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Abstract

We construct a random crystalline (or polyhedral) approximation
of a convexified Gauss curvature flow of bounded open sets in an
anisotropic external field. We also show that a weak solution to the
PDE which describes the motion of a bounded open set is unique and
is a viscosity solution of it.

1 Introduction

Gauss curvature flow is known as a mathematical model of the wearing pro-
cess of a convex stone rolling on a beach and has been studied by many
authors (see e.g. 2, 3, 6, 7, 11, 14, 24]).

In the last few years we have been generalizing the theory of Gauss cur-
vature flow to a class of nonconvex sets.
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In [17] we studied the existence and the uniqueness of a viscosity solution
to the PDE that describes the time evolution of a nonconvex graph by a
convexified Gauss curvature (see (1.10) for PDE).

In [19] we proposed and studied the discrete stochastic approximations
of evolving functions which are generalizations of those considered in [17],
and proved the existence and the uniqueness of a weak solution to the PDE
which appears in the continuum limit of discrete stochastic processes, and
discussed under what conditions a weak solution to the PDE is a viscosity
solution of it.

In [20] we studied the existence and the uniqueness of the motion (or time
evolution) of a nonconvex compact set which evolves by a convexified Gauss
curvature in RY (N > 2), by the level set approach in the theory of viscosity
solutions (see e.g. [5, 10, 23| for the level set approach).

We introduce the notion of the motion of a smooth oriented closed hy-
persurface by a convexified Gauss curvature.

Let M be a smooth oriented closed hypersurface in R" and e be a smooth
vector field over M of unit normal vectors. For x € M. let T, M denote the
tangent space of M at x, and let A, : T,M — T, M denote the Weingarten
map at = defined by the following:

A;(v) = —=Dye forveT,M, (1.1)

where D, e denotes the derivative of e with respect to v. Recall that the
principal curvatures ki, -+, k, (n:= N — 1) of M at z are the eigenvalues
of the symmetric map A, and the Gauss curvature K(z) of M at z is given
by det A,.

Let C be the convex hull co M of M. We define o : M — {0, 1} by

1 ifxre MNoC,
(1.2)
0 otherwise,

and call o(x)K(z) the convezified Gauss curvature of M at .
The motion of a smooth oriented closed hypersurface by a convexified
Gauss curvature is the curvature flow:

v=—0Kuv, (1.3)

where v denotes the unit outward normal vector on the surface and v denotes
the velocity of the surface.



Let (A;)+ denote the positive part of the symmetric map A,. K (x) =
det{(A;)+} is called the positive part of the Gauss curvature of M at x, and
the following holds:

o(x)K(z) = o(x)Ky(x). (1.4)
Remark 1 For z € M,
det A, if A, is nonnegative definite,
det{(A,);} = | (15)
0 otherwise.

The crystalline (or polyhedral) approximation of a smooth simple closed
convex curve which evolves as the curvature flow was considered by Girao
and is useful in the numerical analysis (see [13] and the references therein).
We refer to [12] and the references therein for the recent development of this
topics.

When N = 2, the discrete stochastic approximation of the curvature flow
of smooth simple closed convex curves was given in [18] where the model and
the approach are completely different from those in this paper.

In this paper we propose and study the discrete stochastic approximation
of a convexified Gauss curvature flow of bounded open sets in an anisotropic
external field. Our result in this paper is the first one in case N > 3, among
random and nonrandom results, which gives a crystalline approximation of
the motion of a bounded open set in R by Gauss curvature.

We briefly describe what we proved in [19], and then discuss the results
in this paper more precisely to compare a convexified Gauss curvature flow
of graphs with that of closed hypersurfaces.

For z € R and u : R" — R, the following set is called the subdifferential
of u at x:

ou(z) :={pe R":u(y) —u(zx) >p- (y — ) for all y € R"}, (1.6)

where - denotes the inner product in R".
Alexandrov-Bakelman’s generalized curvature introduced in the following
played a crucial role in [19].

Definition 1 (see e.g. [4, section 9.6 |). Let R € L}(R™ : [0,00),dx) and
u € C(R"). For A € B(R")(:=Borel o-field of R™), put



w(R, u, A) ::/ R(y)dy (A€ B(R")). (1.7)
UzeaOu(r)
Let T € [0,00] and R € L*(R" : [0,00),dx). We showed the existence
and the uniqueness of a solution v € C([0,7') x R") to the following equation
(see [19, Theorem 1]): for any ¢ € C,(R™) and any ¢ € [0,T),

/ngo(a:)(u(t,a:) — (0, 2))dr = /Otds/ngo(x)w(R,u(s,-),da:). (1.8)

The existence of a continuous solution to (1.8) was given by the continuum
limit of the infinite particle systems {(Z,,(t, 2)).czn/m }+>0 that satisfies the
following: for any ¢ > 0 and any z € Z"/m,

P(Zpn(t+ AL, 2) = Zyn (1, 2) > 0) = m"E[w(R, Zu(t, ), {z})] At +0(At) (1.9)

as At — 0 (m > 1), where Z,,(t,-) denotes a convex envelope of the function
2 +— Zn(t,2), ie., the graph of the boundary of the convex hull, in RY, of
the set {(z,y)|z € Z"/m,y > Z,,(t,2)}.

In [19, Theorem 2], we proved that a continuous solution u to (1.8) sweeps
in time ¢ > 0 a region with volume given by ¢-w(R,u(0,-), R"), and that, for
continuous solutions u and v to (1.8) with v(0,-) = 4(0, -), u(t, ) is different
from v(t,-) at time ¢ > 0 in general if u(0, -) # (0, -).

We also showed that a continuous solution to (1.8) is a viscosity solution
of the following PDE (see [19, Theorem 3)):

owu(t, r) = x(u, Du(t, z),t, 2) R(Du(t, z))Dety (D*u(t, x)) (1.10)

((t,x) € (0,00) x R"), where Du(t,z) := (Qu(t,x)/dz;)",, D*u(t,z) :=
(0?u(t, x)/@xiaxj)zjzl,

1 if p € Ju(t, z),
NCRAEE { 0  otherwise

(Ou(t, ) denotes the subdifferential of the function z — u(¢, x)). Conversely,
we discussed under what conditions a viscosity solution to (1.10) is a solution
to (1.8).



Remark 2 When R(p) = (1 + |p|?)~(»+1)/2,

(1 + |Du(t, x) |2)*1/2x(u, Du(t,z),t, z)R(Du(t, z))Dety (D*u(t, z))

can be considered as the convexified Gauss curvature of {(y,u(t,y))ly €
R} at z if we consider {(y, z)ly € RY,z > u(t,y)} as the inside of the
hypersurface {(y, u(t,y))|ly € RV}.

Next we briefly discuss what we study in this paper.
Let F be a closed convex set in RY. For € 0F, put

Np(z) ={pe S MF c{yl <y—=z,p><0}},

where < -, > denotes the inner product in R".
To consider a convexified Gauss curvature flow of bounded open sets by
the level set approach, we introduce new types of measures.

Definition 2 Let u be a bounded function from a subset of R to R, and
R e LY(SN71:]0,00),dHN ™), where dHN ™! denotes a (N — 1)-dimensional
Hausdorff outer measure.

