
In the above and hereafter, given a function h on a set X (or a map h of X to H), we

write ||h||o for sup,cx |A(z)].
Next, we observe that as h — 0,

i@,y + ) —w(e = h,y)| < 20(2)|Dv(2)||x = yl(M + M?*)|h] + O([h]*),
where M := max{||n||c, Lip (n)}. From this it follows that
o+ dl < 20()De()(M + M) — .
Now we choose r > 0 so that r* < 46 and
{z € H| dist (2,T.) < 2r*} C O.
Then define the open subset A of H? by

A={(z,y) e HxH | dist (2,T'.) < r2, |z —y| < r2, (Je = [y +tn(y)]| — rt) > 0}.

min
0<t<r



Note that if (z,y) € A then x,y € O.
Next we fix

r d p
= an o= =.
P V14 r? 2
We set s = Lip (n)r?. By choosing r > 0 small enough, we may assume that
s o
< .
1—s7 /1—-02
Assume that (z,y) € A. We are about to prove that
{p,n(2)) <0.
Set
Qy)(z —y)
o= ) o= () GO and g = ()
[Q(y)(z = y)]

and note that

(n(z),p) = 2v(z)(@1 D1v(2) + @2 D2v(2)) = 20(2)(g, Dv(2)).

Since
1>2¢ >1-Lip(n)e —y[>1-s
and
(n(y), Qy)(z —y)) =0,
we have
lel 1 /- Q(z—y) s o
2le ot “””@@xx_wﬁ‘ﬁl_sﬁ -

Hence, ¢ € K.
We want to show that z € L°. If z; < 0, then it is immediate that z € L°. Assume
that z; > 0. Noting that z; <r? < r, we find that if z,/2; < r, then

[z =Ty + 2l = Qy)(x —y)| = 22 < rz,

which is impossible since (x,y) € A. That is, we have

z9/z1 > =p/\/1—p?
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and z € L°. By our choice of v, we conclude that (p,n(z)) <0.

The final step is to regularize w by inf-sup convolutions. Let 0 < p < v be two small
constants to be fixed later on. Define o) : H X H — R by v = (w”),. If v < (4C1)™!, then
¢ is well-defined and ¢ € CYY(H x H). We assume that v < (4Cy)71.

Noting that

w’(z,y) > w(z,y) > el —y,
we have
. 1
blay) 2 inf (ellx’ -y + om (Jo =" +ly - y’|2)> ,

and, calculating the right hand side of the inequality above, we get

&1 2
> |x — .
(x,y) > 1+4€1M|x yl
Since
w(z,y) < Cyle —yl?,
we have

1
w”(z,y) < sup (Cllx’ —y'] - o (| =2 + |y — y’|2>> :
oy €N v

Calculating the maximum value of the right hand side of the above, we get

C4
v < 70 r—yl? H
and consequently,
1 2
<—— o — H).

For ¢« = 1,2 we define

Ay ={(z,y) € H x H | dist (z,T.) < 272 |z — y| < 272,
Jmin (|r = [y +tn(y)]| = 2'rt) > 0}

Note that A D A} D Ay and that A; (1 = 1,2) are open subsets of H2.
Fix any (z,y) € Ay and (p,¢) € DTw”(z,y). We have

(p,q) € DT w(z, ),
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where & = 2 4+ vp and § = y + vq. Using (2.10), we compute that

Ip| + lq] < Cle — g < Co(lz —y[ 4+ v(Ip| + lq]))
and
12— 9] < |z —y|l+v(pl +lq]).

If 2vCy < 1, then we have
p| + ¢ < 2C2 |z —y|

and
|2 — 9| < (14 2vCy)|x -y,

and furthermore that for 0 <t < r,

&= [g+ (@]l =z =y +t(y)ll —v|p— ¢ —tLip (n)vlq|
> o — [y +tn(y)]| — v(Ipl + [¢))(1 + r Lip (1))
> o = [y +tn(y)]| — vCalz — y|
>z — [y +tn(y)]l —vCille —y —tn(y)| +1)
[

> (1—vCy)lx — [y +tn(y)]] — vCit.
where Cy := 2C5(1 + r Lip(n)). We now fix v so that

7

1
C) < - d g, < )
RSy e s o

Then, since 2vCy < 1, we have
Pl + lg| < 2Cs e —yl;
@ — gl < 2lx —y| <%
p+ql < Cold — gf* < 4Csle —yl;
dist (2,T.) < dist (2, T.) + v|p| < 27'r% + 200y |z — y| < r¥;
2 =[G+ (@]l >rt (0<t<r)
Thus we have (2, 9) € A and hence,

0> (p,n(2)) = (p,n(x)) — Lip (n)v|p|*
(p.n(x)) —4C3 Lip (n)v|x — y|*.

