Lecture notes on the weak KAM theorem

Hitoshi Ishii*

The following notes are based on the lectures which I delivered at Hokkaido Univer-
sity for the period, July 20 to July 23, 2004. Part of notes has not completed yet. They

may serve as an introduction to the lecture notes [Fa2| due to A. Fathi.

1. Lagrangians and Hamiltonians:
conjugate functions of convex functions

Let L : T" x R®™ — R be given, where T" denotes the n-dimensional torus. We
assume throughout these notes:
o L cC?*T" xR").
e v — L(x,v) is locally uniformly convex. More precisely, for each R > 0 there is a

constant eg > 0 such that
Lyy(z,v) > el if |[v| <R,

where I denotes the unit matrix of order n.

e [ has a superlinear growth. That is,
lim inf{L(z,v)/|v|| |v| > r} = cc.

Here and henceforth we write L,,(z,v) for the Hessian matrix (Ly,,,;(z,v)). Simi-
larly we write L, (x,v) for the gradient (L,,(x,v)), L.(z,v) for (L,,(x,v)), etc.
We define the conjugate function H : T™ x R™ of L by

H(z,p) = sup (p-v— L(z,v)).
veR"™

Here p - v denotes the Euclidean inner product of p and v, which may be denoted as

well by pv in what follows.

* Supported in part by the Grant-in-Aids for Scientific Research, JSPS, No. 15340051, No. 18204009.
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When we have in mind the variational problem

iﬁAlmwd@Mu

Y

the Euler-Lagrange equation

we call L the Lagrangian and H the Hamiltonian.

A typical example of Lagrangians L is given by
Lo
L($7U) = §|U| + V(.’L‘),
where V' € C(R"™). The Hamiltonian H is then given by
Lo
H(r,p) = Llpl* ~ V(x).

Proposition 1.1. H satisfies the following properties:

(a) HeC*T"xR").

(b)  L(xz,v) = ;Iel%)i(v -p— H(x,p)) for all (z,v) € T" x R™.
(¢c)  For each R > 0 there is a constant og > 0 such that

Hyp(x,p) 2 0rI if [p| < R.

() lim inf{H (z,p)/Ip| | [p| = r} = oo.
Proof. 1. For fixed (z,p) € T™ x R"™ the function v — p-v — L(z,v) on R™ attains a

maximum since it is continuous and

lim (p-v— L(z,v)) = —o0.

[v]—o0

Let v = V(z,p) be a maximum point of this function. Such a maximum point is

determined uniquely by (z,v) since v +— L(x,v) — p - v is locally uniformly convex.
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2. By the elementary calculus, we find that

(1.1) p = Ly(z,V(z,p)).

Since Ly, (z,v) > 0 and hence det Ly, (x, V(x,p)) # 0, by the implicit function theorem
we see that the function V on T™ x R" is a C! map. Since L,(z,V (z,p)) = p for all
(x,p) € T™ x R™, for given = € T", the map v — L,(z,v), R™ — R" is surjective.
On the other hand, because of the local uniform convexity of L, for any x € T" and

v1,v9 € R™, we have
(Lv(957v1) - Lv(xaUQ)) : (U1 - UQ)

1
= / Lyy(z,sv1 + (1 — s)vg) ds(vy — va) - (v1 — v2) > eglvr — v2|2,
0

where R := max{|vi|,|v2|}. This shows that for each € T", the map v —
Ly(z,v), R® — R" is injective. Thus we conclude that for each x € T", the map
v+ Ly(x,v), R® — R" is a bijection.

3. Since
H(z,p)=p-V(z,p) — L(z,V(2,p)) V(z,p) € T" x R",

we see that H € C'(T™ x R"). Differentiating this relation, we have
Hp(xvp) :V(:E?p) —p- ‘/;?(1'717) - LU(LL', V(l'vp)) ’ Vp(xvp) = V<:E=p)'
Since the functions

(1.2) Hy(2,p) = —Lo(2,V(2,p)), Hp(x,p) =V(z,p)

are C! functions on T" x R", we conclude that H € C?(T" x R"). Combining the
latter of (1.2) with (1.1), we get

(1.3) p = Ly(x,Hy(x,p)) V(z,p) € T" x R".

For fixed (z,v) € T™ x R", let p = L,(z,v). Since w = V(z,p) is the unique solution

of p = L,(z,w), we see that v =V (z, p). Hence, we conclude that
(1.4) v=H,(z,p) = Hy(z, Ly,(z,v)) V(zr,v) € T" x R™
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4. By the definition of H, we have
H(z,p) >p-v— L(z,v) Yz eT" p,veR"
Hence, we have
L(z,v) >p-v—H(z,p) Yz eT" p,veR"
That is,

L(z,v) > sup (v-p— H(z,p)) V(x,v) € T" xR".
peR"™

Now fix (z,v) € T" x R". Set p = L,(x,v). From (1.4), we have v = H,(z,p) and
therefore

H(z,p) =p-v— L(z,v).

That is,
L(Z’,U) =v-p— H(':Eap)

Hence

L(z,v) = gngi{)%(v -p—H(x,p)) =v- Ly(x,v) — H(x, Ly(x,p)) V(z,v) e T" x R".

5. From (1.3) we have

p=Ly(z,V(x,p)) = Ly(z, Hy(z,v)) V(z,p) € T" xR",

and hence

I = Lyy(z,V(x,p))Hpp(z,p) VY(z,p) € T" x R™.

Hence, noting that L, (z,v) > 0, we have
Hpp(z,p) = Lw(aj,Hp(x,p))_1 V(xz,p) € T" x R™.
Fix R > 0 and set
Ap = max{Ly,(z, Hy(z,p))¢- & | (z,p,§) € T" x B(0, R) X S”_l}.

Then we have

Lyy(z, Hy(x,p)) < Arl ¥(z,p) € T" x R".
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Consequently, we get
Hpp(w,p) = Lyy(z, Hy(2,p)) > AR'I  ¥(x,p) € T" x B(0, R),

which shows (c) with 6 = AR".
Fix any M > 0. We have

H L L(x,Mp
(@,p) _ <p_v_ (x,v))zp_Mﬁ_ (z, Mp)
p| veR™ p| p|

max L(z,v)
veB(0,M)
=M|p| — ) — o0 as |p| — oo.
p

Here we have used the notation that p denotes the unit vector p/|p|. Thus we see that

lim inf { M
Ip

—00

x e T, ]p|2r}:oo, O

We have observed the following as well.
Proposition 1.2. We have:
(a) H(x,p)=p-v— L(z,v) for v=Hpy(z,p) and

H(z,p) >p-v—L(z,v) ifv+# Hp(x,p).

(b)  For eachx € T", p — Hp(z,p), R™ — R" is a C diffeomorphism and its inverse
map s given by

v— Ly(z,v), R" — R".
()  Ho(w,p) = —Lu(z, Hy(z,p)) for all (z,p) € T" x R™.

e Themap L: T" xR" - T" x R", (x,v) — (x, L,(x,v)) is called the Legendre
transform. The Legendre transform £ is a C! diffeomorphism between T” x R"™ and
T™ x R™. Its inverse is given by L1 : (z,p) — (x, Hy(z, p)).

2. Euler-Lagrange equations and Hamiltonian systems

Associated with the variational problem

inf / L(4(8), (1)) dt,

~
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where the infimum is taken over all v € AC([0, T'], T™) (the space of absolutely contin-
uous functions 7 on [0, T']) which satisfy v(0) = a and v(7T") = b, where a, b € T™ are

fixed, is the Euler-Lagrange equation

d

Lo (r(0),3(1) = La(v(1), (1)) vt € (0,T),

which is equivalent to

H(8) = Loo(v(t), 7)™ (Lo (v(8),5(1)) = Loa(v(8), 5(£)) 3 (1))
Note that the function

(2,v) = Lyo(z,v) " (Ly(2,0) — Lys(z,v)v), T" x R* — R

is a continuous function, but it is not guaranteed to be locally Lipschitz continuous.

The corresponding Hamiltonian system is given by

{X(t) = Hp(X (1), P(t))

(2.1) |
P(t) = — Ho(X (1), P(1)).

Since (Hp, —H,) is a C! function on T™ x R", one can apply the Cauchy-Lipschitz
theorem for (2.1).

Proposition 2.1. (a) If (X(t), P(t)) exists for a <t < 3, then
H(X (), P(t)) = H(X(to), P(to)) V€ (e, ),

where tg € (a, B) is any fired number. (b) For any (zo,po) € T" x R™ and t) € R
there is a unique solution (X (t), P(t)), defined on R, of (2.1) satisfying

X(to) = X, P(to) = Po-

Proof. 1. We compute that

S H(X(1), P()) = H,(X(1), PO)X (1) + Hy(X (), P(1))P(t)

dt
= H, (X (1), P(1) Hp(X (1), P(t)) — Hp(X (1), P(1)) Hx (X (1), P(t))
=0.

Hence we have



which proves (a).

2. By the Cauchy-Lipschitz theorem, there is a unique solution (X (t), P(t)) of (2.1)
satisfying (X (¢o), P(to)) = (z0,p0)- Let («, 3) be the maximal interval of existence for
the solution (X (¢), P(t)). There is a constant C; > 0 such that

H(l’,p) > |p| -1 \V/(Cl)',p) €T" xR".