(i). Let r € R. For B € B(RY), put

w(R,u, B) i= / R(p)dH " (p),  (L.11)

N )),(6(00 u—1([r,00)))NB)

co u—1([r,00
where A~ denotes the closure of the set A.
(ii). For B € B(R"Y), put
w(R,u, B) := / drw,(R,u, B), (1.12)
R
provided the right hand side is well defined.

When it is not confusing, we write w, (R, u, dx) = w,(u, dzr) and w(R, u, dz) =
w(u, dx) for the sake of simplicity.

The existence and the uniqueness of a solution to the following equation
is given in section 2.

Definition 3 Let T € [0,00] and R € LY(SN1: [0, 00), dHYN™1). A family of
bounded open sets {D(t) }+epo,ry in RY is called a convexified Gauss curvature
flow in an (R-)anisotropic external field on [0,7") if
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D(t) = (co D(t)) N D(0) forte[0,7), (1.13)
and if the following holds: for any ¢ € C,(RY) and any ¢ € [0,T),

/R (@) Ipo(@) — I (x))dr = /0 ds /R (@) (R, Ipg(). dx). (1.14)

We also show the existence and the uniqueness of a solution u € Cy([0, T) x
RY) to the following: for any ¢ € C,(RY) and any ¢ € [0,7),

/RN o(@) (0, ) — u(t,z))de = /Ot ds /RN o(@)w(R, u(s, ), dz).  (1.15)

The existence of {Ip)}e>0 in Definition 3 is given by the continuum limit
of a class of particle systems {(Yon(t, 2)).czn /m fe=0 that satisfies the follows:
for any ¢ > 0 and any z € Z" /m,

P(Y,(t+ At 2) — Yy, (t,2) < 0) = m" Elwy(YViu(t, ), {z})]At +o(At) (1.16)

as At — 0 (m > 1) (see Theorem 1 in section 2).

The existence and the uniqueness of a solution to (1.15) will be given by
the continuum limit of the linear combinations of solutions to (1.14) with
D(0) = u(0,-)7*((r, 00)) for 7 € R (see Corollary 2 in section 2).

We also discuss the properties of {D(t) }4>0 in Definition 3 (see Theorem
2 in section 2).

For p € RY and a N x N-symmetric real matrix X, put

|p|det+(—(I—ﬁ@ﬁ)%([—ﬁ®5)+ﬁ®ﬁ) if p # o,
0 ifp=o
(1.17)

G(p, X) ;:{

(see (1.4) for notation), where p := p/|p|.

Suppose that a smooth oriented hypersurface M in RY is given by M =
{y € RN | ¢(y) = a, Do(y) # o} for some p € C*(RY) and a € R, and
that the vector field e is given by e, = Dy(x)/|Dy(x)|. Regard the tangent
space, T, M, as the orthogonal complement of e,, and let F, := span e, and
idg, denote the identity map on E,. Then the map
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A, @idg, :RN=T,M®E, - T,M® E,

has a matrix representation

X o
—(I—p®p)m(1—p®p)+p®p,

with p = Dy(z) and X = D?p(x). Therefore,

K(z) = det(—(I—ﬁ@ﬁ)%([—ﬁ@ﬁ)ww), (1.18)
Ki(z) = G(i;|X). (1.19)

For {D(t)}/>0 in Definition 3, we show that Ipy(z) and Ipy-(x) are
respectively a viscosity supersolution and a viscosity subsolution of the fol-
lowing PDE (see Theorem 3 in section 2):

Du(t, x)

du(t. ) + R e

>0(u, Dul(t, ), t, 2)G(Dult, z), D?u(t,z)) = 0

(1.20)
((t,7) € (0,00) x RY). Here

_ (1 ifu(t,r) <wu(t,z) on H(p,z) and p € RV \ {o},
o (wpt,x) = {0 otherwise,
(1.21)
where

H(p,z):={y e RM\{z}| <y —z,p>< 0} (1.22)

Moreover, we show that a continuous solution to (1.15) is a viscosity
solution of (1.20) (see Corollary 3 in section 2).

In [21], we will study the uniqueness of a viscosity solution to (1.20),
from which we conclude that a viscosity solution to (1.20) with a bounded
continuous initial data is a unique solution to (1.15).

Since G(p, X) is singular at p = o, the standard definition of a viscosity
solution (see [8]) is not appropriate for (1.20). We take the definition of a
viscosity solution to (1.20) from [22].



We first introduce the set of admissible test functions. We denote by F
the set of all functions f € C*([0, c0)) for which f” > 0 on (0, 00) and

LG Y (1.23)

rio N

Let © be an open subset of (0,00) x RY. A function ¢ € C%(Q) is called
admissible in Q if for any ({,2) € Q for which Dy vanishes, there exists
f € F such that as (t,z) — (£,2),

lp(t,2) — @, 2) = Oup(E, 2)(t = D) < f(la = &]) +o(t 1))  (1.24)
We denote by A(€2) the set of all admissible functions in €.

Remark 3 f(r) =r™*' € Fand ¢(t,z) = f(|z — 2|) € A((0,0) x RY) for
any 2 € RV.

Definition 4 (Viscosity solution) Let 0 < 7" < 0o and set €2 := (0,7 x
RN, and put R(o/|o|) := 0.

(i). A function u € LSC(Q2) is called a viscosity supersolution of (1.20) in
Q if whenever ¢ € A(Q), (s,y) € 2, and u — ¢ attains a local minimum at
(s,y), then

Bup(s, ) + R(m)oﬂu, Dep(s. ), 5,9)G(Dpls, ). Dp(s,9)) > 0,

(1.25)
where

1 ifu(s,:) <u(s,y) on H(p,y) and p € RV \ {o},
o (U, 5, y) = {0 othe(zrwi)se. =9) (-] Ve
(1.26)
(ii). A function u € USC(() is called a viscosity subsolution of (1.20) in 2 if
whenever p € A(Q), (s,y) € 2, and u — ¢ attains a local maximum at (s, y),
then

D(s,y)

m)GWw% Dp(s,y)) < 0.

(1.27)

dep(s,y) + o~ (u, Dp(s,y), s, y)R(



(iii). A function u € C(2) is called a viscosity solution of (1.20) in € if it is
a viscosity supersolution and a viscosity subsolution of (1.20) in 2.

Remark 4 ot (u,p,s,y) > o (u,p,s,y) for all u: Q@ +— R and all (p,s,y) €
RY x Q.

Let Ap(€2) denote the set of all ¢1(t) + ¢a(x) € A(2) such that z —
G(D¢a(x), D*¢a(x)) is continuous in 2. Then one can repalce, in Definition
5, A(£2) by Ay(£2) (see [20]).

Remark 5 For any f € F and 2 € RY, p(t,z) = f(|z — z|) € Ap((0, 00) x
RY).

In section 2 we state our main results which will be proved in section 4.
In section 3 we give technical lemmas.



2 Main Result

In this section we give our main result.
We give two assumptions to state the stochastic process which approxi-
mates the solution to (1.13)-(1.14).

(A.0). D is a bounded open set in RY.
(A1). R LMSY "1 [0, 00), dHN 1) and ||R||1igv-1) = 1.