12
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This together with Lemma 2.4 yields that
(p.n(x)) < 4C5Lip (nvle —yl*  ((2,y) € A1, (p,g) € D™w"(x,y)).
Now let (x,y) € Ap and (p,q) = D(x,y). We have
(p,q) € D7w"(z,9),

where # = x — pup and y = y — ug. To proceed, we fix

_7/
h=g

which will be convenient for our computations below. As before we compute
7 =yl <[z —yl+ pllpl + lq]) < |z =yl +2uC:[z — ],

and get
|z -yl < 2le —y[ <2707,

since 2uCy < 1/2. Using this, we also have

Ip| + lq] < 2Cy|7 — g| < 4Chlz — yl;

lp+ q| <4Cs|z — > < 16Cs|x — y|*.

Moreover we have
dist (z,T.) < dist (z,Tc) + plp| < 4712 + 47192 =27 1%

[z =g+ ]l = (1 = 2uCy)le =y +in(y)l] - 2pCat > 2rt.

Thus we have (Z,y) € Ay and hence,

0> (p,n(z)) — vC3 Lip (n)|z — y|*
> (p,n(x)) — 16uC3 Lip (n)|z — y|* — 4vC3 Lip (n)|x — y|?
> (p,n(z)) — 12vC3 Lip (n)|x — y|*.

To conclude the proof, we claim that the function 61_1(1 + 4eq )y has all the required
properties. To check this, we only need to show that if + € T, and y € int B(x,4~'r?)NQ,
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then (x,y) € Ay. Indeed, choosing a sequence {z,} C Q° converging to z as n — oo and
noting that _
By +tn(y),ot) c 2 (0<t<9),

we have
[z = [y +tn(y)]| > 4rt (0<1 <)

Since |z, —y| < r?/4 and |z, — x| < r?/4 for sufficiently large n, we see that (z,y) € Asg.
i

Proof of Theorem 2.1. We need to show that for each n > 0,

lim sup{u(e) —v(y) | 2,y € Q, o -yl <r} <.

We fix any n > 0, suppose that

lim sup{u(z) —v(y) | z,y €, |z —y| <r} > 2,

and will show a contradiction.
Selecting ¢ > 0 small enough, by (2.8) we have

(211)  wu(z)—vly) <n (2,y€Q, dist(z,I) < 2e, dist (y,I) < 2¢, |z —y[ <e).

Let ¢ be the function from Lemma 2.2 with ¢ given above. Let © > 0 be a constant to
be fixed later. Define functions @ and v by

i) = u*(@) + pd(a) and i(x) = v(@) + p(a),

where u* and v, denote the upper and lower semicontinuous envelopes of u and v, respec-
tively. Set

ﬁ(w,r,p) = H(x,r — pwp(x),p — pDy(x)),

and observe that 4 and v, respectively, satisfy

{ﬁ(w,ﬁ,D~) <0 inQ,
Di) + p(é(x), Dip(2)) <K onT,

and

ﬁ(:z;,f),Df))ZG on QUT

in the viscosity sense. In view of Lemma 2.2, we can fix ¢ > 0 so that u satisfies
—(&(x),Du) <=1 onT.
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in the viscosity sense.
By virtue of (2.11), there is v € (0,¢) such that

(212)  a(z)-o(y) <n (z,y€Q, dist(z,I) < 2e, dist(y,[) <2, |z —y[ < 7).

Let w, r > 0, and C be the function and constants from Lemma 2.3. We may assume
that r < . Let 6 > 0 and consider the function

Bz, y) = i) ~ ily) — sw(ry)

on Q x Q. Setting

we observe that m(6) \, m as 6 \, 0 for some m and moreover that

(2.13) m = lim sup{a(z) —o(y) [ 2.y € Q, |o—yl <t} > 2.

For each ¢ > 0 we select v € (0,0) so that

sup  [®(a,y) — v(|z|* + |y[*)] > m(8) — .
(z,y)EQXQ

By the standard optimization technique due to Stegall [20] and Ekeland-Lebourg [12],
there are a,b € H satisfying a,b € B(0, ) and depending on é such that the function

O(a,y) — v + y[*) — (a,z) = (b,y)
attains a maximum at some point (x5,ys) € © x Q. Set
m(6) = ®(ws, ys) — v(lesl” + lysl®) — {a, 5) — (b, y5),

and we may assume by replacing v by a smaller positive constant that |m(é)—m(é)| < 26.

Since
() < ) = 8(us) = (s, ys) + whes] Lol + o] — sl
< irs) — iys) — goles,ys) = Skl + lusl?) + .
and )
7(28) 2 m(28) — 46 = W(as) — Hys) — 5ow(ws,ys) — 46,
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we have )
v . .
w(s,s) + Seal? + luo[2) < (26) — 1n(8) + 55

From this we see that as 6 — 0,
1 2 2 2
(214) Hos —yol? 4 wllesl? + lysl?) = 0.