Then, since
|P(t)| — C1 < H(wo,po) VtE (a, B),

{(X(t),P(t)) | t € (o, B)} is bounded in T™ x R™. This implies, due to the Cauchy-
Lipschitz theorem in ODE theory, that («, #) = R, which concludes the proof of (b).
O

Proposition 2.2. Let (X (t), P(t)) be a solution of (2.1) and set y(t) := X (t). Then ~y
is a C? function on R and satisfies

d

(2.2) =

Ly(y(t),3(t)) = L (7(t), 7(t)) Vi € R.

Proof. Since #(t) = X (t) = H,(v(t), P(t)), the function v is a C? function on R and
also, recalling that (x,p) = (x, Ly(x,v)) if and only if (z,v) = (z, Hy(x,p)), we find
that

Therefore we have

Proposition 2.3. Let y(t) be a C! function on («, 3) such that

t— Ly(v(t),5())

is a C' function on (a, B) and such that

d

L0, 7(1) = La(v(1),4(1)) V€ (o, ).

Then (X (t), P(t)) := (y(t), Ly (y(t),¥(t))) is a solution of (2.1) on («a, [3).

Proof. Note first that

(2.3)



which, in particular, shows that v € C?((a, 3)) and X (t) = H,(X (), P(t)). By (2.3),
we get

P(t) = Lo (7(t),4(t)) = —Ha(7(1), P(t)) = —H(X(t), P(t)).

Here we have used the observation (Proposition 1.2, (¢)) that

Hy(y(8), P(t) = = Lo (7(8), Hp(7(t), P(t))) = —La(7(2), ¥(t))-

Thus we see that (X (t), P(t)) is a solution of (2.1). 0O

e The Legendre transform £ maps the solutions (v, %) of the Euler-Lagrange equation
(2.3) to the solutions (X (t), P(t)) of the Hamiltonian system (2.1).

Notation. We define the collections {¢f};er and {¢f };cr of maps of T™ x R™ to
T" x R™ by

¢ (z,0) = (1(t),7(1),
where ~ is the solution of (2.3) which satisfies the initial condition (v(0),~(0)) = (z,v)

and
o (z,p) = (X (1), P(1)),
where (X, P) is the solution of (2.1) satisfying the condition (X (0), P(0)) = (z,p). By
the uniqueness of the solution for the Cauchy problem, we see that
Prrs =Py 0by,  Pihs =01 0y VtseR.
As we have seen in Propositions 2.2 and 2.3,

LoplorL ™ =¢f vteR.

3. Existence of minimizers for actions

Let L : T" x R™ — R be a given Lagrangian which satisfies the assumptions
described before. Let 1 be a given function on T™ which satisfies:
o e C(T™).
Fix T' > 0 and zg € T™. Consider the variational problem

0l

(3.1) V = inf (/0 L(”Y(t)d(t))dtth(’v(T))) :

where 7 ranges over all v € AC([0, T],T") (the space of all absolutely continuous
functions on [0, T]) such that v(0) = xo.



Theorem 3.1. There exists a minimizer for V.

Lemma 3.2. Let 1 € T" and define

T
Vi) =inf [ LG0.50)

where vy ranges over all v € AC([0, T], T™) such that v(0) = z¢ and ¥(T') = x1. Then

there is a minimizer for V(z1).

Lemma 3.3. There is a constant Cy > 0 such that
V(IL‘l) < Co Vo, € T,

Proof. Define vy € AC([0, T], T™) by 7o(t) := zo + T~ 't(x1 — 20). We have

| Eo®. 50t = [ Lew(e). 77 w1 - 20)) d < o
0 0
where
Co := Tmax{L(z,v) | (z,v) € T" x R", |v| < T 'y/n}. a

Lemma 3.4. Let {vx}ren C AC([0, T], T™). Assume that v, (0) = o for all k € N
and that there is a constant C' > 0 such that

T
/ L(vk(t), 4% (t))dt < C Vk € N.
0
Then there exist a subsequence {7V, }jen and v € AC([0, T],T") such that
Vi, (t) — v(t)  uniformly on [0, T

as j — oo and
/O L(y(t),4(8)) dt < liminf [ Liye(t), 4 () dt.

k—oo 0

Using Lemma 3.4 whose proof will be given later, we first prove Lemma 3.2 and
Theorem 3.1.

Proof of Lemma 3.2. 1. Fix z; € T". Noting that L is bounded below, we set

Lo= min L.
T xR"
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We have
LoT < V(x1) < Co,

where Cj is the constant from Lemma 3.3.

2. Choose a minimizing sequence {7 }ren C AC([0, T], T™) for V(1) so that

/0 L(’yk(t),’ﬁ/k(t)) dt < V(fL’l) + % Vk € N.

Here the 7 are assumed to satisfy v, (0) = xg and v (T) = x1.
Noting that

T
/ Llw(t),4(8) dt < Co+1 Wk €N,
0

by virtue of Lemma 3.4, there are a subsequence {, } jen and v € AC([0, T, T") such
that

(3.2) Vi; (t) — v(t)  uniformly on [0, T] as j — oo
and
(33 | pe @ ar < tmint [ L6050 ar

From (3.2) we have
Y(0) =20, A(T) =21
From (3.3) we get .
| pe@ @) < Vi,
Thus we find that v is a minimizer for V' (z1). O

Lemma 3.5. The function V' is lower semicontinuous on T".

Proof. Fix x; € T" and a sequence {yx}ren C T" so that yp — z; as k — oo.
According to Lemma 3.2, for each k& € N there is a vy, € AC([0, T], T"™) satisfying
Y,(0) = z¢ and v, (T') = yx such that

Vi) = /0 Liw(t). () dt V€ N.

By Lemma 3.3, there is a constant C; > 0 such that
T
/ Live(t), 3(8)) dt < Cy Wk € N.
0
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Now, by Lemma 3.4, we find a v € AC([0, T], T™) satisfying v(0) = x; and y(T) = =1
such that

T T
| r6@s@ < imint [ 26u0). 50 dr
0 °c Jo

This inequality implies that
V(zy) < likm inf V' (yk),

which shows that V is lower semicontinuous on T".

Proof of Theorem 3.1. Note that

V=i / Ly (8),4(8)) dt = min (V + ) (a)

Since V' + 1 is lower semicontinuous on T", there is a point x1; € T™ where it attains a

minimum. By Lemma 3.2, there is a minimizer v, for V(z1). Hence, 71 is a minimizer

for V. 0O

It remains to prove Lemma 3.4. We fix C' and {7} as in Lemma 3.4. By replacing
L(z,v) and C by L(z,v) + Co and C + CyT, respectively, where Cy > 0 is a constant

such that minp» g» L > —C5, if necessary, we may assume that
L(z,v) >0 for all (z,v) € T" x R"™.

Lemma 3.6. The sequence {} is equi-absolutely continuous on [0, T).

Proof. By the superlinearity of L, for any A > 1 there is a constant C'4 > 0 such that
L(z,v) > Alv] = C4x V(x,v) € T" x R".

Hence, for any Borel set B C [0, T] we have

T
C> / L(vi(t), yx(t)) dt > / L(vi(t), Y& (t)) dt > / (Alyk()] — Ca) dt,
0 B B
that is,
[ Ftoldr < S+ Sl
Fix any € > 0. Choose A > 0 so that Cy/A < § and § > 0 so that

Cad
A

DN ™
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Then we have
Bl<s — [ [t <e
B

which shows that {74} is equi-absolutely continuous on [0, 7. 0

Lemma 3.7 (Selection theorem of Helly). For k € N let f, : [0,T] — R be a
non-decreasing function on [0, T). Assume that {fi} is uniformly bounded on [0, T1.
Then there is a subsequence {fy,} of {fx} such that for all t € [0, T], the sequence
{fx,(t)} is convergent.

See [Fr] for a proof of the above lemma.

Lemma 3.8. Fiz (z,v) € T" x R" and € > 0. Then there is a constant § > 0 such
that for all (y,w) € T™ x R™, if |y — x| <9, then

L(y,w) > L(z,v) + Ly(z,v) - (w —v) —e.
Proof. We choose a constant M; > 0 so that
| Lo (2, 0)| < My,
for instance, My = |L,(x,v)| + 1, and a constant M > 0 so that
L(y,w) > 2M;y|w| — My V(y,w) € T" x R".
Then we have
L(y, w) = | Ly (2, v)||w| — My + M |w]
> Ly(x,v) - w+ Mi|lw| — My V(y,w) € T" x R".
Noting that
L(z,0) > L(z,v) + Ly(z,v) - (0 —v) V(x,v) € T" x R",
we choose M3 > 0 so that
MiMs — My > L(xz,v) — Ly(z,v) - v.
Now, for all (y,w) € T™ x R", if |w| > M3, then we have

o(x,0) w4+ My|w| — My > Ly(x,v) - w+ My Ms — My
o(z,v) - w+ L(z,v) — Ly(z,v) - v = L(x,v) + Ly,(z,v) - (w—v).
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By the convexity of w — L(x,w), we have
L(z,w) > L(z,v) + Ly(z,v) - (w —v) YweR"
Since the function
(y, w) = Ly, w) — L(x,v) = Ly(z,v) - (w = v)

is uniform continuous on the compact set T™ x B(0, M3), there is a constant 6 > 0 such
that for all (y,w) € T x R", if |y — x| < 6, then

(3.5) L(y,w) — L(x,v) — Ly(z,v) - (w —v) > —e&.