Take K > 0 so that co D C [-K + 1, K — 1]¥. For m > 1, put

Sy = {4 [-K, KN N (ZY/m) — {0,1}|A C [-K, K]N N ZY /m},(2.1)
D,, = Dn(Z"/m).
For x, z € ZY /m and v € S,,, put

V() = {v(a:) if x # 2z,

0 ifxr==z
; and for f: S, — R, put

Amf(v) = m" Z wl(Rv v, {Z}){f(vm,z) - f(U)} (23)

2€[-K,KINN(ZN /m)

Let {Y,,(t, ) }+>0 be a Markov process on S, (m > 1), with the generator
Ap, such that Y,,(0,2) = Ip, (2) (z € [-K,K]Y N (ZN/m)). For (t,z) €
0,00) x [-K, K], put also

Xm(t, CL’) = ](co Ym(t,-)_l(l))oﬂD('T)a (24)
where A? denotes the interior of the set A C RV.
Then {X,,(%, ) }+>0 is a stochastic process on

S:={f e L*([-K.K™) : [|flle2-wmqvy) < RK)} (2.5)

which is a complete separable metric space by the metric

Zomax(| < f—g,er >k i 1)

k=1

. (2.6)

Here {e;}r>1 denotes a complete orthonomal basis of L?([—K, K]V).
The following is our main result.
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Theorem 1 Suppose that (A.0)-(A.1) hold. Then there exists a unique
solution {D(t)}i>o to (1.13)-(1.14) with D(0) = D on [0,00) such that
Ipy(-) € C([0,00) : L*([—K, K|V)) and that the following holds: for any
v >0,

Tim_ P(sup [[Xon(t,) = o ()lleoramy 2 ) =0 (27)

t>0

We recall Hausdorff metric of compact sets A and B ¢ RV:
dy (A, B) :== max(maxdist(p, B), max dist(q, A)). (2.8)
pEA q€B

As a corollary, we obtain

Corollary 1 Suppose that (A.0)-(A.1) hold and that D is convex. Then for
a unique solution {D(t)}>¢ to (1.13)-(1.14) with D(0) = D on [0, 00), the
following holds: for any 7" € [0, Vol(D)) and any v > 0,

lim P( sup dg(co Yn(t,-) (1), D(t)) > ) = 0. (2.9)

m—oo 0<i<T

We introduce the assumption on the initial function in the equation (1.15).
(A.2). h € Cy(RY). For any r € RY, the set h™1((r, 00)) is bounded or RY.
Then one can easily obtain the following from Theorem 1.

Corollary 2 Suppose that (A.1)-(A.2) hold. Then there exists a unique
continuous solution {u(t,-)}>o to (1.15) with u(0,-) = h(-) on [0,00). In
addition, for any r € R, {u(t,-)7*((r, 00)) }+>0 is a unique solution to (1.13)-
(1.14) with D(0) = h=!((r, 00)) on [0, c0).

The following theorem collects some of elementary properties of solutions
o (1.13)-(1.14).

Theorem 2 Suppose that (A.0)-(A.1) hold. Let {D(t)};>0 be a unique so-
lution to (1.13)-(1.14) with D(0) = D on [0, c0). Then the following holds.
(a) t — D(t) is nonincreasing on [0, 00).

(b) For any ¢t < T™ := Vol(D(0)),

Vol(D(0)\D(t)) = t. (2.10)
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(¢) D(t) =0 for t > T™.
(d) Let {D1(t)}+>0 be a solution to (1.13)-(1.14) on [0, c0) such that D;(0)
is a bounded, convex, open set which contains . Then

D(t) C Dy(t) forallt >0, (2.11)
where the equality holds if and only if D(0) = D;(0).

Under
(A.3). R C(SN=1:[0,00)),

we give the relation between the solution to (1.13)-(1.14) and the viscosity
solution of (1.20).

Theorem 3 Suppose that (A.0)-(A.1) and (A.3) hold. Then for a unique
solution {D(t)}+>0 to (1.13)-(1.14) with D(0) = D on [0,00), Ipw(x) and
Iy~ (z) is a viscosity supersolution and a viscosity subsolution to (1.20) in
(0,00) x RY, respectively.

As a corollary, we obtain

Corollary 3 Suppose that (A.1)-(A.3) hold. Then a solution {u(t,-)}>o
to (1.15) with w(0,-) = h(-) on [0,00) is a viscosity solution to (1.20) in
(0,00) x RY.
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3 Lemma

In this section we give lemmas which will be used in the next section.
We extend Y,,(t,) as a function on RY so that

o B 0 (x € DN (ZN /m)),
Ym(t: QJ) T {Ym(t7 [mx}/m) (33 = (xz)lj\il € RN);

where [ma] := ([mz;])Y.; and [mx;] denotes an integer part of ma;.

(3.1)

Remark 6 For z € Z" /m,

Yi(t, z) = Y (t, z)dx.

m {zeRN|[mz]=mz}

Lemma 1 Suppose that (A.0)-(A.1) hold. Then {Y,,(-,-)}m>1 is tight in
D([0,00) : 8), and any weak limit point of {Y,,(-, ) }m>1 belongs to the set
C([0,00) : S).

(Proof). Since S is compact and since ¢t — Y, (¢, z) is nonincreasing for any
x € RY, we only have to show the following (see [9, p. 129, Corollary 7.4
and p. 148, Theorem 10.2|): for any n > 0 and 7" > 0, there exists § > 0
such that for any ¢ for which 1 <1i < [T/d] + 1,

Tim_ P([Ton(i8,) = Pl = 16 N prremomy =) =0, (32)
Indeed, for any s and t for which (i — 1) < s <t <0,

You(s,2) = Y (t,x) =0 or 1,

and

ds(Vim(t, ), Vim(s,))? < [Vi(t,) = V(s iz x.rpvy
= |V u(i0,-) = Yo ((i = 1)8, )| L1 (k.11

For § < n/2 and m > 1, by Chebychev’s inequality and It6’s formula (see
[15]),
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PV (i6.) = V(i = D0 )l eicimy =) (3:3)

(see (2.2) for notation). Indeed,

1Y m(i6,-) = Yiu (i = 1)0, )| - r1m)
1 i6

— —ZezD:m 26 Z Ym((Z — 1)6, Z))m — (i_l)éwl(Ym(g;? -)7 Dm)dg
0
+ w1(Yon(s,+), Dp)ds.
(i—1)¢

Q. E. D.
Remark 7 In (3.3), if V,,,(s,-) = 0, then wy(Y,,(s,+), Dy,) = 0.

Lemma 2 Suppose that (A.0)-(A.1) hold. Then there exist a subsequence
{m}r>1 C N and stochastic processes {Y1,,, (-, -) }x>1 on a probability space
(€1, By, P;) such that the probability law of {Y ., () }x>1 is the same
as that of {Y,,, (-, ) }x>1, and such that {Yi,, (-,-)}r>1 is convergent in
D([0,00) : S), Pi-almost surely, and such that the following holds P;-almost
surely: for any 7' > 0 and ¢ € C(|-K, K|V)

1
sup | 0(2) (Vi (t,2) = Y1, (0,2) —5 (3.4)
0<t<T ZeDmk mk
+/ S (2w (Vi (s ). {z})ds| = 0 as k — oc.
ZEDmk

Here Y7, is defined by Y, in the same way as in Remark 6.
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(Proof). By Lemma 1 and Skorohod’s Theorem (see [9, p. 102, Theorem
1.8]), there exist a subsequence {mgj}tr>1 C N and stochastic processes
{Y 1m0, (- ) }r=1 on a probability space (€1, By, Py) such that the probability
law Of {Y 1 mq . (+; ) }rz1 1s the same as that of {Y,, (-, ) k=1, and such that
{Y 1mg . (- ) Jr=1 is convergent in D([0,00) : §), Pi-almost surely.