We are interested in the limit as 6 — 0. Hence, in view of (2.13) and (2.14), we may
assume that |vs — ys| < r and that @(as) — 0(ys) > 2. These together with (2.12) imply
that dist (v45,I) > 2¢ or dist (ys,I) > 2¢. Thus we see that if v5 € 09, then x5 € I'.. If
this is the case, we must have

<§($5), —5_1D1w($5,y5) +a+ 21/1‘5> < —17

but this is impossible for ¢ sufficiently small since

C
(E(xs), =6 " Dyw(xs, ys) + a + 2vas) > —g|=’1/‘6 —ys|* = [|€]| (v + 2v|2s]) — 0

as 6 — 0. Thus we find that zs € Q for 6 sufficiently small. We may assume henceforth
that x5 € 2. We see as well that if ys € 9, then ys € I'..
We have B
H(l’&, ﬂ(l’&), 6_1D1UJ($5, yé) + 2vxs + Cl) < 07

H(ys,5(ys), =6 ' Dyw(xs,ys) — 2vys — b) > 6.
Here we may assume that

u(ws) — pip(s) > = 0(ys) — pb(ys).

Hence, setting p = Dyw(xs,ys) and ¢ = Daw(xs,ys), we get

0 <Hl(ys,t,6 'p— uDip(ys) + 2vas +a) — H(xs, t,—6 g — uDy(xs) — 2vys — b)
<w(lzs — ys| (67 [pl + | DY loe + 1))
+ L (67 p+ gl + pID(xs) — D(ys)| + 2v(|xs| + lys|) + |al +10]) -

Sending § — 0, we get a contradiction, which completes the proof. []

63 Infinite horizon problems
In this section we discuss state-constraint problems with infinite horizon.
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Let f: HxA—-R,g: HXxA— H,and ¢ : Hx A — R be given continuous functions,
where A is a metric space.

In order to get a certain generality of results, we introduce a sequence {U, },en of open
subsets of H with the properties:

U,+B(0,1) CUp41 and B(0,n)C U, (n € N).

Typical examples of {U,} are given as the cases where U,, = int B(0,n) for all n € N and
where U,, = H for all n € N.

We make the assumptions on f, ¢, and ¢:

(3.1) f, g, and ¢ are bounded on H;

(3.2) for each n € N there are a function w, € C([0,0)), with w,(0) =0, and a constant
L,, > 0 such that for all z,y € U,, and a € A,

|f(z,a) = fly,a)] Swn(lz —yl),
(2, a) — c(y, a)] Swn(]z —yl),
lg(z,a) = g(y,a)| < Lyle —yl,

(3.3) there is a constant A\g > 0 such that c(x,a) > Ay for all (z,a) € H x A.

In order to describe our optimal control problem, we give the notation first. Let A
denote the set of all measurable functions « : [0,00) — A. For @ € H and o € A we
consider the initial value problem

X(t) = g(X(tha(t) (t>0),  X(0)=a.

The solution X () will be denoted by X(#;z, «).
Let © be an open subset of H. For & € 2 we define

Alz)={ac A| X(t;z,a) € Q for all t > 0},

and

V(z)= inf /OOO e(t;x, o) f(X (1), alt))dt,



The main theme of optimal control is to seek, in our setting, for a control & € A(x) for
which we have

Viz) = /OOO e(t;x, a)f(X(tx, &), a(t))dt.

Such an control & is called an optimal control and may not exists in general. Our concern
here is restricted to characterizing the function V as a viscosity solution of the corre-
sponding dynamic programming equations. The function V is called the value function
associated with our optimal control problem.

It may happen in general that A(x) = @ for some = € Q, and this is not the case on
which we are going to discuss in this paper. In this respect we introduce the condition:

(3.4) For each n € N there are a map ¢, : U, — H and a constant ¢,, > 0 having the
properties:

a) &, is bounded and Lipschitz continuous on Up;
b) {n(z) € co{g(z,a)[a€ A} forz€0QNU,;
¢) Blx +t&,(2),00t) CQ for z€0NUp, 2 € QNU,, and 0 <t <6,

Here and in what follows co I denotes the convex hull of the subset K of a real vector
space.

Proposition 3.1. Under assumptions (3.1), (3.2), and (3.4), the set A(x) is non-empty
for all x € Q .

We remark as a consequence of this proposition that if (3.1)—(3.4) hold, then
V@l [ et <100 (D
0

Theorem 3.2. Assume that (3.1)—(3.4) hold. Then the function u(z) = V(x) is a
mscosity solution of

(3.5)

{HWWWLDM@)O (x € Q),
H(x,u(z),Du(x)) <0 .

IA IV

In addition, let n € N and &, be from (3.4), and set K = ||f|lco + ||¢||ccl|V||oo- Then u
satisfies the inequality

(3.6) —(&n(2), Du(z,t)) < K ondQNU,

in the viscosity sense.

We need the following lemma to prove Proposition 3.1 and Theorem 3.2.
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Lemma 3.3. Assume that (3.1), (3.2), and (3.4) hold. Let n € N and &, be from (3.4).
Then for each € > 0 there is a constant o > 0 such that for each z € OQ NU,, there is
B e A such that

X(s;z,8) € B(x + s&,(2),es8) (x € B(z,0), s €(0,0)).