Combining (3.4) and (3.5), we conclude that for all (y,w) € T™ x R", if |y — z| < 9§,
then
L(y,w) > L(z,v) + Ly(z,v) - (w —v) —e. a

Proof of Lemma 3.4. 1. Define the functions g : [0, 7] — R by

mwzéu%w%@Mt

We may choose a subsequence of {f,} of {8} so that

T
lim G, (T) = liminf/o L(vk(t), 4% (t)) dt.

j—o0 k—o0

The functions () are non-decreasing on [0, T'] since L > 0, and they are uniformly

bounded since
T
0§m®§/1m%®www&§0 vt e [0, T).
0

In view of Lemma 3.7, we may assume by selecting a subsequence of {fy,} if necessary

that
Br, (t) — B(t) asj— oo

for some non-decreasing function g3 : [0, 7] — R.
2. In view of the compactness of T™, Lemma 3.6 and Ascoli-Arzela theorem, by

selecting again a subsequence of {, } if necessary, we may assume that
(3.6) Yi,; (t) — v(t)  uniformly on [0, T] as j — oo
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for some v € C([0, 7). By Lemma 3.6, we can see that v € AC([0, T]). We see as well
that v(0) = zp and v(T') = z;.

3. Note that non-decreasing functions and absolutely continuous functions are a.e.
differentiable. Accordingly, 8 and v are a.e. differentiable on [0, T]. Fix any of differ-
entiability points in [0, T) of (3,7) and denote it by ¢. Fix any € > 0 and, in view of
Lemma 3.8, select § > 0 so that for all (y,w) € T™ x R", if |y — v(c)| < 4, then

L(y,w) = L(v(¢),7(c)) + Lu(v(c), ¥(e) - (w = F(e)) —e.
4. In view of Lemma 3.6 and that as j — oo,
Ty (€) = ¥(c),
we may choose J € N so that for all t € [c, c+ J ! and j > J,
Yk, (1) = ()] < 6.
Fix j,m € N so that 7 > J and m > J. We have
Ly, (£), Yk, (1)) = L(v(e), ¥(c)) + Lo (v(c), ¥(e) - (3w, (8) = 3(c)) — ¢

for a.e. t € [¢, c+m™!]. Integrating this over [c, c+m™!] and multiplying the resulting

inequality by m, we get

c—l—rn_1
m [ L, (0.3, () dt = L (0)4(0)

= L(7(c),7(c)) + Lu(v(e), 4(0) - [m(yk(c +m™") — 7, (€)) — ()] — e
By the definition of (i, we get
m(Br, (e +m™") = B, (c))
> L(7(),4(¢)) + Lo(v(c), 7(€)) - [k, (¢ +m™h) =k, (c)) = 4(e)] —&.

Sending j — oo, we have



Next, sending m — oo yields

B(e) = L(7(¢),34(e) + Lo (7(e),4(e)) - [3(e) = 4(e)] =& = L(3(e), 4(e)) — &

From this we conclude that for every point ¢ € [0, T') of differentiability of (3,~), we

have

(3.7) B(t) = L(v(t),4(1)).

5. Integrating both sides of (3.7), we get

A Mwmw@wnsA B(tydt < B(T) — B(0) = B(T).

Notice that for any non-decreasing function g on [0, T'], we have

A §(t)dt < g(T) - g(0).

Since

T
B(T) = Jim G, (T) = tyminf [ L((t).u(0) .

Jj—o0 k—o00

we have

T T
t/uwmwasmwamw%mw
0 0

k—o0

This and (3.6) together complete the proof. O
The following lemma will be useful later.
Lemma 3.8. There is a constant Cy > 0, depending only on T and L, such that for

any x1,x2 € T™ and any minimizer v € AC([0,T], T™) for V(x1),

inf |5(¢)| < Cb.
essinf 1Y) < Co

Proof. As before there are constants Cy > 0 and C > 0, which depend only on T and
L, such that

V(:l?l) S C(),
L(z,v) > |v]| = C1 V(z,v) € T" x R".
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Since 7y is a minimizer for V(z1), we have

T
/ﬁﬂmag%+QT
0

Hence,

inf |[¥(8)] < CoT~ ! + C4. |
eseinf 1Y) < CoT™ " + Cy

4. Regularity of minimizers

Let v € AC([0,7],T™) be a minimizer for V' given by (3.1).

1. The minimizer v € AC([0, T], T") is a.e. differentiable. Fix ¢ty € (0, T'), where =
is differentiable. Choose a constant C' > 0 so that |¥(¢y9)| < C' and a constant § > 0 so
that [tg — 9, to + 9] C [0, T] and

[V(t) = v(to)| < Clt —to| Vt € [to — 0, to + 7]

2. Due to ODE theory and the implicit function theorem, there exists a constant
91 € (0, 6] such that

mo ¢y ({7(to)} x B(0,2C)) D B(y(to), CJt]) V¥t € [0y, 6u].

3. For each v € B(0,2C) let p = L,(v(to),v) and choose v, € C?(T™) so that
Dy (v(to)) = p. We can choose the family {1, },ep(0,2¢c) so that it is bounded in
C?(T"). According to the method of characteristics (see, e.g., [L]), there exists a con-
stant d2 € (0, 01] and for each v € B(0,2C) a function SV € C(T"™ X [ty — 02, to + J2])
such that

SY(x,ty) =,(x) Ve T",

Sy (z,t) + H(z, S, (x,t)) =0 V(x,t) € T™ x [tg — 02, to + d2].

4. Fix any 7 € (0, 62] and set t; = to + 7, yo = Y(to), and y1 = y(¢1). Choose
v € B(0,2C) so that if u(t) = mo ¢, (v(to),v), then p(t1) = (t1). Observe that for
any v € AC([to, t1], T™) such that v(tg) = yo and v(t1) = y1, since
Sp(v(t), t)o(t) < H(w(t), S;(v(t), 1) + L(v(t), v(t)),
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we have

5%(y1, 1) = 5" (yo, to) = 5" (v(t1), t1) — S*(v(to), to)

t) + 5, (v(t),)o(t)) dt

SY
-J
/ H(v(t), S, (v(t), 1) + L(v(t), v(t))) dt
-]

Observe as well that, since

Sy (u(t), ) (t) = Sy (u(t), ) Hp(uu(t), Sz (p(t), 1))
= H(u(t), S5 (u(t), 1) + L(u(t), i1(t))

by Proposition 1.2, (a), we have
5%(y1,t1) = 5" (yo, to) =57 (p(tr), t1) — 5”(u(to), to)

- / (SP((t). 1) + SE(u(t), () dt
- / (S (ut) ) + H(u(t), S2(ult). 1)) + L(u(t), f(t))) dt
— / " L(u(t), t)) dt.

These observations show that for any v € AC([tg, t1], T™) such that v(ty) = yo and
v(t1) =y, if v # u, then

/t ' L(u(t), 1)) dt < / " L(w(t), () dt.

Consequently, we find that p(t) = v(t) for all ¢ € [to,t1] and hence u(t) = ~(t) for all
t € [0,T]. Since u € C?(R), we conclude that v € C?([0,77]). Thus we have

Theorem 4.1. Let v € AC([0,T], T™) be a minimizer for V defined by (3.1). Then
v € C*([0,T]).

5. Weak KAM theorem

The weak KAM theorem [Fal] due to A. Fathi is now stated as

17



Theorem 5.1 (weak KAM theorem). There are functions u_,u, € Lip(T™) and a
constant co € R having the properties:
(a) For any v € AC([a, b], T™), where a < b,

ux(y(b)) — ux(v(a)) < /0 L(y(t),7(t)) dt + co(b — a).

(b) For each x € T", there are functions y— € AC((—o0, 0], T"™), 74+ € AC([0, c0), T™)
such that v+ (0) = x and

u_(7-(0)) — u_(7—(~t)) = / LO- (@5 () ds + e >0
and

Uy (74 (1)) — ug (74(0)) = /O L(v+(s), ¥4+(s)) ds 4+ cot V¢ > 0.

For each t > 0 and ¢ € C(T") we introduce T, ¢ : T" — R by

Ty ¢(x) = inf U;L(W(S)W(S))dﬁt cb(v(o))] ,

V(t)=z

where the infimum is taken over all v € AC([0, ¢|, T™) such that v(¢) = x. Similarly we
define T; ¢ : T* — R by

o) = s - [ Lo as 4 o0 (0)].

where the infimum is taken over all v € AC([0, ¢], T™) such that v(0) = x.
With this notation, as we will see later, Theorem 5.1 is equivalent to the following

theorem.