As in (3.3), by Doob-Kolmogorov’s inequality (see [15]), for any T' > 0
and ¢ € C([-K, K|V)

1
E Yimou(ts 2) = Yimg . (0,2)) ——% 35
e gy PO Vs O NG 69
t
T Vi (5., (2Ddsf >0 as k.
2€Dm 4,

Since a L?-convergent sequence of random variables has an almost surely-
convergent subsequence, and since C([—K, K|V) is separable, one can com-

plete the proof by the diagonal method.
Q. E. D.

When it is not confusing, we write ?1,mk =Y, and Yi,, =Y, on
(Q4, By, Pp) for the sake of simplicity.

Take zg € D and ro > 0 so that Uy, (20) := {y € RY : |xg — y| < 4ro} C
D, and put Uy := Uy, (x9). Then

Vo = é%fU Vol(Us,, (z0) N H(zg — x,x)) > 0. (3.6)
x 0
Put, on (1, By, P1),

T i= inf{t > 0|Y1,n(¢, 2) = 0 for some z € (Z" /m) N Uy}. (3.7)

Then the following holds.

Lemma 3 Suppose that (A.0)-(A.1) hold. Then

P (Vy < lilgninmek < limsup 7,,, < Vol(D)) = 1. (3.8)

k—o00
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(Proof). By (3.4), for any t > Vol(D),

lim sup{min(7,,,, t)} (3.9)
k—oc
) min(7m ,t)
= limsup w1 (Yo, (8, ), D, )ds
k—oo 0
1
< limsup Y (Vi (0, 2) = Yy, (min(7y,, ), 2)) — < Vol(D)
k—o0 2€Dm,, My
P~ almost surely. We also have
1
Vo < hmmf > (Vi (0, 2) = Yon (T 2)) — (3.10)
2€Dmm,, M
< liin inf [ w1 (Yon, (8, ), Dy, )ds = lign inf 7,
—o0  JO —00

P,- almost surely.
Q. E. D.

The following lemma can be proved in the same way as in [4, section 5.2]
and the proof is omitted.

Lemma 4 Suppose that (A.1) holds. Let F and F,,,(m > 1) be closed convex
sets in R such that OF and OF,,(m > 1) are closed hypersurfaces and such
that dy(F,,, F) — 0 as m — oo. Then w;(Ig,(-),dz) weakly converges to
wi(F,dr) as m — oo, that is, for any ¢ € C,(RY),

lim o(x)wi(IF,, (), dr) = /RN o(@)wr(Ip(+), dz). (3.11)

m—oo JRN

We denote by X(-,-) € C([0,00) : S) the Pi-a.s. limit of Yy, (-,-) as
k — oo. Then we have

Lemma 5 Suppose that (A.0)-(A.1) hold. Then there exists a solution

{D(t) }rep,vy) to (1.13)-(1.14) on [0,V;) such that the following holds P;-
almost surely:

X(t,x) = Ipw(z), dr—ae. foralltel0,Vp). (3.12)
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(Proof). For p € SN 1, let C(x, ro; p) denote a semi-infinite cylinder

{zg+rp+a:r>0,|z|<ro,<z,p>=02cR"}

which can be obtained by moving a (/N — 1)-dimensional ball

{zo+a:|2| <1, < 2,p >= 0,2 € RN}

in the positive direction of p.
Take py, -+, pr, € SV ! for some ko € N so that

coD C Ufilc(xo,ro;pi)-

For i = 17 ) kO: take {Qila ) qi(Nfl)} so that {Qilv Tty qi(Nfl)vpi} Is an
orthonormal basis in RY, and put

Crope (1) 1= co Yy, (¢, -) (D). (3.13)

For x = (x3)p-' € RN~ for which |z| < 2rg, put also

N-1
X i(t,x) := —sup{r > O|zo + rp; + Z gi;jxj € Cp, (1)} (3.14)

=1

Then X,,, ;(,-) is a bounded convex function on {z € RN~ : |z| < 7ro/4}
for t € [0, 7, ) if my > 8NY2 /1y,

It is known that the set of bounded convex functions with the same
domain is compact as the set of continuous functions defined on K for every
compact subset K of the interior of their domain (see [4, section 3.3]).

Therefore, by Lemma 3 and the diagonal method, there exists a subse-
quence { Xz, i(t,-) st of { X, i(t, ) }x>1 and a convex function X;(t, -) such
that for any t € QN [0,Vp) and i = 1,-- -, ko,

lim sup | X i(t.z) — Xi(t,z)| =0 (3.15)

k kst
T geRN 1 |z|<3ro/2

(Notice that {7 }r>1 can be random.).
_ Tt is clear that there exists a nonincreasing family of compact convex sets
{C(t) heqnio,v) such that for any ¢t € Q N[0, 1),

17



lim dg(Cp, (t),C(t)) = 0, (3.16)

k—oo
Xi(t,x) = —sup{r >0lzo+rpi+ Y qjz; € C(t)}
=1

foralli =1, ko, and x = (240" € RV~ for which |z| < 3rg/2.
In particular,

D < C(0) (by(2.2),(3.17)

,}LTEOHXl,m(ta')—Ié(t)va(')||L2([—K,K]N) = 0

for all t € QN [0, V), where X 5, is defined by Y; 5, in the same way as in
(2.4). When it is not confusing, we write X 5, = Xz, on (y,By, P;) for
the sake of simplicity.
The following also holds: for all ¢t € [0, V) N Q,
Igll—{go ||?Thk (tv ) o X'fhk (t, ')||L2([—K,K]N) =0. (318)
Indeed, if X,,(t,z) # Y,,(t, ), then

N1/2
m

dist(z,0(C,,(t)°N D)) <

; and by (3.16), the volume of the N'/2/m-neighborhood of the set 9D U
0Cy, (1) converges to zero as k — oo for t € [0,V5) N Q.
For t € [0,V()\Q, put

C(t) = NseqnponC(s). (3.19)
Then, by (3.17)-(3.19), the following holds P;-a.s.:

X(t,z) = Igpenp(z), dr—ae, foralltel0,Vp), (3.20)

since {Y, }r>1 is a subsequence of a convergent sequence {Y,,, }x>1 and
since X € C([0,00) : ) is the Pi-as. limit, in D([0,00) : S), of Y, as
k — oo, and since {C(t) }iep,vy)nq is nonincreasing in ¢.

Put

18



D(t) :=C(t)’ND. (3.21)
Then (1.13) holds for all t € [0, V), since D = D(0) by (3.17) and since

D(t) > {co (C(t)° N D)} N D = (co D(t)) N D > D) N D = D(t).
On [0, Vp),

wi(Lay (), dz) = wi(lpe)(), dz) dt —a.e., (3.22)
since

C(t)\(co D(t))~ € C(H)\D(t)~ € D*

by (3.21), where D¢ denotes a complement of D, and since

[ dson(ie (.0 = [ (oo (@) ~ ooy () = 0

by (3.4), (3.20) and Lemma 4. Here we used the fact that (3.16) holds except
for at most countably many ¢ € [0, V().