Assuming that Lemma 3.3 has already been proved, we first give the proof of Proposi-
tion 3.1 and Theorem 3.2.

Proof of Proposition 5.1. First of all define the function 7 : [0, 00) — (0,1) as follows. Let
R > 0 and let n be the smallest natural number such that R+ 1 < n. Let é,, be from (3.4)
and o from Lemma 3.3 with ¢ = é,,. We may assume that ¢ < §,,. Observe from Lemma

3.3 that if + € Q and dist (2,02 N B(0, R + 1)) < o, then there is 3 € A such that
X(tz,3)cQ (0<t<o).

We select § > 0 so that d||g|lec < 1. Now, for all z € QN B(0,R) and o € A, if
dist (#,0Q N B(0,R + 1)) > o then we have

X(t;,2,0) € B(x,t|g]lee) CQ (0<t<6).
Hence, for € QN B(0, R), then there is 3 € A such that
X(tz,3)€Q (0<t<min{é,a}).

We define 7 by setting 7(R) = min{o,¢}. We may assume that the function 7 is nonin-
creasing.

Fix z € Q. We will build a control & € A(x). By our choice of 7, for each z € Q there
is . € A such that

(3.7) X(t;2,8.)€Q (0<t<7(|2]).
Set to = 0 and x¢ = x. Define t; > 0 and x; € H (k € N) inductively by
te =thio1 + 7(Jeg—1]) and  ap = X(7(Jve-1]); Tho1, Bey_,)-

To see that this definition is indeed well-defined, we need to show that xj € Q for all
k € N. Fix k € N and suppose that x5 € 2, which is true for £ = 1. Now (3.7) yields
immediately that z; € @ and moreover that

(3.8) X(ftho1sBo,) €0 (0t < 7(fera])).
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Next define the map o : [0,to) — A, where to := lim, o0 tp, by

Ba(?) (0 <t <ty),
t—

t
Bult—t) (b <t<ty),
(D= Bult—t) (B St<t),

We want to prove that o € A(x). Let k € N and t;_1 <t < t;. Observe that

X(t;x,a) =X(t —tp—1; X(th—1, v, ), a(- + tp—1))
:X(t —tk—13 X(tk—lv xva)vﬂfk—1)7

and further by induction that
X(t; T, Oé) = X(t —tk—15Tk—1, 6061@—1)‘

From this and (3.8) we see that X(#;2,a) € Q. This show that X(¢;z,a) € Q for all
0<t <10
It remains to shows that t., = co. Suppose for the moment that ., < oo, which yields
that limg o 7(|2%|) = 0. On the other hand, since X (¢;z,a) = :1;—|—f0t g(X(s;2,0),a(s))ds,
we have
X (b5, 0) — 2] < llgllos < tocllglloe (0 < toc),

which implies that infzen 7(|2x|) > 0. This is a contradiction, which proves that t., = oo.

[

Remark 3.4. It is now clear that in Lemma 3.3 the control # can be chosen so that
pe Alz).

Proof of Theorem 3.2. Since it can be proved in a more or less standard way that u is a
viscosity solution of (3.5), we omit giving the proof here.

We show that u satisfies (3.6) in the viscosity sense. Let ¢ € C}(Q) and & € dQNU,, and
assume that u* — ¢ has a maximum over QNU,, at 2. We may assume that (u* —¢)(2) = 0
and that Dy is bounded on Q.

We choose a sequence zj, € ) so that x; — & as k — oco. Fix any € > 0. According to
Lemma 3.3, there is o € (0,6, ) such that if 2, € B(&,0), then there exists g € A(xy) for
which we have

X(t;xp, Br) € B(ag + t&u(2),et) (0 <t <o).

We may assume that x; € B(&,0) for all £ € N.
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Let t € (0,0) and k € N. By the dynamic programming principle, we have

e = nt ([ e a8, al)ds +elt s ap(X(0)).

aEA(zy)

where X (s) := X(s; 24, «). We may assume by choosing ¢ > 0 small enough that X(s) €
U, for all & € A(x) and s € [0,t]. Hence, we have

w(zp) < / e(s; 2k, B F(Xk(5), Br(s))ds + et 2k, B)p( Xu(h)),

where Xy(s) := X(s;x, fx). Noting that if we set ¢ := Xy(t) — (2 + t€(2)), then
q € B(0,¢et), we find that

u(ay) < /0 e(s;wk, Ok) f(Xi(s), Br(s))ds + e(t; wr, Br)p(wr +16a(2)) + 2t Do | oo

Moreover, setting dy := u(xy) — p(xg) and Yi(s) := ap + s£,(2)), we have

= [ elsion, B0 (=l Xuls Al D)+ (D), 0(8) + FKele), () s
+ <t Dl

t
< / e (Jlelloc Ve ()] 4+ (DAVa(5)), €n@)) + [l ) ds + =t Do
Sending first k& — oo, and then dividing this by ¢ and sending ¢t — 0, we get