Theorem 5.2. There are functions u—,uy € Lip(T™) and a constant ¢y € R such that

(5.1) u_(z) =T, u_(x)+cot Vt>0, x€T",
and
(5.2) uy(r) =T uy(z) —cot VYVt >0, x € T

In the rest of this section we are mostly devoted to proving a weaker form of Theorem

5.2. That is, we prove the following proposition.
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Theorem 5.3. There are functions u_, uy € Lip(T™) and constants co, dy € R such

that

u_(z) =T, u_(x)+cot Vt>0, x€T",
and
(5.3) uy (z) =T, uy (z) —dot WVt >0, v €T"

We postpone until next section to prove that dy = ¢p, and in this section, assuming
that dy = ¢y, we prove that Theorem 5.3 is equivalent to Theorem 5.1.
Define the L : T" x R" — R by L(z,v) = L(z, —v). Fix A € (0, 1). Define v* on
T" by .
v x) = inf / e ML(y(t),4(t)) dt.
0

v(0)=z
Lemma 5.4. Tmi% L < X*z) < L(z,0) for z € T
TLX n
Proof. Set C = Tmi% L. Fix x € T™. For any v € AC([0, 00), T™) satisfying v(0) = =z,
7l>< n
we have

/ e ML (t), 5(8)) dt > / e MOt = OA L.
0 0
Hence,

)\’UA(.Q?) > C.
Also, we have
o Nz) < /OO e ML(x,0)dt = L(z, )AL,
Thus we get :
C < 2Mz) < L(z,0). O

Lemma 5.5 (Dynamic programming principle). For any T >0 and x € T™, we

have

V@)= inf [ | B0 5@) T (1)

Proof. We denote by w(x) the right hand side of the above formula. Fix z € T". Fix
any v € AC([0, co0), T™) such that y(0) = z. Note that



Hence we have v*(z) > w(z).
Fix any v € AC([0,00), T™) such that v(0) = =, and then any p € AC([0, 0c0), T™)
such that 1(0) = (7). Define v € AC([0,00), T™) by

_ [ (0<t<T),
v(t) = {Z(t -1) (7<),

Then we have
T R (%) R
v () < / e ML(v(t), () dt + e T / e ML(w(t+T),0(t+T))dt
0 0

T 0
< [ b e [N ), ate)

Consequently, we have

Nz) < / e ME(y(), 4(8)) dt + e T (4(T)).
0

From this we find that
v (z) < w(x). a

Lemma 5.6. The functions v*, with X\ € (0, 1), are equi-Lipschitz continuous on T™.
Proof. Set

C = min L,
TnxR"™

and note that

~

v Mz) = ATIHC = oM z) — ooe_M =in Ooe_)‘tA ) — .
()~ A1 = o (@) 0/0 at f/o (L(3(1),4() — C) dt

Thus, by replacing v*(z) and L, respectively, by v (z) — A71C and L — C if necessary,
we may assume that L >0 on T" x R"™, so that v* > 0 on T™.

Fix z, y € T™. Assume that x # y. By Lemma 5.5, for any v € AC([0, |z — y|], T™)
with v(0) = y, we have

lz—yl
P [ MO e+ e A (- )
0
Define p € AC([0, |z — y|], T™) by

u(t) =y +tle —y| Nz —y).
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Then we get

lz—y| R
P < [N L) e+ e @)
lz—y|
< / E(ut), |z — 4| (@ — ) dt + 0 (@)
0

|z—y|
SC1/ dt + v (x) = v*(z) + Ci|z — yl.
0

Here (1 is a positive constant such that

max L <.
TnxB(0,1)

Thus we get
WMy) —oM@) < Cile —y| Va,y e T

and conclude that
[0} (@) — 0 ()| < Cilw —y| Va,ye T O
Proof of Theorem 5.3. 1. For T'> 0 and ¢ € C(T") we define Q¢ : T" — R by

Qro(r) = inf

v(0)=z

/0 Ey(t),4(8) dt + S(+(T)) |,

where the infimum is taken over all v € AC([0, T], T™) such that v(0) = . We show
that there exist a function u_ € Lip(T") and a constant ¢y € R such that

(5.4) u_(x) = Qru_(z)+coT VT > 0.

2. By Lemma 5.4, the collection {\v*(0) | A € (0, 1)} is bounded. Therefore we can

select a sequence {\;}jen C (0, 1) so that, as j — oo,
Aj— 0 and \jv(0) — —co

for some ¢y € R.
3. Set w*(x) = v*(x)—v*(0) for x € T™. The collection {w™* | A € (0, 1)} C Lip(T™)

is uniformly bounded and equi-Lipschitz on T™. Hence, we may assume that, as j — oo,
w?i (z) — w(xz) uniformly on T"

for some w € Lip(T").
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4. Fix z € T" and T' > 0. Using Lemma 5.5, we get

(5.5) w*(x) = inf

| [T e a0 at+ TR ) | + (7 - 1))

Fix any v € AC([0,00), T™) so that v(0) = z. From the above, we have

|

A
T Av™(0)

T ~
wz) < / e ML (y(8),4(1)) dt + e NTu ((T)) — T

Passing to the limit along the sequence A = \; as j — oo, we get

T A
w(z) < / E((£),4(8)) At +w(x(T)) = T - 1+ (—co)
T
- / E(4(8),5(t)) dt + w(x(T)) + coT.

Thus we have
(5.6) w(x) < Qrw(x)+coT VreT", T >0.

5. In view of (5.5), we choose vy € AC([0,00), T™), with v5(0) = x, so that
T

(5.7) w(z)+A> / e ML (1), (D) dt + e Twd (A (T)) + (€T — 1) (0).

We rewrite this as

T A
(58) W Ne) 3> e ([ B30 dt + (1))
0
+ (e = 1)v*(0) + ey
> e MQrw(z) + (e — 1)v(0) + ey,

where

T
ex = /O (e = e )L (), 4n (1) dt + e [w (3 (1)) — w(na(T))]

6. Noting that there is a constant C' > 0 such that

A

L(yav) Z _CQ ‘v’(ym) € T" x an
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we have

/0 (e — e AT L(ya(t), 4a(t)) dt > —Cg/o (e — ey dt > —CoT(1 — e T).

Consequently, we have

(5.9) ex > —CoT(1 —e ) — =T max w — w.

7. From (5.8) and (5.9), we get
w(z) + A > e M Qrw(z) + (e — 1wt (0) — CoT(1 — e M) — max |w* — w|.

Tn

Sending A — 0 along the sequence A = \;, we now find that
w(x) > Qrw(x) + coT.
This together with (5.6) yields
w(z) = Qrw(x) +coT VYreT", T >0.

8. Let (z,t) € T™ x (0, 00). From the above identity we get

wle) =Qrule) +eat = int | [ L6536 ds + w(r(0)] + cu

= mf

[
=

~ji(s)) ds + w<u<o>>] T oot

= inf
n(t)==

=T, w(x) + cot.

))d8+w(ﬂ(0))} Tt

Here we used the observation that for v € AC([0, ¢], T"™), with v(t) = z, if we set
wu(s) =~(t —s) for s € [0, t], then p € AC([0, t], T™) and u(0) =

Thus we find that the pair (w,cy) € Lip(T™) x R has the required properties for
(u—, cp) in Theorem 5.3.

9. We repeat the arguments in the paragraphs 1 to 7 above with L in place of f), to
conclude that there is a function v € Lip(T"™) and a constant dy € R such that

@)= it [ [ 1606360 as 4000 +dut >
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where the infimum is taken over all v € AC(]0, ], T™) such that v(0) = z. Multiplying
this by —1 and writing u = —v, we find that

u(®) = sup [— | 260946 ds +utre)| —dot ¥ >0,
v¥(0)=x 0

which shows that the pair (u,dg) has the properties required for (u4,dy) in Theorem
5.3. O

Now, we turn to the proof of the equivalence of Theorems 5.1 and 5.2.
Proof of Theorem 5.1 from Theorem 5.2. Let u_,uy,cy be those from Theorem
5.2.

1. Fix any v € AC([a, b],T"), with a < b. Define p € AC([0, b — a], T™) by
w(s) =~v(s+ a). Since

u_(z) =Typ—qu—_(x) +co(b—a) VzeT",

we get
b—a
u_ (b — a)) < / L(u(s), fo(s)) ds + u_((0)) + co(b — a),
and hence

ur®) — u-((@) < [ L), 4(5) ds+ cofb )

Similarly, we get

b—a
wr(u0) = = [ Llp(a). ) ds + s (b= @) = cob = o)

and
b
uy(y(a)) = — / L(v(s),¥(s)) ds + u4 (v(b)) — co(b — a).

from which we find that

b
uy (7(0)) — ui(v(a) < / L(v(s),7(s)) ds + co(b — a).

a

Thus assertion (a) has been shown.
2. To prove (b), fix x € T™. We construct v_ € AC((—o0, 0], T™) as follows. First
note that

wt)= it | [ LoEE) st uGE-1)|+a weT
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Define the sequence v, € C%([~k, —k + 1], T"), k € N by selecting v, inductively. We
first select v; so that

71(0) ==,

0
u(e)= [ L) A(s) ds + u-(n(-1) + ao
For k > 1 we select y; so that

Ye(=k+1) =vp_1(—k + 1),
—k+1
w4 D)= [ Lnls),Auls)) ds + u(e(—) + co
—k
Indeed, according to Theorem 3.1, such ., with & € N, exist. Define v €
AC((—o0, 0], T™) by setting
v—(s) =yk(s) forse |-k, —k+1], ke N.