Indeed, t — Cip, () is nonincreasing and (3.16) holds for all t € QN[0, Vj).
Therefore, if C,, () does not converge to C(t) as k — oo, then (C'(t)\C(t+))°
is not empty and has a positive Lebesgue measure by (3.19), where C (t+) :==
UsstC(8). Besides, (C(t)\C(t+))° are disjoint for different ¢.

By (3.4), Lemma 4, (3.20)-(3.22), (1.14) holds for all ¢t € [0, Vp) since
(3.16) holds except for at most countably many ¢ € [0, V;) as we mentioned
above.

Q. E. D.

The following lemma implies the uniqueness of the solution to (1.13)-
(1.14).

Lemma 6 Suppose that (A.1) hold. For T" > 0, if {D;(t) }o<t<r (1 = 1, 2)
are solutions to (1.13)-(1.14) on [0, T) for which D;(0) C D2(0), then Dy(t) C
Do (t) for all t € [0,T). In particular, for all ¢ € [0, min(Vol(D1(0)),T)),

du(D1(1), Da(t)°) = du(D1(0), D2(0)°). (3.23)
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(Proof). For each t > 0, put

D(t) = Di(t)” N D2()% wilt, ) := Ipiny (1) ui (&) = Iy~ (),

Ni(t) == Uyeopmnam il € S ot (ui, —p, t,x) = 1}
Take a nondecreasing sequence {n,},>1 of nondecreasing C'-functions
such that

(3.24)

1
na(r)=0 forallr <0, n,(r)=1 foralr>—
n’

and for r € R, put

(1) = /O " (s)ds. (3.25)

Then since t +— wu;(t,z) and t — wu; (t,z) are respectively right and left
continuous for any z € RY, for ¢ < min(Vol(D;(0)),T) and z € RY,

Galuy (¢, 2) — ua(t, ) — 1) = Gu(uy (0, 2) — u2(0,2)) (3.26)
/0 Co(ug (s,2) — ug(s, ) — s/t)(u7 (ds, x) — us(ds, ))
1/t
t
Since ¢, > 0 and DI(O) C D5(0), we have

| n(uy (5,2) = ua(s, @) — s/t)ds

0 < / ds/ Co(uy (s, @) —us(s, x) — s/t) (3.27)
wl (ua(s, -), dx) — wi(ua(s, -), dz))

/ / N (uy (8, ) — us(s, x) — s/t)dx

- /0 (1= s/t)(wi(ua(s, ), D(s)) = wi(u(s, ), D(s)))ds
1 t
__/ ds/[)(s)dx (as n — o)

1
ds dx,
t D(s)

IN
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which implies the first assertion of this lemma.

Suppose that (3.23) dose not hold. Then there exists a € (0, dg(D1(0), D2(0)))

such that

inf{du (Dy(1), Do(1)°)|t € [0, min(Vol(Dy(0)), T)} < a.
Take p, € SV~! and t, € [0, min(Vol(D,(0)),T)) so that

apq, + Dl(ta) ¢ DQ(ta)-

Since ap, + D1(0) C D2(0) and {ap, + D:(t) }o<t<r is a solution to (1.13)-
(1.14) on [0,7), this contradicts the first assertion of this lemma.
Q. E. D.

Take p € C*(R") for which Dy(z,) # 0 for some z, € R".
Let I denote a N x N-identity matrix and put

In = ﬁ) (g1 -9n) = In — fn @ fn.

Take {fi, -+, fy_1} so that {fi,- -, fy} is an orthonormal basis of RY.
Then the following holds.

Lemma 7 (i) < g;, fyx >=0 (1 <i < N).
(ii) For ¢ for which 0;p(x,) := d¢(x,)/0x; # 0,

Ohp(z,)
9i = — Gk-
kz#i 8190(170) :

(iii) span(gy, -+, gn) = span(fi.---, fn-1).

(iv) D(Dgo(mo)/|Dgo(xo)|)(RN) C span(gi,---,gn). As amapping on span(gy, - -

eigenvalues and eigenvectors of D(Dy(z,)/|Dy(x,)|) are the same as those
of (g1-+-gn)(D?*p(x,)/|De(z,)])(g1- - - gn). In particular, all eigenvalues of
D(Dy(z,)/|Dyp(x,)|) are real.

(v) If eigenvalues \; < -+ < Ay _1 of =D(Dy(z,)/|D¢(x,)|) as a mapping

on span(gy,- -+, gn) are nonnegative, then
- G(Dy(z,), D*p(z,))
YT = o 25 3.28
- D) (325
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(Proof). It is easy to see that (i) and (ii) hold. Take ¢ for which 9;¢(x,) # 0.
Then, by (i) and (ii), we only have to show, to prove (iii), that {g;},2 is

independent. Suppose that for j =1,---, N,

 Op(@)ew.)y
EZJ’“(‘”” D) ~°

Putting j =7 in (3.29), we obtain

Z)\kak@ Ty az(p(mo)

=0,
ey | Dep(a0)[?

from which

Z MeOkp(T,) = 0.
ki

Putting j # 7 in (3.29), we obtain
616‘10 -To)
90 Lo )\k = 0,
% 2; [ Dep(,) 2
from which \; = 0 for j # i, by (3.30).
We prove (iv). It is easy to see that

Do(x,) B ngp(mo)
D(|D<p(:co)|)_(glg )
Hence

D(|gz ) szgz —)\Z:czgz

if and only if

(91 o 'gN)M(QI e 'QN)(; l“igi) = )\;%'Qia

[De(,)]

since

(91"'9N)2: (91 9n).

Y De(,)|

(3.29)

(3.30)

(3.31)

(3.32)

Put P:= (f1---fv) and Q := (f1--- fn—1). The proof of (v) is devided

into the following.
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(STEP I) The eigenvalues of

DZSO(IO)

—(In = fn® fN)m

are those of

Un—fN@ fn)+ @ fn

< —Q* D(p22)Q )

o* 1

(STEP II) The eigenvalues of Q*D(Dp(z,)/|Dy(x,)|)Q are those of D(Dy(x,)/|Dp(x,)])

on spcm(gl, T 79N)-
(Proof of Step I). For A € R, denoting by P* the transposed matrix of P,

2
det<—(1N —/n® fN)%UN —IN® fN)+ [N ® fn — MN)

_ ((Iva 0\ pD%o(o)  (Inoa o O o) )
B det( ( 0" >P|Dgp(a:o)|P o o) lo 1 M

*DQSD(TO
= det(( —Q IDW(%)IQ (1)>_)\IN>

o*

since

O
P*P = Iy, P(o* T)P*—fN@)fN-

(3.31) completes the proof since < fi,[n>=0if i # N.
(Proof of Step II). Let « = (2;)X7' € R¥~! and A € R. Suppose that

Dip(z,)

DB

>Qm v (3.33)
Then

Q@ p(2A) )|)( S owf)=A Y wf

| Dip(,) 1<i<N—1 1<i<N-—1
and henceforth by (3.31),

D<M> ; foZ:)\_g: zifi (3.34)



since, by (iii),

QR (Un —fn® fn) =In— [N ® [N
It is easy to see that (3.34) implies (3.33).