0 < [lefloole(2)] 4 {€nl), Dp(2)) + | flloo + €[] Dol oo-

Noting that ¢ > 0 is arbitrary in the above, we conclude the proof. []
Proof of Lemma 3.5. Select sequences v; > 0 and a; € A (i = 1,...,m) so that

m

‘fn(z) = Z %‘g(Z, ai)-

=1

Set I ={1,...,m} and h(i) = ¢(z,qa;) for ¢ = 1,...,m. The first step of the proof is to
prove that there is a measurable function /3 : [0,00) — I such that

(3.9) /Ot h(B(s))ds € B(th,et) (t>0),
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where h = >0 ~ih(i).
Set v = 0, and define ¢ : [0,1) — I by

1—1 7
(t)=i if ieNand > 3 <t<) %
k=0 k=0

Extend the domain of definition of ( to [0,00) by periodicity, i.e.,
C(t)y=C(t—k) if keNandk<t<k+1.
For k € N define (j : [0,00) — I by setting

Ck(t) = C(kt).
Observe that for £ € N,

—1 N m

tA] h@k@)yk:=k—{4]huxs»dszjk—1§jvﬂmw:=jk—lm

=1

and furthermore that for k,j € N and (j — 1)k™1 <t < jk™!,

tKMMWMZAWMAMM”“+[ et

i1k
t

G- [ b,

(J—1)k1

Hence, we have

/t h(Cels))ds — th‘ < 2k~ max |h(7)].
0
Fix e > 0. Choose k € N so that
2k~ max |h(i)| < e.
Define 3 : (0,00) — I by
B(t) = ((277t) if j€Z and 2/ <t < 27T,
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Let p € Z and 2P <t < 2PTL Compute that

It > " hatends+ [ wiscon
-y / pas 2 [ htos
-y [ rcaienas v [ e
W / T (s = 27 4 27 / BTN

Therefore, we have

t
/ h(3(s))ds — th‘ < 2Pt e max [h(i)] < 267 max |[R(i)]t < et.
0

We have proved (3.9).
Choose L > 0 so that

|g(:1:,a)—g(y,a)|§L|:1;—y| (xvyEUn-l-lv GEA)‘

Let 6 € (0,1). Fix any « € B(z,0), so that € U,,1;. Define a € A by a(t) = ag and
set X(t):= X(#;2,a). We have

[ X(s) = 2] < lgllees (s = 0),

and hence,

[X(s) = 2] < (lgllec +1)& (0 < s <0).

We may assume that (||¢||ec + 1)0 < 1, so that X(¢) € Uy4q for all <t < 6.
By (3.9) we have

/Ot g(z,a(s))ds € B(tfR(z), et) (t>0).
This yields that for 0 <t < 6,
| aX () atends € Bl et + Lilalo + 1)60)
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We fix 6 > 0 so that

(lgllee + 1) <1 and  L(|lg[lec +1)é <c¢,

and conclude that for all 0 <t <6,
t
X(t)=a+ / g(X(s),a(s))ds € B(x + t&,(2), 2¢t). i
0

Theorem 3.5. Assume that (3.1)-(3.4) hold. Then the value function u(x) = V(x) is
uniformly continuous on 2 NU, for every n € N.

Proof. We fix n € N and need to show that

(3.10) h{% sup{u(z) —u(y) |2,y €QNU,, |z —y| <r} <O0.

To this end, we set

((x) = dist (z,U,) (2 €H),
fix v > 0, and define
v(e) = u(@) +7(Aol(x) + (14 [lgll)) (v € Q).

Using Theorem 3.2 and the fact that D~v(x) C D™ u(x) + B(0,7)), we easily see that v
is a viscosity solution of

H(xz,v(z),Dv(z)) >~ (z€Q).
Next we fix k € N so large that yAo((x) > 2|Ju||« for all + € U}. Define
G=QnU, and I=QnaoUy,
and observe that

lim sup{u(z) —v(y) | z,y € G, dist (z,I) <7, |t —y| <r} <O0.

™\,0
An application of Theorem 2.1 yields that

lim sup{u(e) — ofy) | 0.5 € G, |o—y| <1} <0,
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and hence that

li{r(l) sup{u(z) —u(y) |2,y €QNU,, |t —y| <r} <0,

completing the proof. [

Theorem 3.6. Assume that (3.1)(3.4) hold. Letu : Q@ — R and v : Q@ — R be,
respectively, a bounded viscosity solution of

(3.11) H(z,u(z),Du(x)) <0 inQ,
and a bounded viscosity solution of
(3.12) H(z,v(z),Dv(x)) >0 in Q.

Assume that u is uniformly continuous on QN U, for alln € N. Then u < v on Q.

This theorem can be proved by the method of the proof of Theorem 3.5 with obvious
modifications provided with the following lemma at hand. It is thus left to the reader to
give the details of the proof.