3. We have 0
w@) = [ L6 () ds +u-(0- (k).

-k

This and (a) guarantee that v_ is a minimizer for

b
it [ L((3),3(9)).
with any —oo < a < b <0, where the infimum is taken over all v € AC([a, b], T™) such

that y(a) = v—(a) and y(b) = y_(b). This shows that

0
u_(z) = / L(v—(s).A—(s)) ds + u_(y_(~1)) ¥t >0

—t

and that v_ € C?((—o0, 0]) by Theorem 4.1.
4. Fix z € T™. We can select v; € C?([0, 1]) so that

7(0) ==,
ut () = — /01 L(71(s),71(s)) ds + uy (11(1)) — co.
Next, we can choose v, € C?([k — 1, k]) inductively for k > 1 so that
Ve(k —1) =ye-1(k — 1),

k
wy (el — 1)) = — /k L) 35 ds + e () o
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Setting
v+ (8) =v(s) forse[k—1, k], k€N,

we find a v € C?([0, 00)) such that v, (0) = z and
¢
WO (0) = (2) + [ L) A () ds ot ¥ >0,
0
The proof is now complete. O

Proof of Theorem 5.2 from Theorem 5.1. 1. Let u_, uy cop be those from
Theorem 5.1. We show that

(5.10) u_(z) =T, u_(x) +cot VYt >0,

(5.11) uy () =T uy(z) —cot ¥Vt > 0.

We only prove (5.10). The proof of (5.11) can be done in a parallel way.
2. Fix any z € T" and t > 0. Let v € AC([0, ¢], T") be such that v(t) = z. By

Theorem 5.1, (a), we have

u_(z) < / L(4(5),4(5)) ds + u_(7(0)) + cot.

Hence we have
(5.12) u_(z) < Ty u_(z)+ cot.

Let v_ € C?((—o0, 0],T™) be the one from Theorem 5.1, (b). Setting pu(s) = v_(s —t)
for s € [0, t] and noting that u(t) = =, we have

0

u_(z) = / L(r—(5),4—()) ds + u_ (7 (1)) + cot

—t

- / L(u(s), i(s)) ds + u_(u(0)) + cot > Ty u(z) + cot.

This together with (5.12) proves (5.10). a

6. A PDE approach

We consider a general scalar first order partial differential equation
(6.1) F(z,u(z), Du(z)) =0 in Q,
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where (2 is an open subset of R and Du denotes the gradient of u : 2 — R. We assume
that F' is continuous on 2 x R x R".

A lower semicontinuous function u : 0 — R is called a wiscosity supersolution of
(6.1) if for any (¢, z) € C1(Q) x Q such that (u — )(x) = ming (u — 1),

F(z,u(x), Dy(x)) > 0.

An upper semicontinuous function u : Q — R is called a viscosity subsolution of
(6.1) if for any (¢, z) € C1(Q) x Q such that (u — ¥)(z) = maxq(u — ),

F(z,u(x), Dy(x)) < 0.

A continuous function u : Q — R is called a wiscosity solution of (6.1) if it is both a
viscosity supersolution and a viscosity subsolution of (6.1).
Note that u is a viscosity supersolution (resp., subsolution) of (6.1) if and only if

v := —u is a viscosity subsolution (resp., supersolution) of
—F(z,—v(z),—Dv(x)) =0 in Q.

We refer the reader to [CL, CEL, BC, B, L] for general references on viscosity
solutions of first order PDE.
A first remark based on the PDE approach on the weak KAM theorem is the fol-

lowing.

Proposition 6.1. Let ¢ € C(T") and define u : T x [0,00) — R by u(x,t) =T, ¢(z).
Then
(a) w is continuous on T™ x [0, 00);

(b) for each t > 0 there is a constant Cy > 0 such that
lu(z,s) —u(y,s)| < Cile —y| Ve,yeT" s>t
(¢) w is a viscosity solution of
(6.2) ug(x,t) + H(z,ug(z,t)) =0 in T" x (0, 00).
Remark. To be precise, the definition of u for ¢ = 0 should be understood as

u(z,0) = Tj ¢(z) = ¢(x).
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Lemma 6.2 (Dynamic programming principle). Foranyt >0, s >0, ¢ € C(T"),

and x € T™ we have
thi—s(b(x) = Tt_ © Ts_(b(aj)

The arguments in the proof of Lemma 5.5 apply to the proof of this lemma, which
we omit to reproduce here.

Proof of Proposition 6.1. 1. We first show the continuity of u at ¢ = 0. Since

y(t)=x

w(e,t) = inf [ [ 26 3)ds+ 620)

IN

/t L(z,0)ds + é(z) V(1) € T" x [0, 50,
0
we have

(6.3) u(z,t) —o(z) < t;lel%)fl L(z,0) V(z,t) € T" x [0, c0).

2. Let wyg be the modulus of continuity of ¢. That is,

wy(r) = sup{|¢(z) — ()| | z,y € T", [z —y[<r} forr =0.

Fix (z,t) € T™ x (0, t). Let v € C?%([0, ¢]) be a minimizer for

in [ [ Bt its1 as + 60|

p(t)==

For each A > 1 we choose a constant C4 > 0 so that
L(z,v) > Alv] = Cy  ¥Y(x,v) € T" x R".
We compute that
t
T 6(0) ~ 6(0) 2 A [ [i()]ds = tCa + 6(,0)) - 6(2)
0

= Aly(t) = (0)| = tCa — we (|7 (t) — ¥(0)]).

Define the function v : [1, o) — R by

v(A) = sup{wy(r) — Ar | r > 0}.
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Observe that v is a non-increasing function on [1, co) and v(A) > wg(0) = 0 for all

A > 1. Also, since wg(r) is bounded on [0, co0), we have
wg(r) <C Vr>0
for some constant C' > 0, and hence

v(A) = sup{wy(r) — Ar |0 <7 < ATICY < wy(AT10).

Note that
Ty ¢(x) — dlz) > —v(A) —tCs VA> 1.
Setting
p(s) = ir;fl(u(A) +5sCy) for s >0,
we get

Ty ¢(x) = ¢(x) = —p(t).
Observe that p is upper semicontinuous on [0,00), p(s) > 0 for all s > 0, p(s) <

v(1) + sC4 for all s > 0, and

< i < i o) =o.
p(0) < }&fl v(A) < j&flwﬁs(A C)=0

This and (6.3) together show that there is a continuous function ¢ on [0, c0), with
0(0) = 0, such that

(6.4) lu(z,t) — ¢(z)] < o(t) Y(x,t) € T" x [0, 00).

We may assume that o(t) < Co(t+1) for all t > 0 and for some constant Cy > 0. Finally
note that p depends only on wy and the family {C4 | A > 1} and hence o depends only
on wy, {Catas1, and maxzern L(z,0).

3. Next we prove (b). Let Cy > 0 be a constant for which o(t) < Cy(t + 1) for all
t > 0. Choose C7 > 0 so that

L(z,v) > |v]| —C1 V(z,v) € T" x R".

Fix any z,y € T". Choose a minimizer v € C?(|0, t]) for

Tré(x) = inf [ [ Huts)ito as + otu(on|.

n(t)=x
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Observing that

t
| Blds <01+ 0(t) = 9(,(0)) < €€ + Coft + 1) + x|,
0
we find a 7 € [0, t] such that
tly(m)] <tCrL+ Co(t +1) + max |&].

Setting Cy(r) = Cy + Co +r~H(Cy + rr%%x|gb|), we have |§(7)| < Cy(r).

4. In view of Proposition 2.1, (a), we have

H(y(s), Lu(v(5),7(5))) = H(y(7), Lo (4(7),%(7))) Vs € [0, t].
Consequently,

: < .
HO(s), Lo(v(s).3()) = | max H (@ Lo(z,0)) Vs €0, 1]

By the superlinearity of H, there exists a constant C(r) > 0 such that
Lo (7(s),7(s))| < Ca(r) Vs € [0, 1].

Since Y(s) = Hp(Y(s), Ly(v(s),74(s))) for all s € [0, t], we find a constant Cs(r) > 0
such that
()l < CF Vs €0, 4.

5. We define p € AC(]0, t], T™) by

{’Y(S) for0<s<t-—r,

-t
'y(s)—kﬂ(y—x) fort —r <s<t.
r

Noting that u(0) = 7(0), u(t) = 7(t) +y — 2 =y, and |ix(s)] < [3(s)| + plo —y| <
Cs(r) + \/Tﬁ and writing Cy(r) = C5(r) + V1 we have

ﬂWWSALW@#@NHWW@)
< /0 L(y(s), (s)) ds + 6(1(0))
i (T"xg%(éi}é4(r)) [Lalr + T”Xg%g‘,}ézl(r)) ’L”|) ==yl
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Hence we get

T, - T, < L, L, -yl
Co) ~ T o) < ( mex Lm0l

From this, setting

Cs(r) = < max |Lo|r + max |LU|) ,
T x B(0,C4(r)) T" xB(0,C4(r))

we conclude that
(65) |U(IL’,t) - U(y,t)| S 05(T)|$ - y| VIL’,y € Tna t Z r,

and hence assertion (b).