For:=1,---, N, put

N

wla) = (10— D+ dyp(o))

Jj=1

Then

Lemma 8 Suppose that all eigenvalues of D(Dy(x,)/|Dy(x,)|) are nonpos-
itive. Then, fori=1,---, N,

o) N D2o(a ) — det( Dula
Do) PP(we): Dola0)) = det(Dyi(as). (3.35)

(Proof). For the sake of simplicity, we assume that i = N.
We first consider the case when dyp(z,) # 0. By (ii) in Lemma 7, it is
easy to see that the following holds:

Ina o (. Do) O
(- ) ouvted = D(- L)+ _ptey ) 090

By (i) and (iv) in Lemma 7, the eigenvalues and eigenvectors of D(—Dy(z,)/|Dy(x,)|)
on span(gy,---,gn) are real and are also those of the left hand side (Lh.s.
for short) of (3.36).

We show that all eigenvalues of the Lh.s. of (3.36) are those of D(—Dy(x,)/|Dy¢(x,)|)
on span(gi,---,gn) and —Onp(z,).

By (i) and (iv) in Lemma 7, there exists an invariant subspace, which
contains fy, with an eigenvalue A of the Lh.s. of (3.36).

Take ¢ > 1 such that

o ¢
(( o ) Dyw(z,) — A) fv = o. (3.37)

o Onp(zo)

Then (—dy¢(x,) — A\)'fn € span(g:, -+, gy) since
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_ 1Dyl
8]\790(370)
Hence A = —0n¢(x,) by (i) in Lemma 7.
Suppose that dyp(z,) = 0. Then, by (3.31) and (i) in Lemma 7, for
r € RV,

In ((djn)j2r — gn).

< fn, Dyn(z,)z >= <fN, D(%)x> =0, (3.38)

which implies that Dyy(z,)(RY) is at most (N-1)-dimensional and hence-

forth (3.35) holds.
Q. E. D.
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4 Proof

In this section we prove the results in section 2.

(Proof of Theorem 1). By Lemmas 1-6, there exists a unique (nonrandom)
solution {D(t) }o<t<vy (see (3.6) for notation) of (1.13)-(1.14) on [0, Vj) such
that Ip.y € C([0,V4) : S) and that the following holds: for any 7" € [0, ;)
and v > 0

lim P(sup ds(Vou(t, ). Iog() > 7) = 0. (4.1)

m—o0 0<t<T

Therefore

lim P(sup [[Vnt,) = Lo Ollszgorm =7) =0, (4.2)

m—0oo  o<t<T

since, for m > 1 and t € [0, T,

||?m(t’ ) — ID@)()H%Q([—K,K]N)
- /[—K K]N<7m(t; CU) - 2?m(t7 x>ID(t) (l’) + ]D(t) (a}))dgj

We prove that the following holds:

lim P( sup |[X,,(t,-) — Ipw ()|l 2x,xv) > 7) = 0. (4.3)

m—0eo  o<t<T

For any s and t for which 0 < s <t < T,

1 Xom(t, ) = Lo ()l L2 k.xyv) B (4.4)
< |IXm(t, ) = ( Wez-reayy + 11 Xm (s, ) = YVonls, )|z -rx7v)
Y m(s. ) = Ings) Ol 2 k1) + (D) () = Ine (Ol |z 1) -

Let U_yuy2/, (D) := {z € Dl|dist(x, D) > N'/?/m}. Then

1 Xt ) = X8, Lo )y = Xt ) = X (.22 - 1,11y (4:5)

< Y V(s 2) — Yiult, z))% +Vol(D\U_y1/2/m(D))

2EDm
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(see (2.2) for notation). Indeed, if z = (2;);L, € U_n1/2/,,(D)\(co Yru(t,-) (1)),
then Y, (¢, z) = 0 for some z = (z;)Y, € Z" /m for which |x; — z;| < 1/m for
alli—1,.--, N.

In the same way as in (3.5), by (4.5), for any v > 0, there exists § > 0
such that the following holds: for any s € [0,7" — ¢],

lim P( sup || Xp(s1,) — XS, )| 2=k, vy > 7) = 0. (4.6)
m—oo s<s1<s+0
Since, for any t € [0, V}), any subsequence of {C,,(t) }n>1 has a convergent
subsequence (see the the proof of Lemma 5),
[Vt ) = Xonlt, oy = 0 (4.7

for all t € [0,Vp), Pi-almost surely (see the discussion after (3.18)). Hence,
for any v > 0,

lim P(||7m(s, ) — Xm(S, )||L2([7K,K]N) > ")/) = 0. (48)

m—0o0

Ipy € C([0,Vp) : LA([—K, K|V)), since

Ips)(z)dz _/ Ipw(z)dz,

[ K, KN

1o () = Iow O agra) = [

[ K, KN

and since t +— [ gv Ip(z)dz is continuous on [0, Vp).

(4.2) and the discussion after (4.3) show that (4.3) is true.

Recall Lemmas 2-3 and the notations therein. For T" < V;, take g € D(T))
and ry so that Uy, (zo) C D(T). For sufficiently large k > 1,

Usro(z0) C (co Yy, (T,)"'(1))°ND, P, —a.s.,
since
I}LI& ||ka(T, ) — ID(T)(')HLQ([fK,K]N) = 0, Pl — a.s.

by Lemma 2 and (4.7) (see the discussion below (4.2)). Hence in the same
way as in Lemma 3,
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1
Vo < liminf > (Y (T, 2) = Yo (Tings 2)) — (4.9)
m

k=00 ZEDmk k
< liminf(r,, —T) P —a.s.,

—00

which implies that (4.3) holds for T" < 2Vj. Repeating the same procedure
as above and then letting ro | 0, (4.3) holds for all 7" < T™ := Vol(D).
Put

D(t)=0 fort>T". (4.10)

Then Ipy) € C([0,00) : L*([—K,K|N)) and {D(t )}t>0 is a unique solution
0 (1.13)-(1.14) on [0, 0co0) by Lemma 6, since ¢ — Ip is nonincreasing and
since

Vol(D(t)) = Vol(D(0)) —¢t | 0, astT", (4.11)
by (1.14).
We prove (2.7). Take a sufficiently small positive € so that
7\ 2
Vol(D(t)) < <Z> fort >t.:=T"—e¢. (4.12)
Then
PGsup 1Xon(t,) = Toro Ol 2y > ) (4.13)
< P(sup [[Xn(t,-) = Ipe ()2 xx1v) 2 7)
0<t<t.

+PEup [ Xn(ts ) = Lo (Ol 2 sam) = 7)

< 2P(sup || Xu(t,) = Ipey (2 rxvy = o) — 0 (as m — o0)

0<t<te

DO =2

since for t > ¢,

||Xm(t, ) - [D(t)(')||L2([—K,K]N)
|| X (£ '>||L2([—K,K]N) + ||ID(ts)(')||L2([—K,K]N)
[ X (tes -) = Ipeoy () 2=, k) + 2| I peesy O 2= 5, 5]

IAINA
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(Proof of Corollary 1). Since D is convex,

(co Yin(t, )1 (1))° N D = (co Yin(t, )" (1))° = Dp(t).

For T' < T*, take xy € D(T) and rq so that Uy, (z9) C D(T) (see (3.6)
for notation). Then, for sufficiently large m, Us,,(xo) C D (0).
Consider cones

cone(z) :=co ({z}UU;) (ze€ D7),

and for r > 0, put

V(r) = ie%fD Vol(cone(x) N H(zg — z,x + r(xg — 2))), (4.14)
Vin(r) = xeaigf o Vol(cone(z) N H(zog — x,x +r(zo —2))). (4.15)

Then for v > 0 and sufficiently large m > 1, by Theorem 1,

P(sup dp(Dm(t), D(t)) = 7) (4.16)

0<t<T
< P(Upp) () = In@y( | Ze x5 = Vo)
+P(Uy C Dy (T), sup du(Dnm(t), D(t)) > 7)
0<t<T

— 0 (asm — 00).