Lemma 3.7. Under the hypotheses of Theorem 3.6, let u be the function from Theorem
3.6. Letn € N and &, be from (3.4). Then

—(£p(z), Du(z)) < K on dQNU,

in the viscosity sense, where K 1= ||c||so||tt||so + || f oo

Proof. We borrow an argument from [15] for the proof of this theorem.
We argue by contradiction and thus suppose that there were a point & € 9Q N U,, and
a function ¢ € CY(B(&,r) N Q), with r > 0, such that

(3.13) —(&n(2), Dp(2)) > K
and such that
u(2) =¢(z) and (u—¢)(z)< —|r—2)* (€ B(z,r)NQ).

We will obtain a contradiction. B
We may assume that B(Z,r) C U, and that D¢ is bounded on B(&,r) N 2. We set



and observe that u < on dB(2,7)NQ and u(z) > (7).
Set

n = ‘fn(i')
Choosing r > 0 small enough, we have
(3.14) Bz +sn,rs) CQ (x€B(2,r)NQ, 0<s < 7).
In view of (3.4), we see that there are finite sequences a;, € A and A; > 0, with
1 =1,...,m, such that

£n(2) = i/\ig(i’,ai) and zm:/\i =1.
i=1 i=1

We set .
£(z) = Z/\ig(:z:,ai) (x € B(2,r)N Q).

In view of (3.13) and (3.14), we may assume that
—{{(x), Dp(x)) =2 K +r (€ B(a,r)nQ),

and that
B(x +s&(z),rs) CQ (r € B(2,r)NQ, 0<s< 7).

These together imply that ) 1s a viscosity solution of
—(&(x),Dp(2)) > K +r (x€ intB(2,7)NQ).
On the other hand, since u is a viscosity solution of

H(z,u,Du) <0 in

Y

it is also a viscosity solution of
—(&(x), Du(z)) < K in Q.
We now claim that « < ¢ on B(Z,r) N Q, which yields u(#) < ¥(2), a contradiction.
To prove this claim, we follow the standard argument introduced by [19] for proving

comparison theorems for state-constraint problems.
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Thus we consider the function
Co(r,y) = u(x) —¥(y) —lalz —y) =l = (p,2) — (¢.y)
on B(Z,r)NQ with p, ¢ € H satisfying
o?(Ip| +lal) < 1.

We may choose p, ¢ so that @, attains a maximum at some point (24, Yq)-
It is clear that as a — oo,

|Oé($a - yoz) - 77|2

stays bounded. In particular, we have
Ta —Ya — 0 as o — oo.

We are only concerned with large o and hence we may assume that « is as large as we

desire. If

lim sup max{|zo — 2|, |ya — &|} = 7,
a— 0

then we get
lim sup sup @, <0,

n—oo

since u < ¢ on B(&,r)NQ and u, ¢ are uniformly continuous on B(#,7)N Q, from which
it follows that

sup (u—1) <0,
B(&,r)nQ

If this is not the case, we may assume that for all @ under considerations, we have
ro € B(2,p) and y. € B(2,p)

for some p € (0,r).
Selecting 6 € (0,r) small enough, by (3.14) we have

B(x +1tn,6t) C B(2,7)NQ (2 € B(2,p)NQ, 0<t<6).
We may assume that 1/a < §, so that yo +a~1n € B(#,r) N Q. Hence, we have

Po(TarYa) > Po(Ya + 10, ¥a),
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and therefore,
la(za = ya) =0 S w(lta = ya —a™'n)) + M/a,

for some constant M > 0, where w is the modulus of continuity of u. This implies that as
a — 00,

|Oé($a - yoz) - 77|2 — 0.
Set (o = &(2q — Yo) — 1. Then

To = Yo + 05_1(77 + Coz)a

and we may assume that v, € int B(yo +a 1n,a™18) C Q. Since 24, y, € int B(&,r), we
have

—2a({(7qa), ((To = Ya) = 1) +p) < K;
—20({(Ya), (o = Ya) =N —q) = K + 1.

From these we get

r <2Lip (§)|a(za — Yo)lla(za — ya) — 1| + 20|l (P + |g])
<2Lip ()(Ja(wa — ya) = 0l + [nD)|a(za — ya) — 0l + 20/|&]lo (Ip] + la])-

Sending o — 0o, we get a contradiction, which proves that SUpP 5 r)mﬁ(u —)<0. U

64 Finite horizon problems

We treat here state-constraint problems with finite horizon on the same themes as in
the previous section. Many of arguments parallel those for infinite horizon problems which
will be often omitted presenting here.