6. From (6.4) we get
u(@, 1) — u(y, )] < 16() — 6()| + 20() < wy(lo — yl) + 20() Va,y €T, ¢ >0,
Fix any ¢ > 0, z,y € T", t > 0. From the above, if |z — y| + & > t, then
u(z,t) —u(y, t)] < [o(x) — ¢(y)| + 20(t) < wy(|z —yl) +20(Jx —y| +¢).
On the other hand, by (6.5), if |z — y| + € < t, then
u(x, ) — u(y, )] < Cs(e)|x —yl.
Combining these yields
u(e; ) —uy,t)] <ws(|lz —yl) + 20(lz —y| + &) + Cs(e) |z — yl.
Define w : [0, c0) — R by
w(r) = gg (we(r) +20(r+s)+ Cs(s)r) .

We have then
(6.6) u(z,t) —u(y, )] <o(lz —yl) Ve,yeT", >0

Observe that w(r) > 0 for all 7 > 0 and @w(r) = we(r) + 20(r + s) + Cs(s)r for all
r > 0 and s > 0 and hence that lim,\ o @(r) = 0. Therefore, (6.6) guarantees that the
collection {u(-,t) |t > 0} C C(T") is equi-continuous.
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7. The above arguments 1 and 2 applied to T, ¢, with ¢» = u(-, s), where ¢t > 0 and
s > 0, yields a modulus € C([0, 00)) such that

T o T ¢la) = T5 ¢(x)| < o(t) VE=>0,5>0, z €T

Here the function ¢ depends only on @ and the Lagrangian L. The above inequality

can be rewritten as
|u(z,t) —u(z,s)| < a(|t —s|]) VaxeT", t,se€0,00).

This and (6.6) show that u is indeed uniformly continuous on T x [0, 00), thus proving
(a).

8. Next we show that u is a viscosity subsolution of (6.2). Let ¢ € C*(T™ x (0, o0))
and (xg,t9) € T" x (0, 00). Assume that u—1) attains a maximum at (zg,tp). By adding
a constant to ¥, we may assume that u(zg,to) = ¥ (zo,to) and u < 1 on T x (0, 00).

Fix € € (0,%p) and observe by Lemma 6.2 that

(o, to) = (T u(-,to — €))(wo) = _ inf [/0 L(v(s),7(s)) ds + u(+(0), to — €)

v(e)=wo

< it | [ L) dstea0.0-9).

T y(e)=m0o

Fix any v € R™ and consider the function (or curve) v defined by v(s) = xg + (¢ — s)v
for s € [0, €], to find

P(xo,tg) < /8 L(zo + (e — s)v,—v)ds + (zg + ev, tg — €),
0

from which we get

02/s |:_L($0+(€—S)U,—U)+%w(xo—i—(g—s)v,to_'_s_g) ds
0

= /06 [—L(zo + (e — s)v, —v) 4+ ¢h¢(x0 + (€ — s)v,tg + s — €)
— vy (0 + (€ — s)v,tg + 5 — )] ds.

Dividing this by ¢ and sending € — 0, we get

—L(CC(), —U) — Uibm(xo,t()) + ¢t($0,t0) S 0 V’U - Rn.
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Taking the supremum over v € R" yields

wt(x07t0) + H(x(% wm(x()vt())) S 07

which was to be shown.

9. What remains is to show that u is a viscosity supersolution of (6.2). Let ¢ €
CH(T™ x (0, 0)) and (xq,tg) € T™ x (0, 00). Assume that u — 1) attains a minimum at
(z0,to). We may assume that u(zg,tg) = ¥(xo,t0) and u > 1 on T" x (0, c0).

Fix € € (0,%p) and observe that

Y(zo,to) = (T7 u(-,to —€))(w0) = inf [/08 L(v(s),%(s)) ds + u(7(0),t0 — €)

v(e)=z0

> it | [ 2061 ds + u60) - 2)].

~ y(e)=m0o

Choose a minimizer v. € AC([0, €], T™) for the last variational problem. Compute that

00 0= [ 206036 + v6eltats =) ds
= /0E [=L(7=(5), Ye(5)) + Ve (5)vz (e (s), to + 5 — €) + Yi(7e(s), to + s —€)] ds

< /0E [H(%(S)vl/)m(%(s),to + s — 5)) + ¢t(7€(3),t0 + 85— 6)] ds.

Now observe as in the proof of Lemma 3.6 that for any A > 1 there exists a C'4 > 0
such that L(z,v) > Alv| — Cy for all (z,v) € T™ x R™ and hence

g
A Ye(t)| dt < 2 if to/2
| elae < Caer2 | max ol e e 0.0/2)

and moreover

Alzg —~.(0)| < C 2 if 0,10/2).
20— (0 < Cact2, max - [u] if <€ (0.to/2)

Consequently we have

Y (0) = zyg ase— 0.
Dividing (6.7) by ¢ and sending ¢ — 0, we get

Yi(xo,to) + H(xo0, Yz (20, t0)) > 0.
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This shows that u is a viscosity supersolution of (6.2). The proof is now complete.

A remark on T, similar to Proposition 6.1 is stated as follows.

Proposition 6.3. Let ¢ € C(T") and define u : T™ x [0,00) — R by

u(x,t) = T,"¢(x).

Then
(a) u is continuous on T™ x [0, 00);

(b) for each t > 0 there is a constant Cy > 0 such that

lu(z,s) —u(y,s)| < Cilxr —y| Vr,y e T", s>t;
(¢) u is a viscosity solution of
(6.8) ug(z,t) — H(z,ug(z,t)) =0 in T" x (0, 00).

Proof. Fix ¢ € C(T™). Observe that

rotw) = sw |- [ L6690 0)]

v(0)=z

where L(z,v) := L(z, —v) and

fooe) = int | [ L6046 ds+o00)]  or v e o)

By Proposition 6.1, setting

A

v(z,t) =T, (—¢)(z) for (z,t) € T" x [0, 00),

0

we see that v has properties (a) and (b) and so does u = —wv. Also, v is a viscosity

solution of

ve + H(z,0,) =0 in T" x (0, 00),
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where H(xz,p) := sup{vp — L(z,v) | v € R"}. Note that

H(z,p) = Sgg)n(—vp — L(z,v)) = H(xz,—p) V(z,p) € T" x R".
Hence we find that v is a viscosity solution of
v+ H(x,—v,) =0 in T" x (0, 00).
As we remarked before, the function u = —v is a viscosity solution of
—[(—u)¢ + H(z,—(—u),)] =0 in T™ x (0, c0).
That is, u is a viscosity solution of
uy — H(x,u,) =0 in T™ x (0, 00).

The proof is now complete. O

Lemma 6.4. Let G € C(T" x R x R™) have the properties: (a) for each (z,p) €
T™ x R"™, the function r — G(x,r,p) is non-decreasing on R; (b) for each r € R,

R1iﬁmooinf{G(:13,r,p) | (z,p) € T" x R", |p| > R} > 0.
Let ¢,d € R satisfy ¢ < d. Let u € C(T™) and v € C(T™) be a viscosity subsolution of
(6.9) G(z,u,uz) =c in T,
and a viscosity supersolution of
(6.10) G(z,v,v,) =d inT",

respectively. Then u < v on T".

Proof. We argue by contradiction. Thus we assume that II%%X(U —v) > 0 and will get a
contradiction. We work on R™. That is, we regard u, v, G(-,7,p) as periodic functions
on R™.

Note first that u is a Lipschitz continuous function. Indeed, we choose a constant

C > 0 so that
G(x,nllilnu,p) >c V(z,p) e T" x (R"\ B(0,C)).
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Fix any y € R™ and consider the function ¢ € C*(R"™ x \{y}) defined by
¢(z) = uly) + Clz —y.
Choosing R > 0 large enough, we observe that
u(z) < ¢(z) Vo € dB(y,R),
and that

x—y
(6.11) G(z,u(x), p.(x)) = G(az,u(z),(}’m> > c.

We compare u with ¢ on the set B(y, R): if u(z) > ¢(Z) at a point = € B(y, R), then

z € int B(y, R) \ {y} and, since u is a viscosity subsolution of (6.9), we must have

G(E,u(f),C%) <ec.

This contradicts (6.11), which shows that u(x) < ¢(x) in B(y, R). Here R can be chosen
independently of y. Accordingly we get

u(z) <u(y) +Cle —y| if [z —y| <R,

which implies that
ju(z) —u(y)| < Clz —y| Va,y e R".

Now we consider the function
O(z,y) = u(z) —v(y) — alz —y> —e(jy* + 1)/

on R" x R"™, where a > 1 and ¢ > 0 are constants to be sent to oo and 0, respectively.

Let (Z,y) be a maximum point of ®. Note that

which yields

and hence



Since u and v are a viscosity subsolution of (6.9) and a viscosity supersolution of

(6.10), respectively, we get

G(z,u(Z),2a(T — y)) < ¢,

G (gj,v(gj), 20(z — ) — e(|7)* + 1)—1/233) > d.

Sending ¢ — 0 and o — oo together, we find that for some & € R™ and p € B(0,C),

which is a contradiction. O

Remark. The above proposition is valid under the weaker assumption that u €
USC(T™) and v € LSC(T"). The same proof as above yields this result.