Indeed,

P(Uy C D, (T), sup du(D,,(t),D(t)) > )

0<t<T
< P(OiltlgT D, (1) = Iney (|72 x.xpy = min(V (%), Vin(7))),

and V,,,(v) > V(y) for all m > 1.
Q. E. D.

(Proof of Corollary 2). For r € R, let {D,(t)};>o denote a unique solution
of (1.13)-(1.14) with D,.(0) = h=!((r,00)) on [0, c0). Notice that
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| RY ifr < inf{h(z)|r € RN},
Dr() = {@ if 7 > sup{h(x)|r € RN}. (4.17)
Put
u(t,z) :=sup{r € Rlz € D,(t)}. (4.18)
Then, for all ¢ > 0 and r € R for which D,(¢) # 0, RY,
u(t, )7 ((r, 00)) = Dy (), (4.19)

since D,(t) = D, (t) = Us>, Di(t) by (1.13).
Indeed, D,(0) = D,4(0); and if # — r is positive and is sufficiently small,
then Dx(t ) # (0 by (b) in Theorem 2, and

[ Unio@) = In(@)dz = [ (nyo(@) = In,0@))dz.

By Lemma 6 and (4.19), u is continuous.
For m > 1, put

km,l = [m Sup{h(y)|y € RN}]a
kmo = [minf{h(y)ly € RN} — 1.
Then
k
Z E(IDLU)('T) - IDﬁ(t)(‘r>) (4'20>

km,OSkSkm,l m m

1 km 1 + 1 kmO
= —1 - — I —7 .
km,o;gkmvl P 0@ ===, 0@+ by, 0()

Since Ip, ., x(z) =0 and since Ip, ) (z) = 1, the following holds:

m

for any ¢ € C’:(RN) and any t > 0,

/RN p@) > —Ubp, @) —Ipy, @) (4.21)

kom0 <k<km1 T
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— Y A0 ~ I o@)d

km,OSkSkm,l

B /otds[k Y [ @i, o). do)l.

k
N _
mo<k<km1 VIR ™

Letting m — oo in (4.21), one can show that u is a solution to (1.15) by
Lemma 4, since o Dmni1(S) — co D,(s) as m — oo for r € [inf{u(s, y)|y €
RN}, sup{u(s,y)|ly € RN}), provided D,(s) # 0, RV.

Let v € C([0,00) x RY) be a solution to (1.15) with v(0,-) = h(-). Then
for n > 1, r € [inf{h(y)|ly € R"},sup{h(y)|ly € R"}), and ¢ € C,(R") and
t>0,

/R p(@){m(v(0, ) = 1) = (v (t, 2) — 7) pda (4.22)

N
t -
= /0 ds/R Wcﬁ . o(z)wz(v(s, -), dz)
(see (3.24) for notation). Let n — oo in (4.22). Then we see that D,(t) :=
v(t,-)"H((r,00)) is a solution to (1.14) on [0, 00) by Lemma 4 and the conti-
nuity of v.
We prove that v(t, )~ ((r, 00)) satisfies (1.13). For z € (co D,(t))ND,(0),

take & > 0 so that Us(x) C (co D,(t)) N D,(0). Then Us(z) C co D,(s) for
all s <t. Hence, by (1.14), for any ¢ € C,(R") such that ¢ = 0 in Us(x)°.

L@ n0 ~ T = [ ds [ p@lnln (). de) =0, (123

which implies that = € (Us(z) C)D,(t). Hence (1.13) holds.
The uniqueness of u follows from that of D,(-) for all r.
Q. E. D.

Theorem 2 is an easy consequence of Theorem 1 and Lemma 6 and we
omit the proof.

(Proof of Theorem 3).
(Step I). We first show that u(t,z) := Ipy () is a viscosity supersolution of
(1.20) in (0,00) x RM.
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Let 1 € A((0,00) x RY) and assume that u — 1 attains a local minimum
at (to, o) € (0,00) x RY. Without loss of generality, we may assume that
u(to, o) = ¥ (to, 7o) and that u(t,z) > 1 (t,z) for all (¢,z) € (0,00) x RV \
{(to, 7o)} (see [3)).

If iy € 8(00 D(to)) N 8D(t0), then 8tw(t0, LL'()) > 0.

Indeed, t — wu(t,zp) is constant if ¢, — ¢ is a sufficiently small positive
number, from which (¢, o) > ¥(t, zo) for such ¢.

Suppose that zy € d(co D(to))NOD(ty). Then u(ty, zo) = 0, and Di(ty, z9) =
o or o (u, Di(ty, zo), to, xo) = 1.

Indeed, if Di(tg, xo) # o, then for y for which y + zo &€ H(Dv(to, x0), Zo)
and for » > 0, by the mean value theorem, there exists § € (0, 1) such that

u(to, xo + 1Y) > U(to, xo + 1Y) = Y(to, 20) + 1 < DY(ty, 2o + Ory),y >> 0,

provided r is sufficiently small, by the continuity of D.
(Case 1). We first consider the case when D (o, zo) = 0. We may assume
that there exist f € F and ¢; € C?*((0,00)) such that

U(t,z) = —f(|lz — zo]) — ¢a(t) (4.24)
(see [21]).
For A > 0 and m > 2, put
Uma(t, @) = ¥(t,2) — A{ft — to + |2 — zo[™}. (4.25)
Then
Oitbm,a(to, m0) = Opb(lo, 20),  D¥m,alto, 20) = Di(to, T0), (4.26)
and
U;;Aﬁ = {(t,z) € (0,00) X RN|¢m7A(t,x) +e>u(t,x)}  (4.27)

C  Ugeyay/m((to, 0))

(e € (0, A)), and the following holds: for ¢ > 0,

lim G(DYna(t, z), D*¥na(t,z)) = NA. (4.28)

T—xTo
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We argue by contradiction. We consider 1y 4 instead of 1. When it is
not confusing, we omit y 4 for the sake of simplicity.
Assume that the following holds:

8t’l,b(t0, 1‘0) < 0. (429)

By reselecting A > 0 sufficiently small and ¢ > 0 sufficiently small com-
pared to A if necessary, we may assume that

ot ) + R(%) G(DW(t, ), D*b(t,z)) +c <0 on U+, (4.30)
and that
UF = Upsoft} x (¢(t, )" ((—e, 00)) N D(t)%). (4.31)

We may also assume that = +— (¢, x) is strictly concave on U and hence-
forth  — (V¥ (s, x), DY(s,x)/|Di(s, z)|) is one-to-one on some neighborhood
of 9 (s, )71 ((—&,00)) N D(s)¢, provided (s, )~ ((—&,00)) N D(s)¢ # 0.

Indeed, if ¥(s,-) 7' ((—e,00)) N D(s)¢ # 0, then —e is not the maximum
of ¥(s,+) on ¥(s,+) *((—&,00)) N D(s)® and hence Di)(s,) # o on some
neighborhood of 9y (s, )1 ((—e,00)) N D(s)".