Set Hi = HxRandlet f : HiyxA—-R,g: HixA—-H,c: Hi —R,andh: H— R
be given continuous functions. As in the previous section let {U,} be a sequence of open
subsets of H satisfying

U,+ B(0,1) CUp4q and B(0,n) C U, (n € N).
Our assumptions on f, ¢, ¢, and h are as follows:

(4.1) f, g, ¢, and h are bounded on Hy;
(4.2) for each n € N there are a function w, € C([0,0)), with w,(0) =0, and a constant
L, > 0 such that for all 2,y € U,, t,s € R, and a € A,
[f(z,t,a) = f(y,s,0)] Swnllz —y[+ [t = s]),
|e(x,t,a) — ey, s,a)] Swn(lz—y|+ |t = s]),
[h(z) = h(y)| < wnllz —yl),
a) (

l9(w,t,a) = g(y, s,a)| < La(le —y|+ |t = s]),
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In many applications the functions f, ¢, and ¢ are defined only on Q x [S,T] x A for
some open subset €2 of H and some constants S < T. Our results in this section can be as
well applied in this situation by extending f, ¢, and ¢ to functions on H; x A.

The optimal control problem which we are here concerned with is described as follows.

Here in this section A denotes the set of all measurable functions &« : R — A. For
(x,t) € Hy and o € A we consider the initial value problem

X(s)=g(X(s),a(s)) (s>1),  X(t) =z,

the solution of which will be denoted by X (s;x,t,«). It is obvious that the values a(s),
with s <, is irrelevant to the definition of X (s; z,t, «).
Let ©Q and T be a given open subset of H and a given positive number, respectively.

Let Q7 denote the set Q x (—co,T).
For (x,t) € Qp we set

Az, t) ={a € A| X(s;2,t,a) € Qfor all s € [t,T]},

and define

V(z,t)= inf (/t e(s;a,t,a)f(X(s),s, a(s))ds + e(T;x,t,oz)h(X(T))) \

a€A(z,t)

where X (s) := X (s;2,,«) and

e(s;x,t,a) = exp{— /ts c(X(T),T,a(T))dT}.

Since the values «(s), with s <t or s > T, are irrelevant to the definition of V(x,t) and
so we may regard the map a € A(x,t) as a map defined on [t,T]. We call the function V
the value function of our control problem.

As before we make an assumption regarding the directions of the vector fields

{g(x,t,a) |a € A}.
(4.3) For each n € N there are a map &, : U, x R — H and a constant ¢,, > 0 having the
properties:
a) &, is bounded and Lipschitz continuous on U, x R;
b) En(z,t) € co{g(z,t,a)[a€ A} for (2,t) € (9QNU,) x R;
¢) Bly+s€n(x,t),0n8) CQ for (x,t) € (O2NU,) xR,y € QNU,, and 0 < s < 6,
Proposition 4.1. Assume that (4.1)~(4.3) hold. Then the set A(x,t) is non-empty for

all (v,t) € QU x (—o0,T). Moreover, the value function V is bounded on Q x [S,T] for all
S e (—o0,T).
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As before the proof of this proposition is based on the following lemma.

Lemma 4.2. Assume that (4.1)<(4.3) hold. Let n € N and &, be the map from (4.3).
Then for each ¢ > 0 there is a constant o > 0 such that for each (z,7) € (2N TU,) x R
there 1s an o € A for which

X(s;x,t,a) € B+ (s —t)n(z,7),e(s —t)) ((x,t) € B(z,7;0), s € (t,t+0]).

Proof. This is a consequence of Lemma 3.3. In order to see this, let us introduce the
notation:

Vi =U, xR, Y(s;x,t,a)=(X(s;z,t,a),s),

gi(x,t,a) = (g(x,t,a),1), and n,(x,t)=(Eu(x,1),1),

for (x,t) € H1, « € A, a € A, s > t, and n € N, where ¢, is the map from (4.3). Note
that if we set Y(s) := Y (s; 2,1, ), then

Y(s)=q(Y(shals) (s>1),  Y(t)=(a1).

With Hy, Vi, g1, 7, and © x R replacing 'H, U,, ¢, £,, and €2, respectively, conditions
(3.1), (3.2), and (3.4) are satisfied. Therefore, Lemma 3.3 yields that for each ¢ > 0 there
is a 0 > 0 such that for every (z,7) € (2N U, ) x R there is an « € A for which

Y(t+s;x,t,a) € B((x,t) + snn(z,7),e8) ((x,t) € B(z,7;0), s € (0,0]),
which implies that
X(s;x,t,a) € B(a 4 (s —t)€n(z,7),e(s =) ((x,t) € B(z,7;0), s € (t,t+0]).

Thus, the proof is complete. [

With regard to the proof of Proposition 4.1, it can be proved that A(x,t) # 0 for all
(x,t) € Q x (—00,T) by repeating the arguments in the proof of Proposition 3.1 with
Lemma 4.2 in place of Lemma 3.3, the proof of which we do not present here. The rest of
the proof can be done by observing that for (z,t) € @, and « € A(x,t),

/t e(8)F(X(s), s, a(s))ds + «(T(X(T))| < Tl (T — 1) fllow + |l ).

where e(s) :=e(s;2,t,a) and X(s) := X(s;2,t, a).