Proposition 6.5. (a) There is a pair of a constant co € R and a function v € Lip(T")

such that u is a viscosity solution of

(6.12) H(z,uz) =co inT".

(b) If (d,v) € R x C(T™) is another pair for which v is a viscosity solution of
H(z,vy)=d in T",

then d = cg.

Proof. 1. The underlining idea of the arguments here parallels the proof of Theorem

5.3. We consider the Hamilton-Jacobi equation
(6.13) Mt z) + H(z,u)) =0 in T,

where A € (0, 1) is a parameter to be sent to zero later. This equation has a unique
viscosity solution. Indeed, to see the uniqueness, let u,v € C(T"™) be a viscosity subso-
lution and a viscosity supersolution of (6.13). Fix any € > 0 and set u.(z) = u(z) — ¢

for € R™. Then u. is a viscosity subsolution of
Aue + H(x,Du;) = —Xe  in T™.

By Lemma 6.4, we see that u. < v on T". Since ¢ > 0 is arbitrary, we get u < v

on T™, which implies the uniqueness of viscosity solutions of (6.13). The existence of
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a viscosity solution of (6.13) can be deduced by Perron’s method. In fact, it is easily
seen that the function f(z) := —Afliré%)gH(x,O) and g(z) := —A"!mingepn H(z,0)
are classical (and hence viscosity) subsolution and superslution of (6.13), respectively.
Note also that f < g on R™. Therefore, by Perron’s method, we find a function u* such
that the upper semicontinuous envelope (u)* of u? is a viscosity subsolution of (6.13)
and the lower semicontinous envelope u of u” is a viscosity supersolution of (6.13). As
above, we may apply Lemma 6.4 to (u*)* — ¢, with any £ > 0, and u, to deduce that
(u*)* —e < u) on R™, which yields that (u*)* < u on R™. This last inequality implies
that u* = (u*)* = u) € C(T"), proving the existence of a viscosity solution of (6.15).

2. Perron’s method has yielded a solution ©* which is given by
u(z) = sup{v(z) |v € C(T™) is a viscosity subsolution of (6.15),
f<v<gonR"} VzeR".

From this we see that

(6.14) — max H(x,0) < \u(z) < — min H(z,0) Vo< R"™

zeTn zeTn

Hence we find that u* is a viscosity subsolution of

H(z,u)) = max H(z,0) in R™
zeTn

As in the proof of Lemma 6.4, we see that there is a constant C' > 0, independent of
A € (0, 1), such that

(6.15) lur(z) — ur(y)| < Clz —y| Va,y € R™, A€ (0, 1).

We set w(z) = u*(x) — u*(0) for z € R™ and A\ € (0, 1) and ¢* = —A\u?(0) for
A € (0,1). Then (6.14) and (6.15) guarantee that {c*}o<r<1 C R is bounded and
{w*}ocr<1 C C(T™) is a uniformly bounded and equi-continuous on R™. Therefore we

can select a sequence {\;} € (0, 1) so that as j — oo,
)‘j — O,
N — cp,
w?i (z) — u(z) uniformly for z € T™,

for some constant ¢y and some function u € Lip(T™). By the stability of the viscosity
property, noting that
M (z) + H(z,w)) =¢*  in R"
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in the viscosity sense, we see that u is a viscosity solution of
H(x,uz) =cop inR™

Thus we have proved (a).

3. By assumption, we have

H(z,uz)=co in T",
H(z,v,)=d inT"

in the viscosity sense. By adding a constant to u, we may assume that u > v on R".
By Lemma 6.4, we may deduce that ¢y > d. By adding another constant to u, we may
assume in turn that v < v on R™ and we may deduce as above that ¢y < d. Thus we

see that ¢y = d, completing the proof. O

Proposition 6.6. Let cg € R be such that there is a viscosity solution u € Lip(T™) of

(6.16) H(x,ug) =co inT".
Then
(6.17) co= inf  sup H(z,¢.(x)).

$ECL(T™) geTn

Proof. 1. Let u € Lip(T") be a viscosity solution of (6.16). Let p € C5°(R™) be
a standard mollification kernel such that sptp C B(0,1). Fix € € (0, 1), and set
pe(z) = e "p(z/e) and ue. = uxp,. Let Cy > 0 be a Lipschitz constant of the function w.
Since v is differentiable a.e. and the a.e. derivatives are identical with the distributional

derivatives, using the Jensen inequality, we have
H(z, Du.(x)) < pe + H(z, Du()) < po + H(-, Du()) + w(e) < co +w(e) Va € R,

where w is the modulus of the function H on R" x B(0,Cy). Now, letting ¢; denote the
right hand side of (6.17), we have

c1 < sup H(x,Du.(z)) <cop+w(e) Vee(0,1).
zeR™

Because of the arbitrariness of e, we find that
(618) C1 S Co.
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2. To prove that ¢y < ¢1, we argue by contradiction, and so suppose that ¢y > c;.
Let u € Lip(T™) be a viscosity solution of (6.16) as before. Set ¢ = (¢o + ¢1)/2. Then
u is a viscosity supersolution of By the definition of ¢, there is a function ¢ € C*(T")
which is a subsolution of

H(z,uy)=c inR"

in the classical sense (and hence in the viscosity sense). We may assume by adding a
constant to u if necessary that ¢ > u on R"”. By Lemma 6.4, since ¢ < ¢y, we have

¢ < u on R™, which is a contradiction. Thus we see that ¢y < ¢1, completing the proof.
O

Now, we turn to the PDE
(6.19) —H(z,u;) =—dy inT",

where dy € R is a constant.
We remark that u € C'(T™) is a viscosity solution of (6.19) if and only if v := —u is
a viscosity solution of
H(z,—v,)=dp inT".

The Hamiltonian (z,p) — H(x,—p) has the properties required in Propositions 6.5

and 6.6. Therefore, we have the following proposition.

Proposition 6.7. (a) There is a pair of a constant dy € R and a function v € Lip(T™)

such that v is a viscosity solution of
H(z,—v,)=dy in T".

(b) If (e,w) € R x C(T™) is another pair for which w is a viscosity solution of
H(z,—w,)=e€e inT",

then e =dy. (c) The formula

(6.20) do = d)ecirll(an) a;Seu"Fn H(x,—¢.(x)).

holds.

Corollary 6.8. Let ¢y and dy be constants from Propositions 6.5 and 6.7, respectively.

Then we have cg = dg.
Proof. From (6.17) and (6.20), we have

=, Mt S (7, o (x)) sedibpn SUp (7, —¢z(x)) = do
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7. Some consequences of the main theorem

Define P;y,, as the set of Borel probability measures p on T™ x R™ which are invariant
under the flow {¢l};cr. Here, by definition, u is invariant under the flow {¢F} if for
all 0 € Cp(T™ x R™),

/ HoaﬁtLdu:/ 6 dp VteR.
nwxw R nxR"”

Theorem 7.1. We have

—cg = inf L dpu.
Mepinv T xR”

Proof. Let (u_,v_,cp) be from the weak KAM theorem, where we not not specify the
value v_(0).
1. By property (a) of u_, for all (z,v) € T"™ x R", we have

u_ (1o ¢F(z,v)) —u_(mo ¢f(x,v)) < /0 L(¢p¥ (x,v)) ds + cot ¥Vt > 0.

Let u € Piny. We integrate the above by u over T™ x R", to get

/ uowogbfdu—/ u_omdu
T xR" T xR™

t
g/ (/ Lo¢5SLdu) ds 4+ cot ¥Vt > 0.
0 T xR"™

Hence, using the invariance of y under {¢F}, we find that

og/ L dp+ co.
T xR"™

Thus we have

7.1 —cp < inf / L du.
( ) 0= Hepinv T xR" “

2. Define the Borel probability measures ug, with £ € N, on T™ x R" by

1 [0
/ 0 duy = E/ O(v-(s),7-(s)) ds VO € Cp(T™ x R").
T xR" —k

Since



there is a constant R > 0 such that
y-(t)| <R Vt<O.

Therefore we have
spt u € T" x B(0, R),

where the set on the right hand side is a compact set. Thus, we find a subsequnece

k. tien and a Borel probability measure p— such that as j — oo,
Hk; 13 y K J
pk; — p—  weakly in the sense of measures.

3. We now show that p_ is invariant under the flow {¢F}. Fix any ¢t € R and
0 € Cp(T™ x R™). We have

1 0
/ fopl du_ = lim —/ 6o ¢l o pL(x0,v9) ds
Tn xR" kj

Jj—0o0 kj

1 0
— Jim o= [ 006k (a0, v0) ds

Jj—o0 k] —k;
where (xg,v9) = (7-(0),7-(0)), and

0 t
[ 0 ounitoon) ds= [ 06k (an.u) ds

—k t—k

0 t —k
:/ HOQSSL(:EO,UO) ds+/ 90¢SL(330,U0) ds+/ 90¢§(x0,110) ds.
k 0 ¢

—k

Hence, dividing this by £ and sending k = k; — 0o, we get

1 0
/ 9o¢tL dp— = lim —/ 90¢5L(x0,1)0) ds:/ 0 du_,
TmxRn j—o0 kj k; T xRn

and conclude that p_ € Pj,,. Therefore we have

(7.2) inf / Ldu< / Ldu_.
MEPinv T xR™ T xR"

4. We observe that
1 /0
[ pdp=tm [ L) d
T xR" J—00 k] —k'j

iy 4=(0(0) —u-(y(=ky)) — ok

Jj—o0 kj

= —(Cp.
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Combine this with (7.1) and (7.2), to conclude that

—co = inf / Ld,u:/ Ldu-_. O
Mepinv T xR" T xR"

Remark. The variational problem

inf / Ldu
HGPiI)V TnxR"?

has a minimizer as the above proof shows. In what follows we write

Puin = {1t € Pinv | . Ldp= inf o Ldv}.