Fort > 0,
[ Gl (t,2) +2) — uft. 2)) (4.32
G (00, > ) — u(0,2)))dz
= e [ G052+ 2) — uls, 0)ulds, )
(s ) + ) = u(s, 2) LD E Dy ya

dr

(see (3.24)-(3.25) for notation).
Letting k — oo in (4.32), by (4.31),

LAy P50 0) + SJen(uls, ) dr) (433

/ dnm (Y (s, r) +¢)
+
W(s,)~1((—e,—e+1/m))ND(s)e dr

Os(s, x)dx}
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For s for which ¥(s,) !((—e,—e + 1/m)) N D(s)® # ( and sufficiently
large m > 1, by Lemma 8,

dnm, ,
P(s,) 1 ((—e,~e+1/m))ND(s)° dr
—6+1/m d m
< —/ wdr/ . R(p)
- dr (et a€du(s,) =1 ((roe))ND(s)}
tesup{G(Dy(s, ), D*(s,2)) : (s,x) € U} 1 )dH " (p)
- Rp +€SquD¢3’1'
A”*%&?iweaw(m1<<r,oo>>mD<s)c}< ®) {G(DY(s, )

,D*(s,7)) : (s,2) € UF} HaHN " (p)  (as m — o0).
(4.33)-(4.34) contradicts to

{pe SN ot (u,—p,s,x) =1 for some z € Y(s,-) *((—e,00)) N D(s)°}
DY(s,2)

C Ur>_€{—m cx € OY(s, ) H((r,00)) N D(S)c}

since

(U (s,2) +€) — 1 if 2 €(s,:) *((—e,00)), as m — oo.

(Case 2). Next we consider the case when o (u, D (g, x¢), to, o) = 1. By
(ii)-(iv) in Lemma 7, all eigenvalues of —D(Dv(to, zo)/|Dv(t, o)|) are non-
negative since the function = — 1(to, z) takes a maximum v (to, xy) on the
set {zo +y € RY| <y, D(to, o) >= 0}.

For A > 0, all eigenvalues of —D(D1g 4(to, x0)/|DY2.a(to, z0)|) as a map-
ping on the set {y € RY| <y, Dby a(to, o) >= 0} are greater than or equal
to 2A/| D (to, zo)| (see (3.31)-(3.32)) since, in Lemma 7, 1 and fi,---, fn_1
are a eigenvalue and eigenvectors of (g; - - - gn), respectively.

We argue by contradiction. Assume that the following holds:

B (to, zo) + R( D (to. $0)|>G(Dw(to,x0)7 D%)(ty, ) < 0. (4.35)

|D1/J(t0/ CE())

We consider v, 4 instead of 1. When it is not confusing, we omit 5 4 for
the sake of simplicity. By reselecting A, € > 0 if necessary, we may assume
that (4.30)-(4.31) hold.
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One can also assume, in Uy, 4y1/2((to, 70)), that 0;3(s,z) # 0 and all
eigenvalues of —D(D(s,z)/|Di(s,z)|) as a mapping on the set {y € RY| <
y, Di(s,x) >= 0} are greater than or equal to A/|Dv(ty, x¢)|, and x
yi(s, x) is one-to-one for some ¢ € {1,---, N} by the inverse function theorem
and (v) in Lemma 7, and Lemma 8.

In the same way as in (4.32)-(4.34), we obtain a contradiction.

(Step 1I). We show that u™(t,z) = Ipw-(z) is a viscosity subsolution of
(1.20).

Let v € A((0,00) x R4 : RY) and assume that 4~ —1) attains a maximum
at (to, o) € (0,00) x R% We may assume as well that u™(ty, zo) = ¥(to, o),
so that u=(t,z) < ¥(t,z) for all (¢,z) € (0,00) x R\ {(to, z0)} (see [8]).

Since t — u~ (¢, z) is nonincreasing, 0p(ty, xo) < 0.

Hence we only have to consider the case when the following holds: D (g, zo) #
o, and

Dip(to, o)
| Di(to, o)
In particular, u™ (tp,zo) = 1. By adding to v the function (t,z) — A{|t —

s|* + |z — y|?}, with a sufficiently small A > 0, if necessary, we may assume
that

o~ (u™, Dib(to, 7o), o, 70) = 1, R( )G(D¢(t0,x0),p2¢(to,xo)) > 0.

U- = {(t.z) € (0,00) x RYy(t,z) — e <u~(t,2)} (¢>0) (4.36)

3

is contained in the set U 4y1/2((to, 70))-
We argue by contradiction. Assume that the following holds:

Dd’(to-/ CE())
|D¢(t0/ wO)l

By reselecting € > 0 if necessary, we may assume that

Oy (to, zo) + R( )G(Dw(toaxo)a D*(to, z)) > 0. (4.37)

op(t, ) + R(%) G(Dy(t,x), D*)(t,x)) —e > 0, (4.38)

and u~(¢t,z) = 1 on U= by the continuity of 1.
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Put 7, (1) = N (r + 1/m) for r € R and m > 1. In the same way as in
(Step 1), considering u™ (t,z) — 7, (Y (t, ) — 1 — €) instead of n,, (¥ (t, x) +
g) —u(t, ), we obtain a contradiction.

Q. E. D.

(Proof of Corollary 3).
We first show that u is a viscosity supersolution of (1.20) in (0, 00) x RY. Let
¢ € A((0,00) x RY) and assume that u — ¢ attains a minimum at (ty, xq) €
(0,00) x RN, We may assume that u(ty, z0) = ¢(to, z0), so that u(t,z) >
@(t,z) for all (t,z) € (0,00) x RN \ {(tg,20)} (see [8]). By subtracting a
constant, we may assume that o < u < 0.

Put ry 1= ¢(ty, zo) and

ur(t, 1’) = qul(ty.)((ryo))(a:) (’f’ < O) (439)
Then
(;0(757 :l?) N
Uy (t, ) > o +1  forall (t,2) € (0,00) x RY, (4.40)

where the equality holds if and only if (¢, z) = (¢, 2¢)-
Since u, is a viscosity supersolution of (1.20) in (0, c0) x RY by Corollary
2 and Theorem 3, and since

U+(UT07 D(ip(to, 950)/|7"0| +1),to, z0) = U+(U, Dp(to, xo), to, o),

(1.25) holds.

Next we show that u is a viscosity subsolution of (1.20) in (0, 00) x RM.
Let ¢ € A((0,00) x RY) and assume that u — ¢ attains a maximum at
(t1,71) € (0,00) x R%. We may assume as well that u(t;, 1) = p(t1, 1), so
that u(t,x) < ¢(t,z) for all (t,z) € (0,00) x R\ {(t1,21)} (see [8]).

By adding a constant, we may assume that ¢ > u > 0.

Put 71 := ¢(t1, ;) and

U, (t,2) 1= Ly=1(1,)(r.00)) (T)-
Then

t
u, (t,z) < w(r,x) for all (t,x) € (0,00) x RY,
1
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where the equality holds if and only if (¢, z) = (¢1, 21).
Since u, is a viscosity subsolution of (1.20) in (0,00) x RY by Corollary
2 and Theorem 3, and since

o (uy, D(p(t,21) /1), t1, 1) = 0~ (u, Dp(ty, 71), t1, 1),

(1.27) holds.
Q. E. D.
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