30



In what follows we write

H(z.t.r.p) = sup{e(z.t.a)r — (g(z.t.).p) = Fw. )} ((r.1.r.p) €D x Rx Rx M),

Theorem 4.3. Assume that (4.1)~(4.3) hold. Then the function u(x,t) := V(x,t) is a

mscosity solution of

(4.4) {—ﬂ&%ﬂ+&ﬂ%tu@J%Du@JDZO
: —ug(x,t)+ H(x,t,u(x,t), Du(z,t)) <0 ((z,t) € Qr).

Furthermore fit n € N and S € R, with S < T, let &, be the map from (4.3), and set
K = ||| SUPG, (5.7) VI+ | fllso. Then u satisfies

—ug(2,t) — (Enlz,t), Du(z,t)) < K ((2.1) € (9QNTUy) % (S,T))

in the viscosity sense.

Again, the arguments in the proof of Theorem 3.2 can be applied to proving this
theorem with minor modifications, and thus we leave it to the reader to give the details of
the proof.

Theorem 4.4. Assume that (4.1)~(4.3) hold. For each n € N and S € R, with S < T,
the function u(x,t) := V(x,t) s uniformly continuous on (2N U,) x [S,T].

Proof.  We will use Theorem 2.1 to prove this theorem.
To this end, we first observe that for all (z,t) € Qp,

IM%ﬂ—h@NSagﬁﬁ{ZT%WﬂX@%&MQWk+RGWWWTD—M@@,
where X(s) 1= X(s;2,t,a) and e(s) := e(s; 2, %, a). Since

X(s) € B(x, |lgllo(T = 1)) (t<s<T),
we deduce that for all n € N,

(4.5) li{n sup{|u(z,t) — h(z)| |z € QNU,, T—r<t<T}=0.
™\,0

We fix n € N and will show that

(4.6) ll{r(l) sup{u(z,t)—u(y,s) | (z,t),(y,s) € (U)X [T—n,T), |x—y|+|t—s] <r} <O.
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Set S =T —n—1, A\ = 1+ ||c||, and v(z,t) = u(x,t)e*, and observe that v is a
viscosity solution of

Moz, 1) — vz, 1) + M H(z,t, e Mo(z,t), e M Do(x,1)) <
Mo(x,t) — v, t) + M H(x,t, e Mo(x,t), e M Do(z,t)) >

and of
Mo(x, 1) — (na(z,t), (ve(x, 1), Do(z, 1)) < MK ((x,1) € 92 x (S,T)),

where K := ||¢||« SUDG . [5,7] V141 flco-
As in the proof of Theorem 3.5, we set

((z) = dist (z,U,) (x €H)

and

w(z,t) = v(e, )+ ¢(@) + lglle +1 ((x,t) € Qp),

and then observe that w is a viscosity solution of

Mwo(z,t) — wi(x,t) + e MH(z, t, Moz, t), eMDw(z, 1)) > 1 ((z,t) € Ax (S,T)).
Fix k € N so large that

C(xz)>2 sup |v| (x€9Uy).
Qx[S,T)

Set Q1 = (QNUx) x (S, T)and I = QN U x {S,T}. Note that the function

on ; x R x H; satisfies (2.3)(2.5).

Finally we choose a function j € C!'(R) so that j'(#) < 0 for all t € R, j(¢) = 0 for all
t>S+1, and j(S) > 2supg, [v], set

z(x,t) =w(x,t)+5(t) ((x,t) € D),
and see that z is a viscosity solution of
Hi(z,t,2(x,t), Dz(x,t), ze(x,t) > 1 ((2,t) € (AN TR) x (S, T)).
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Because of (4.5) and our choice of k and j, we find that

li{n sup{v(x,t) — 2(y,8) | (v,1),(y,s) € Qy, dist((w,t),]) <7, |z —y|+]t—s|<r} <O
r™\0

Now, applying Theorem 2.1, we obtain

li{r(l) sup{v(x,t) — z(x,y) | (2,1), (y,58) € Q, |zt —y|+ |t —s| <r} <0,

which ensures that (4.6) holds. [

Theorem 4.5. Assume that (4.1)-(4.3) hold. Let S < T be a constant. Let u : Q x
(S, 7] = R and v:Q x (S,T] — R be, respectively, a bounded viscosity solution of

—uy(x,t)+ H(x,t,u(x,t), Du(z,t)) <0 ((x,t) € 2 x(S5,T)),
and a bounded viscosity solution of

—ug(x,t) + H(x, t,u(x,t), Du(z,t)) <0 ((x,t) € Qx (S,T)).
Suppose that u is uniformly continuous on (QNU,) x (S,T] and

liir(l)sup{u(x,T)—v(y,s) |2,y €QNU,, T—r<s<T, |lt—y|<r}<0

for alln € N. Then

li{r(l) sup{u(z,t) —v(y,s) | (z,1),(y,5) € (QNU,) x (S,T], |[x —y|+ |t —s| <r} <o0.

This theorem can be proved along the line of the proof of Theorem 3.6 with additional
technicalities, most of which can be found in the proof of Theorem 4.4. We thus omit
giving the details of the proof here.
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