We introduce the Aubry set AZ, with parameter € > 0, as the set of points z € T"
such that there exists v, € AC([—¢, €], T") satisfying 7, (0) = = for which

(7.3) u (o) — u(a(-2)) = [  L(va(s), () ds + 2eco.

—E&

Remark. Note that AZ depends also on the choice of u~. We refer to [Fa2, FS1, FS2]

for recent developments related to Aubry sets.

Theorem 7.2. We have:
(a) u™ is differentiable at every x € AZ.
(b) Du_(z) = Ly(z,9.(0)) for all z € A_.
(¢) The map z — Du_(x), A — R™ is Lipschitz continuous.
Proof. We write u for u_.
1. We prove first (a) and (b). Fix z € AZ and let v, € C?([—¢,¢], T™) satisfy (7.3)
and v, (0) = z. We have

(7.4) u(72(0)) — u(yz(—¢)) = / L(v2(s), Y2 (s)) ds + coe,

—&

(7.5) u(72(€)) — u(72(0)) = /06 L(7x(8), Yx(s)) ds + coe.

2. Fix y € T™. Define u_ € C?*([—¢,0],T") by

e+t

p—(t) = v=(t) + (y — ).
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Note that p—(0) =y, 1—(t) = 42 (t) + L (y—=2) for all t € [—¢, 0], and p_(—¢) = 7,(—2).
By the property (a) of u_ in the weak KAM theorem, we have

(7.6) w(p— (0)) — u(u_(—<)) < / L(u—(s). ji—(s)) ds + coc.

—&

3. Combining (7.4) and (7.6), we get

0
u(y) — u(z) < u(u_(—e)) — ulya(—e)) + / (i i) — L(var3)] ds

—&

- / (e i) — L(s )] ds.

—&

We choose a constant C' > 0 so that
(1) < C Vit € [—¢, €]

Noting that

ly — x|
E

max{[3, (8)], i ()]} < C + <C. Ve -0

where we may assume that |x — y| < y/n and consequently we may choose C. = C' +

e~1y/n, and applying the Taylor theorem, we get

T7) uly) ()
0
< [ (Lo a2 ) + Lo da(e)) - Sy - ) ds

—&

+ K. |y — x]2

for some constant K. > 0, for instance,

1 1
K. = - (1 + —) max
2 € ) (z,0)ET"xB(0,C.)

( LfL’ZC LZC'U )
L'uw LU’U '
Since 7, satisfies the Euler-Lagrange equation

d

EL’U(’}/m(t)7"Y$<t)) = Lm('Yx(t)v;ym(t)) Vt € [_575]7

by integration by parts, we find that

/_ gthx(%:(t),%(t))~(y—az)dt:/_ gjt%[zv(%(t)ﬂ—(t))'(y—x)dt
Le3e) - -0 [ 6e0500) -0 a

—&

{54—1&

01
= L0260 - (- 2) = [ ZLu(u(®) 3 (0) - (g = )

—&
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This together with (7.7) yields
(78) u(y) _u(x) < LU(CE,’)QU(O)) ’ (y—x)+KE|y—:B|2.
4. Next define uy € C?([0,¢],T") by

e (t) = 1alt) +

(y — ).

Note that p4(0) =y, fi4-(t) = 42(t) + 2(z — y) for all ¢ € [0,¢], and p(e) = 7. (e).
By property (a) of u_ in the weak KAM theorem, we have

s 6)) = s O) < [ L0 () + coe
Combine this with
i (6)) = 0) = [ L (e) 4t dt + coc
to get
) = uly) £uCra(6)) = s )+ [ 1L 0 (8) = L2030 1)
< / LG (0, s (1)) — L (0), 3 (0)]

Using the Taylor theorem, the Euler-Lagrange equation, and integration by parts, we

get
u(@) — u(y)
< /O (La(va (), 3 (®)) - (g () — 72 (1) + Lo (72 (), 42 (8)) - (fip(t) — #a (1)) dt
+ Kelx —yf?
— /05 <€;t (?tL (Y2 (), Y2 (t)) - (y — ) — éLU(’ym(t),"ym(t)) (y _$)> a
VK |z —yf?

= —Ly(72(0), 42(0)) - (y — =) + Kcly — .
This and (7.8) yield
[u(y) = u(z) = Lo(2,92(0)) - (y — 2)| < Kelo —yl* Vo€ AZ, y € T".
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In particular, we see that
Du(z) = Ly(x,7,(0)) Vre AZ,

which proves (7.1) and (7.2). In order to complete the proof, we just need to apply the

following lemma. O

Lemma 7.3. Let A C R" and u : R" — R. Assume that u is differentiable at every
point x € A and that there is a constant K > 0 for which

(7.9) lu(y) — u(z) — Du(z) - (y — )| < K|y —2[* Yy €R"

Then
|Du(y) — Du(z)| < 6Ky — x|.

Proof. Let x1,290 € R™. Let h € R"™ be a vector to be fixed later on. We assume that
|h| = |x1 — z2|. By (7.9), we find that

lu(z1 + h) — u(xy) — Du(zy) - h| < K|h|?,
u(a1) — u(xs) — Du(xs) - (x1 — x2)| < K|h|?

lu(z1 + h) — uw(xs) — Du(zy) - (h+ x1 — x3)| < Kl|zy — 29 + h|? < 4K|h|%
Noting that
u(xy + h) —u(z1) + Du(zy) - h
—u(xy) + u(ze) + Du(xs) - (r1 — x2)
+ u(zy + h) — u(xs) — Du(xsz) - (h+ z1 — x2)
= (Du(x1) — Du(x2)) - h,
we get
|(Du(z1) — Du(z2)) - h| <|u(z1 + h) — u(xy) — Du(xq) - h|
+ |u(x1) — u(we) — Du(xs) - (21 — 22)|
+ |u(zy + h) — u(z) — Du(xs) - (h+ z1 — z2)| < 6K|h|%
We amy assume that z; # xo. Setting

_ Du(z1) — Du(zs)
|Du(x1) — Du(z2)|

h

|z — 2|,

46



we find from the above inequality that
|Du(x1) — Du(z2)| < 6K|x1 — 22|,
which completes the proof. O
Define the Mather set //\/lvo and the projected Mather set My by

Mo = closure of U{ spt i | 4 € Prin },
Mo = 7(My).

Remark. By definition, for a Borel probability measure 4 on T™ x R™,
spt p = {(z,v) € T" x R" | u(U) > 0 for all neighborhood U of (z,v)}.

Proposition 7.4. M, is invariant under the flow {pk}.

Proof. We argue by contradiction. Suppose that there were a point (xg,vg) € ./T/l/o and
t € R such that

of (20, v0) & Mo.

Choose a neighborhood U C T™ x R™ of ¢F(xg,vp) such that

UOMVQ 0.

Set V = ¢L,(U). Since V 3 ¢, (¢F (20, v0)) = (70, v0) and ¢Z, : T* x R® — T™ x R"

is a homeomorphism, V' is a neighborhood of (zg,vg). By the definition of /\A/l/o, there is

/1vd,u>0
/1Ud,LL:0

and that 14z ¢y =1y © #F. Using the invariance of u under {¢%}, we find that

0</1Vdu:/1¢£t(U)du:/1Uo¢fdu:/1Ud,u:0.

This is a contradiction, which completes the proof. O

a i € Py, such that

Note that
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Theorem 7.5. My C AZ for all e > 0.

Proof. 1. Define the function ¢ : T x R™ — R by

W(x,v) :/6 Lo ¢E(x,v)ds +2coe —u_ oo X (x,v) +u_ omo ¢ _(z,v).

—&

Note that ¢» € C(T™ x R™) and ¢ > 0 on T™ x R"™ by property (a) of u_ in the weak
KAM theorem.
2. We show that

(7.10) Wz, v) =0 Y(z,v) € Mo.

To this end, we argue by contradiction. We suppose that there were a point
(zg,v0) €EE Mo such that ¢(zg,vg) > 0. There is an open neighborhood U C T™ x R"
of (z0,v0) such that ¥ (z,v) > 0 for all (z,v) € U. Since (zg,v9) € My, there is a
p € Py such that spt uNU # (. Then we have

(7.11) /deu>0.

On the other hand, we have

[oans [ v
U T xR"™
and
/ Q/Jd,u:/ ds/ Log¢sdu
T xR"™ —€ T xR"™
+2005—/ u_07TO¢SLd,u+/ u_omdy
T xR"™ T xR"™
:2(—60)6 + 2008 =0.
Hence,
/ Ydu <0.
U
This contradicts with (7.11), which completes the proof. O
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